
- 1 -

Software Processes:
a Retrospective and a Path to the Future1

Gianpaolo Cugola and Carlo Ghezzi

[cugola, ghezzi]@elet.polimi.it
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza Leonardo da Vinci,.32

20133 Milano - Italy

Abstract

Software engineering focuses on producing quality software products through
quality processes. The attention to processes dates back to the early 70’s,
when software engineers realized that the desired qualities (such as
reliability, efficiency, evolvability, ease of use, etc.) could only be injected in
the products by following a disciplined flow of activities. Such a discipline
would also make the production process more predictable and economical.
Most of the software process work, however, remained in an informal stage
until the late 80’s. From then on, the software process was recognized by
researchers as a specific subject that deserved special attention and
dedicated scientific investigation, the goal being to understand its
foundations, develop useful models, identify methods, provide tool support,
and help manage its progress.

This paper will try to characterize the main approaches to software
processes that were followed historically by software engineering, to identify
the strengths and weaknesses, the motivations and the misconceptions that
lead to the continuous evolution of the field. This will lead us to an
understanding of where we are now and will be the basis for a discussion of a
research agenda for the future.

Keywords and phrases:
Software process, software quality, process-centered software engineering
environment, computer-supported cooperative work, workflow management systems,
inconsistency, deviation.

1 Introduction
The ultimate goal of the theories, techniques, and methods that underlie any engineering field
is to help engineers in the production of quality products in an economic and timely fashion.
Usually, this is obtained by providing a careful distinction between products and
processes [36]. The product is what is visible to the customers, and thus it is all that matters in
the end. The process is how this goal can be achieved. “What” and “how”, however, are two

1 This paper is an expanded version of the keynote presentation given by Carlo Ghezzi at the 5th

International Conference on Software Process (Lisle, IL, 14-17 June 1998).

- 2 -

sides of the same coin. It is through the process, in fact, that engineers inject quality into their
products, they can reduce time to market, they can control (and, possibly, reduce) production
costs.

These general considerations are valid for every engineering field. However, they are
especially relevant in the case of software engineering. The very nature of software, in fact,
makes product quality difficult to achieve, and assess, unless a suitable process is in place. It
is not surprising, therefore, that the focus of software engineering research and practices on
software processes can be traced back to the early stages of the field. The purpose of this
paper is to look back critically to what has been done, to evaluate where we are, what has
been achieved so far, and what remains to be done in the future.

The paper is organized as follows. Section 2 explores further the concepts of quality,
product, and process in the case of software. Section 3 reviews the historical evolution of
software processes from the sixties to the eighties. Most of the modern research on software
processes was started in the late 1980s: we will review its main achievements in Section 4.
Section 5 will provide a critical assessment of the results produced by this research. In
particular, it will try to identify where the major weaknesses are and will outline a possible
research agenda for future developments. Finally, Section 6 draws some conclusions.

2 Why are software processes relevant
In the past decade, there has been an increasing concern for quality in most industrial sectors.
In addition, there has been an increasing awareness of the central importance of the
production processes. Processes are important because industry cares about their intrinsic
qualities, such as uniformity of behaviors across different projects and productivity, to
improve time to market and reduce production costs. But they are also important because
experience has shown that processes have a profound influence on the quality of products;
i.e., by controlling processes we can achieve a better control of the required qualities of
products.

product

process

Product
requirements

Figure 1: The process as a black box (1)

This is especially true in software factories due to the intrinsic nature of software. If an
explicit process is in place, software development proceeds in a systematic and orderly
fashion. This prevents errors from being introduced in the product and provides means for
controlling the quality of what is being developed. Figure 1 provides an intuitive view to
reinforce this point. If no explicit notion of “process” is in place, product development can be
considered as a black pipe where the only visible flows are at pipe’s input and output ends. At
the input side, the flow into the pipe represents product requirements. At the output end of the
pipe, hopefully, the desired product is delivered. Unfortunately, in many practical cases, the

- 3 -

product appears at the output side months or years since the development started (and thus
after much money has been invested). When the product appears at the output side of the
process pipe, it is often too late and too expensive to care about quality. It is therefore
necessary that the concern for quality permeates the whole process; it cannot be delayed to the
end of development.

There are some deep reasons that make the approach of Figure 1 even worse for
software than for other more traditional kinds of artifacts. The first major difficulty has to do
with requirements elicitation, as shown in the view of the software development process
provided in Figure 2. According to such a view, a product development starts (in most cases)
with some informal requirements that originate in the customer’s business world. The
problem is that, in many cases, the customer does not know exactly what he or she wants. The
customer has a perception of his or her problems, but is unable to translate this perception into
precise requirements. As a consequence, the input requirements to the process are likely to be
very informal, fuzzy, largely incomplete, maybe contradictory, maybe even not reflecting the
user’s real needs [47]. If the development process is structured as a black box, there is no
visibility of what is going on as long as the development process progresses. Eventually,
when the product is delivered, it is very likely that the product does not match the
expectations of the customer. Although software is easier to modify than other traditional
kinds of artifacts, the cost of post-development modifications is very high and its
effectiveness is often very low.

informal
product

requirements

product

process

Figure 2: The process as a black box (2)

Thus, it is extremely risky to base all design decisions on the assumption that the initial
requirements acquired by the software engineer faithfully capture the customer’s expectations.
To reduce the risks, it is necessary to open the black box. One must define a suitable process
that provides visibility of what is being developed. By viewing inside the black box, one may
hope to be able to validate what is being developed against the customer’s expectations. The
process may thus provide continuous feedback to the developers2. This may reduce the time
between making a decision and discovering that the decision was actually wrong, thus
reducing the costs needed to develop an acceptable product.

Another difficulty has to do with the inevitable tendency of software requirements to
change during the process. As we mentioned, often customers do not know exactly what they
want; and even if they do, their requirements keep changing during the process. Another
common case that results in rapidly changing requirements is typical of the development of

2 In the sequel, the terms software engineers and software developer will be used interchangeably.

- 4 -

new kinds of products, as for example happens now for Internet applications. In such cases,
the initial requirements are only partially known and there are no customers out there to
provide a precise list of features that the application should provide. New demands arise and
new potential customers appear as prototypes are delivered and feedback is provided from
initial users to improve the product.

These concepts suggest an alternative process scheme, which is described pictorially in
Figure 3. As suggested by Figure 3, a transparent production process allows the customer to
understand what is going on inside the process. In particular, it allows the customer to observe
the artifacts produced during the process. Such artifacts (e.g., use cases, intermediate
prototypes, preliminary and incomplete versions, design documentation, test case definition,
etc.) may be used to provide some form of validation of the current process. As a result of the
validation, it is possible either to decide to proceed to the next step, or to re-iterate the
previous step.

informal
product

requirements

product

process

Figure 3: A transparent process

Another fundamental reason that makes the black-box process of Figure 1 unacceptable
for software is that one cannot expect to assess the quality of the product by simply looking at
the product itself. This may differ from the case of other kinds of artifacts. For example, in the
case of a bridge, one can certify that the bridge can sustain certain load conditions by
physically applying those load conditions. This ensures that the bridge has an acceptable
behavior for all other load conditions that are less than the one used for certification. Thus a
single test verifies correctness of infinitely many cases. Conversely, it is well known in the
case of software that a successful test execution, in general, does not tell us much about other
possible executions [58]. Testing and all other kinds of practical analysis techniques have
intrinsic weaknesses. They cannot assure the absence of defects in software. To achieve more
confidence in the correctness of software, it is recommended that the process be structured in
a way that makes development systematic and therefore less error prone. By combining
prevention and continuous verification and validation, an explicitly and clearly defined
process may improve the software engineer's confidence in software qualities.

- 5 -

3 A retrospective
Historically, as the problems outlined in Section 2 became better understood, an increasing
attention was dedicated to software processes. Hereafter, we will try to understand the main
approaches that were followed, in order to identify their benefits and weaknesses. Our
presentation is structured as a kind of idealized historical chronicle through which we will
trace the evolution of the field. In the real world, however, the boundaries among the different
approaches were fuzzier. Each approach existed in (and continues to exist) in many different
forms and variations. Each went through many changes that were suggested by the experience
gained in its practical application.

To stress the different principles, upon which the various approaches are based, we will
present the historical evolution as a sequence of myths. The term myth was chosen because
often they were presented as “the” solution to the software process problem. Their acceptance
was based more on an act of faith than on objective—let alone, quantitative—measurements
of data. Our overview of myths is constrained by obvious space limitations. This explains
why, in order to emphasize the conceptual differences among myths, we were forced to
provide some oversimplifications.

3.1 Myth 1: The software lifecycle
The initial solution proposed in the sixties, and subsequently elaborated in many variations, is
the concept of the software lifecycle [67]. The lifecycle defines the standard “life” of a
product, from its initial conception until deployment and maintenance. This means that the
development process is decomposed into a predefined sequence of phases, each of which is
structured as a set of activities. Each phase receives inputs from the previous phase and
provides output to the following phase. The chosen lifecycle model standardizes both the
decomposition of the process into phases and activities, and the artifacts (documents) that
flow from each phase to the next.

The waterfall lifecycle [67] is perhaps the most widely known and most idealized form
of a lifecycle. The basic principle underlying the waterfall lifecycle is that the process should
proceed in a linear fashion, without cycles. The motivation is that orderly developments are
linear. Recycling should be avoided as much as possible since it allows the developers to
undo what they did before, in an unconstrained manner. Recycling encourages the sloppy
attitude of doing things without carefully thinking in advance. Moreover, the lack of linearity
makes the process difficult to predict and control. Since one can always go back to previous
phases, it is hard to know how far one is in the process and it may be impossible to control if
the process progresses according to the budget and to the schedule.

feasibility study

requirements

design
implementation

system test

Figure 4: A sample waterfall lifecycle

A typical waterfall lifecycle is shown in Figure 4. It is easy to realize that the model is
inspired by the traditional manufacturing models, where products are developed through a
fixed sequence of well-defined (and often automated) processing steps. All that matters is that
production proceeds from a step to the next as scheduled in the workplan.

Many software companies adopted (and many still adopt) a waterfall lifecycle as part of
their standard mode of operation. The experience, however, has shown that strict versions of
this model work rarely for software, and in some cases they do not work at all [37]. As we

- 6 -

already observed in the previous section, since requirements are hardly known beforehand,
redoing becomes a necessity. If the lifecycle is not structured in a way that intermediate
artifacts can be used to provide effective feedback on what is being developed, eventually the
need for changes manifests itself as high maintenance costs. Moreover, unfortunately,
waterfall lifecycle models do not help much with maintenance. Maintenance is seen as a
nuisance, an undesirable effect that occurs after development is completed. This, however, is
a serious mistake. Maintenance is an unavoidable phase of the process, and its costs often
exceed development costs [37]. Maintenance activities include defect removal (corrective
maintenance), adaptation to environment changes (adaptive maintenance), and evolution to
improve existing functionalities, or add new functionalities to meet new market conditions,
new uses, new desires, new ideas about how to do business (perfective maintenance). This
last category accounts for the largest portion of maintenance costs. Its relevance indicates
quite clearly that in practice one cannot hope to develop the “complete” and "stable"
requirements of an application before design and implementation start. Customers often have
limited knowledge of the requirements when the project starts. Initial requirements are almost
inevitably incomplete and imprecise; sometimes, they are even wrong. A strict waterfall
lifecycle, on the other hand, tries to organize software development as a linear sequence of
steps: it assumes that all requirements are acquired before proceeding to design, that design
should be completed before one proceeds to implementation, and so on. Since often this
cannot be achieved, all the inevitable changes manifest themselves as (unanticipated)
maintenance. Furthermore, many waterfall lifecycles tried to provide a rigid decomposition
into a standard development activities. In practice, however, software developers found it hard
to follow such a fixed, predefined, and standard process model. Inevitably, software
production contains creative design steps; unlike manufacturing, it cannot be completely
predefined. Thus there is no unique, universal software lifecycle that can be used in any
organization and for any product. Software development requires flexible and adaptive
lifecycles.

In conclusion, lifecycle models, such as the waterfall model and its many variants, are
based on the assumption that software processes can be standardized once for all.
Furthermore, they require that complete knowledge on a project is available before the project
starts. Since these assumptions are seldom valid, the myth that a standard lifecycle model can
be defined to guide software development failed. As Parnas pointed out [61], however, the
waterfall lifecycle defines an idealized process which can describe the rationale of a project a
posteriori. Even if the process that developers followed in practice was not linear, it can be
described afterwards as an orderly sequence of well-defined phases with well-defined
interfaces. This makes the documentation well structured and clearly understandable.

3.2 Myth 2: Methodologies
Another approach that became popular in the 60s and 70s was the definition of "development
methodologies", intended to provide expert guidance and wisdom in the development process.
Well-known examples are JSP [45], which later evolved into JSD [46], and SA/SD
(Structured Analysis/Structured Design) [77,28]. For example, SA/SD popularized the use of
data-flow diagrams as a specification method, and provided guidance in deriving the structure
of an application from such kinds of semi-formal specifications.

These methodologies were all based on a number of common points. First, they
provided a number of notations to be used in specification. Second, they provided a number
of detailed guidelines and recommendations on how such notations could be used and how to
move through the development process from the initial phases down to coding.

Methodologies did not come out of some magic, but rather they were the result of the
experience gained in previous successful developments. They can be viewed as the encoding
of the distillation of the best experiences gained in the development of software.

In spite of the enthusiastic claims provided by methodologists, mostly through
professional seminars and textbooks, the proposed methodologies suffered from many
problems, among which:

- 7 -

- Methodologies were applied in contexts other than those in which the experience was
initially gained. For example, a methodology developed in the field of business
information systems was then applied to developing a real-time embedded application. In
many cases, there was no empirical evidence that application to other contexts would
work, and in fact this lead to many failures.

- Developers took methodologies as recipes, rather than general guidelines. The negative
side effect was that developers felt less responsible and tended to focus more on the
external frills of the methodology rather than on its substance.

- Most methodologies required a lot of paperwork, and no tools were available to automate
the clerical parts. As a consequence, they were expensive to use properly;

- Methodologies were based on informal notations. The lack of precise semantics made
descriptions ambiguous and difficult to check for correctness or consistency.

- Their goal was to provide predictable results given the same premises. Unfortunately,
most of them did not achieve this goal [14].

3.3 Myth 3: Formal development
In contrast with the informality of the previous approaches, a new stream of research started
in the late 60s, which tried to develop the foundations for an approach to software
development based on mathematics. The underlying basic assumption was that programs are
mathematical entities that can be formally specified, proven correct, and even developed
correctly by means of calculi for program derivation that are guaranteed to transform a
specification into a correct implementation, via well-defined refinements [29,76,26,38,10].

Indeed, this approach provided a new impetus for research in computer science and led
to a much better understanding of the foundations of software development. It helped
understand precisely what a specification is and what it means that an implementation
conforms to its specification. It led to a better understanding of the limitations of traditional
approaches as far as program correctness was concerned. The intrinsic limitations of testing,
as a way to certify software, became more explicit.

As a general solution of the software problem, however, this approach failed. The first
problem was that it assumed that a formal specification of software functionality is available
as a starting point. We already mentioned that this assumption does not hold in general. The
second problem had to do with scalability. The methods proposed to develop correct
programs worked fine in the small, but could not scale up to the development of complex
systems. It became soon evident that mastering individual programs does not imply that one
can also deal with large systems. The third problem had to do with non-functional
requirements. Formal methodologies do not take them into consideration, although it is well
known how non-functional requirements represent a fundamental part in any complex
application.

Because of these considerations, most of the proposed methods could be viewed more
as methods for systematic programming, rather than methods for software development. But it
is well known that there is much more to software development than just programming. Many
researchers who work in formal methods now acknowledge these criticisms. They now agree
that formality is just one tool that software engineers should master. They also agree that it is
not important just to provide a formal notation, but it is equally important to show how and
where it can be used, and have a method that guides in its use.

3.4 Myth 4: Automation
The 70s saw the rapid growth of software platforms that provided a rich set of tools for
software development. UNIX and the UNIX workbench became the popular environment for
the development of C applications [53]. The underlying idea was that simple, neutral, and
small-grain tools could be flexibly combined to achieve power and complexity. The main goal
of software development became "automation". Since software was the major enabling

- 8 -

technology behind automation in most industrial sectors, why would not software be able to
support automation of software production?

Other interesting approaches were taken to support automation. One was the study and
implementation of Software Development Environments (SDEs) [62]. Language-based
environments were a popular research topic [39,66]. Later, the efforts around APSEs—
environments supporting Ada program developments—gave new impetus and more
generality to this field of research [73]. PCTE was probably the richest and latest result of this
research stream [72].

A similar trend could be observed in the business information systems field. Fourth-
generation languages and environments, which became popular in the 80s, are based on the
assumption that several software development tasks can be automated by a suitable SDE.
Report generation and input forms can be automatically generated from the description of
database entities; their form can be manipulated, if necessary, by direct screen manipulation,
without writing code. Code is automatically generated by the SDE.

As more automated functions were provided by SDE, it became clear what the limits of
automation really are. Simple steps can be automated, and this relieves software engineers
from the painful details of certain programming tasks. But, as we observed, there is much
more to software development than programming. The need for mastering complexity is still
there. The need for integrating technical and equally important non-technical aspects is still
there. Requirements acquisition and specification cannot be fully automated. Critical design
decisions, which require analyzing the trade-offs among several possible alternatives, cannot
be fully automated.

3.5 Myth 5: Management and improvement
In the 80s, industry became more and more concerned with quality. Japanese factories became
known for their attention to processes that would guarantee quality products. International
quality standards, like the ISO9000 series [44], dictated ways to certify organizations, and
certification was increasingly perceived as an indirect assurance that an organization would
deliver quality products. Quality standards are heavily reliant on company-wide management
procedures that ensure a predictable and orderly flow of activities.

International standards do not support organizations in understanding how good they
are in their business and how they can improve their process. This is exactly the purpose of
the Capability Maturity Model (CMM), developed by the SEI, which became extremely
popular in the late 80s [43]. The CMM defines a series of maturity levels, which characterize
a software development organization. It further defines the recommended practices that would
allow an organization to progress along the maturity scale, to achieve higher maturity.

Industry standards and the CMM have been important because they stressed the
managerial aspects of software development. But this is of course also their limit. It may be
observed that in some cases they did not result in better organization, but rather in increased
bureaucracy. The question that often arises is whether they are mostly oriented towards large
and highly structured organizations, and how good they are for highly flexible, dynamic,
market-driven, innovative organizations. Finally, the assumption that certified organizations
perform well and produce high-quality products has never been proved and should be
challenged by sound empirical assessment.

3.6 Myth 6: Process programming
In 1987, Leon Osterweil gave a keynote speech at the 9th International Conference on
Software Engineering (ICSE-9) whose title was “Software processes are software too” [59].
This work can be considered as a pivotal paper in modern research on software processes.
Although some of the ideas presented by Osterweil were introduced and discussed in several
previous research workshops, the ICSE-9 paper raised much attention and gave new impetus
to software process research.

- 9 -

Osterweil started from the observation that all organizations are different. They differ in
culture, people skills, products delivered, commercial and development strategies. Even
within the same organization the different projects present huge variations. They aim at
developing different products having specific characteristics. As a consequence, there is no
unique, ready-made software development process. The process must be defined based on the
problem to be solved; it must be tailored to the specific development project and should take
into account all the particularities of the organization and product being developed. Also, the
environments that support software development should be tailored to the specific
development process. To satisfy these goals, Osterweil concluded, we need languages to
describe software development processes. The resulting process models should be verifiable,
to check if they meet the organization's goals. The models should be also executable, to
provide runtime process support. All that demands for new software development
environments capable of supporting the development, documentation, analysis, execution, and
evolution of process models. Process model development is like software development (in
this sense “software processes are software too”). It requires specific skills; it goes through
different phases (from requirements to design to implementation to verification to evolution);
it requires specific tools to be supported.

Osterweil's controversial viewpoint stimulated an active research area, which focused
on the development of Process-centered Software Engineering Environments (PSEEs) [2,35].
PSEEs can be considered as a new generation of SDEs that can be tailored to each specific
software project, to provide it with the best possible automated support. PSEEs support the
engineering process used to conceive, design, develop, and maintain a software product
through an explicit process model. Such a model is described by means of a suitable Process
Modeling Language (PML) [34]. The model specifies how people should interact and work,
and also how and when the automated tools used in the process should be used and/or
automatically activated. A process engine can then enact (i.e., execute) the process model,
which is part of the PSEE. The process engine guides and supports people in performing the
different activities that are part of the process, and automates the execution of the activities
that do not require user intervention.

The process engine is the core of a PSEE. It is composed of three main logical
components:
• An interpreter ℑ of the process model. ℑ executes the process model by controlling the

tools used during development, guiding people, and verifying that the constraints
embedded into the model are satisfied.

• A user interaction environment (UIE). The UIE is composed of the tools used by the
people involved in the process. Examples of such tools are editors, compilers, test
profilers, user agendas, project management tools, and so on. They are controlled by ℑ,
which uses them to receive feedback from the users and to support them during the
process.

• A repository ℜ. ℜ stores the artifacts produced during the process and managed by the
PSEE (e.g., source code modules, documentation, executables, test cases, reports, Gantt
charts) together with the current state of the process model being enacted. In other words,
it supports ℑ by providing persistency of its data.

Figure 5 describes the architecture of a generic process engine.

- 10 -

User Interaction Environment

Tool 1 Tool 2 Tool n...

Interpreter

Repository

ℑ

ℜ

UIE

Figure 5: The architecture of a generic process engine

A large number of prototype PSEEs was developed in the late 80s early 90s. Many of
them are available free of charge to the interested parties to stimulate cross-fertilization and to
favor the interchange and feedback among researchers. Among these we recall Adele [12],
ALF [16], AP5 [4], Arcadia [71], EPOS [17], HFSP [51], Marvel [49], Merlin [48],
OIKOS [57], and SPADE [7]. Others became commercial products, like LEU [30],
IPSE 2.5 [75], SynerVision [41], and ProcessWeaver [33].

Each PSEE is characterized by its PML. The PML is used to describe the process
model that has to be followed, which is analyzed and enacted by the environment. A PML
supports the description of several concepts that characterize a software development process,
such as:
• Activities. They are the process steps used to produce and maintain artifacts.

• Artifacts. They are the input and output of activities. They are stored in the proces
engine's repository.

• Roles. They describe the rights and responsibilities of the agents in charge of activities. A
role is a static concept while the binding between a role and an agent can be dynamic. In
general, agents during the same process can play several roles, and a role can be played
by several agents.

• Human agents. They are in charge of executing certain activities that compose the process
while playing certain roles.

• Tools. They automate execution of certain activities.

PMLs can be classified with respect to the paradigm they adopt to model the process.
We can distinguish among four main paradigms:
• Programming language based. Process modeling languages that belong to this class

extend existing conventional programming languages by introducing concepts related to
the software development process. One of the best known examples of PMLs belonging
to this class is APPL/A [40], an extension of Ada.

• Rule based. This class of PMLs comprises of languages that use production rules to
describe the software process. Activities are described by rules with a precondition, an
action, and a post condition. Rules have an associated role, which is responsible for the
activity, and a set of resources like tools, necessary to perform the activity. Examples of
rule-based PMLs are Marvel and Merlin.

• Extended automata based. Graphical state-machine based languages, like Statecharts or
Petri nets, have been used to model software processes [52]. In many cases, these

- 11 -

formalisms were extended to provide a more expressive notation oriented to software
processes. Leu and ProcessWeaver are two examples of Petri net based PMLs.

• Multiparadigm. Process modeling languages that belong to this class combine two or
more distinct paradigms to describe the different facets of a software development
process. SPADE can be considered as an example of a multiparadigm PML. Although its
underlying structure is based on Petri nets, it provides an object-oriented data model to
describe artifacts, and uses an operational language to describe actions associated with net
transitions [8].

Another important feature of PSEEs is the support they can offer to their users. One can
distinguish among four kind of possible support [5]:
• Passive role. The user guides the process and the PSEE operates in response to user

requests.

• Active guidance. The PSEE guides the process and prompts the users as necessary,
reminding them that they should perform certain activities. The users are still free to
decide if they will perform the suggested actions or not.

• Enforcement. The PSEE forces the users to act as specified by the process model.

• Automation. The PSEE executes the activities without user intervention.

Often, the same PSEE adopts more than a single form of user support. As an example,
SPADE adopts the automation approach for activities that do not require user intervention and
the enforcement approach for the other activities.

A final classification of PSEEs distinguishes them with respect to the way they control
and guide the process. In proactive PSEEs it is the environment that initiates and controls the
operations performed by humans. Conversely, reactive PSEEs are passively subordinate to
users. Most of the first generation PSEEs that we mentioned before are proactive.

3.7 Other approaches
The focus of process research during the past decade mostly concentrated on process
programming. Other directions, however, were also investigated. Some of them can be
viewed as widening the initial scope of process programming. For example, [9] and [18] focus
on understanding real-life processes by viewing and capturing the relevant events that occur
as the process progresses in the real world.

Other, completely different, research directions were also investigated. Several
researches carried out a series of empirical studies on software process to analyze how real
software factories operate and how their processes could be improved (for example
see [63,64]). Cusumano [24] also did an empirical analysis of how Japanese software factories
operate at a more macroscopic level. Cusumano and Selby [25] did a well-known recent study
analyzing how Microsoft works.

Yet another approach was investigated in [1], which defined a general model for
software processes based on systems dynamics. Similarly, Lehman [55] modeled a software
process like a feedback system and used this metaphor to study and analyze it. The latter is a
continuation of previous work, which aimed at identifying laws for software evolution [11].

Yet another approach was proposed by Watts Humphrey [42], who elaborated the
Personal Software Process (PSP), an empirically guided process improvement methodology
scaled down to the individual developer. Humphrey’s work was motivated by the observation
that software development is a human intensive activity that can be improved only by
improving the way each individual developer operates.

- 12 -

4 Lessons learned and on-going efforts
In Section 3 we examined the historical evolution of software process research by identifying
a series of myths, which were proposed as general solutions to the software process problem.
Indeed, each myth identified a relevant aspect of the problem, but failed because it ignored
other, equally important aspects. The lifecycle myth pointed out that a process model is
needed to understand and control how development progresses. It failed when it tried to
propose the same reference lifecycle for all software development processes. The
methodology myth stressed the need for methods to support developers in their tasks. But
methods should be based on sound formal foundations (as stressed by myth 3), enforced, and
supported by automated tools (as stressed by myth 4). Since processes are project specific,
one should be able to program the specific required process by using some process notation
supported by a PSEE (myth 5). Based on this view, process programming looks like the glue
that can put together all previous software process myths to make them part of a composite
solution in which they complement each other.

After more than 10 years of research in the areas of process programming and process-
centered software engineering environments, it is important for the researchers in the field to
evaluate whether this ambitious goal has been reached. The purpose of this section is exactly
to understand the achievements and the failures of these research streams, and to identify
possible paths for future research in these areas.

We can see the impact of process programming and PSEE research on state-of-the-art
configuration management tools, which incorporate a great deal of process notions. Tools like
CCC [68], Continuus [78], and PCMS [79] provide features to describe and implement a
different software development process for each project. The set of activities that can be
carried out in each step of the process can be described, usually through an executable
scripting language. In some cases, the constraints that regulate process enactment may be
described, too. This gives process designers the ability to tailor the support offered by the tool
to the specific needs of the adopted software development process.

In spite of this and other successes, however, we must acknowledge that process
programming did not succeed in the task of pulling all previous myths together, and no PSEE
gained general acceptance or widespread use. We will try here to contribute to identifying the
causes of this failure and to refocusing on-going research.

We argue that process programming failed primarily in the aspects of software
development that involve humans. The emphasis of most PMLs and PSEEs has been on
describing process models as normative models, i.e., on describing (and prescribing) the
expected sequence of activities and pushing automation to enforce them. Process-centered
software engineering environments have been developed and used as a mean to impose good
practices and uniform behaviors. They were often described as the facilities that can
overcome the lack of quality in people.

“The actual process is what you do, with all its omission, mistakes, and oversights. The
official process is what books say you are supposed to do”. This quotation from Watts
Humphrey represents quite well the implicit viewpoint that underlies most software process
research. People are fallible, they make mistakes, and they are unreliable. The process model
is the guideline that is provided for their benefit: to guide them through the right path and to
prevent them from making mistakes. This pessimistic viewpoint is perhaps responsible for the
prescriptive approach adopted by most PSEEs, and we argue that this is also the main reason
for their failures.

We view software processes as human-centered processes. Humans have a central role
in performing the activities needed to accomplish the process goals. They do so by interacting
and cooperating among themselves and with computerized tools. The goal and purpose of
such tools is not to replace humans, but to facilitate their work and increase their
effectiveness. Human-centered processes are characterized by two crucial aspects, that were
largely ignored by most software process research: they must support cooperation among
people, and they must be highly flexible.

- 13 -

Supporting cooperation is crucial since software development is a complex process,
which involves cooperation and collaboration of many people for long time. Software
engineers cooperatively negotiate requirements, develop specifications, design the software
architecture, develop and test program modules, etc. Cooperating designers are often working
in a distributed environment, where a LAN connects individual workstations. Increasingly,
cooperative workgroups became geographically distributed, and complex cooperation patterns
are possible. PSEEs can thus be viewed as examples of environments for Computer Supported
Cooperative Work (CSCW) in the software development field.

Flexibility is another crucial aspect. The final goal of a software process is not to
constrain people to follow a predefined pattern of activities, but to provide support to their
creative tasks. The responsibility of what to do, how to do, and when to do certain activities
must be in the hands of the designers. The process is too complex and intrinsically dynamic to
be definable in all details advance. Moreover, no matter how carefully the process is defined,
in practice people often need to deviate from the normative description embodied into the
process model. A PSEE has to be flexible enough to allow the process to be modified as it is
running and to allow people to cope with the unexpected situations that arise during the
process [19]. The former problem requires the PSEE to support process evolution, by
allowing process engineers to improve the process description as experience is gained as the
process is in progress [56]. For example, the SPADE environment supports process evolution
by making its process language SLANG reflective, and defining process change processes [6].
In this section we will elaborate on the latter problem (process deviation), which is of
paramount practical relevance.

In cooperative workgroups, there is an intrinsic tension between the need for defining a
process on which people agree, which encodes the current understanding of how work should
progress and defines the expected course of actions, and the fact that inevitably, no matter
how carefully the process is defined, unexpected situations arise that are not reflected in the
process model. To cope with such situations, software engineers should be allowed to deviate
from the prescribed process. The decision to deviate is the designer's responsibility.
Deviations are problematic, because they cause inconsistencies between the process model
and the actual process [22]. The challenge here is to provide the PSEE with ways to manage
deviations and inconsistencies in a controlled fashion. These points will be taken up more
systematically later in Section 4.1.4.

Until now, the dominant approaches to software processes and process technology
adopted a closed world assumption3. Once a process is defined, the user is limited in what she
or he can perform. The actions that can be performed are only those that are pre-specified by
the process designer. Moreover, PMLs tend to force process designers to over-specifying the
process for completeness. The focus on automation also results in process over-specification.
Process designers focus on the details that lead to process automation and fail to capture the
higher level constraints that characterize the desired process. Moreover, process models focus
on what people have to do, while it is often more important to say what they have not to do,
leaving them free to decide how to operate under these constraints. In summary, they focus on
details, which are more subject to change than higher level constraints, and prescribe
behaviors from which developers often need to deviate. This problematic approach in process
programming is further complicated by the fact that process evolution is difficult and on-the-
fly process deviations from the model are impossible.

Given these considerations, we may ask ourselves if “process programming” is the
right focus for process research. It is fair to observe, in fact, that the closed world assumption
and the emphasis on prescriptive behaviors are rooted into the “process programming”
concept. As observed by Leon Osterweil during his presentation at ICSE 19 [60], however,
“Programming is not the same as coding, it entails the many diverse steps of software
development. Software process programming should, likewise, not simply be coding, but
seemed to entail the many non-coding steps usually associated with application development.

3 Some of the problems of this dominant approach were raised by a number of researchers (e.g., see
Kishida and Perry’s “Session Summary on Team Efforts” [54].

- 14 -

[Furthermore], there are many examples of application code that are not inordinately
prescriptive, authoritarian, or intolerable to humans. Thus there should be no presumption the
process code must be overly prescriptive, authoritarian, or intolerable either. Process
programs need not treat humans like robots”.

The motivations that underlie research on process programming (i.e., the need for
tailoring the process to the organization and to the product developed, and the need for
modeling software processes to analyze, improve, and guide them) are still valid. The
problem is in the approach adopted to reach this goal. We need to look for new kinds of
programming principles that can support human intensive processes, like software processes.
Process evolution and process deviation should be treated as first-class citizens, not as minor
and undesirable exceptions. Modern software factories operate in a highly dynamic market,
under tight time and cost constraints. The adoption of software processes should not be
viewed as a way to slow down the process, but rather as a way to better support its flexibility
and timeliness. Moreover, people should not be considered like robots to be guided in a step-
by-step fashion. They should be viewed as the most precious resource in software
development: PSEEs are there to serve developers, not vice versa.

4.1 A sampler of on-going efforts
As we observed above, software processes are a kind of distributed, cooperative human-
centered processes. This has been recognized by a number of more recent research efforts,
some of which are discussed below. We explicitly acknowledge that this is not an exhaustive
survey of the field, but rather a sampler of some representative research efforts.

4.1.1 JIL

Developed by the LASER research group at University of Massachusset at Amherst, JIL [70]
is the result of Osterweil’s reflection on the successes and failures of first-generation research
on process programming and PSEEs. It is an interesting and ambitious effort aiming at
providing a semantically rich language, which features high-level, process specific constructs.
This research was driven by the belief that the process programming research failed because
the proposed PMLs did not provide the appropriate constructs and mechanisms that are
needed for programming this very special kind of “software” like the “software process”.

According to Osterweil's assessment, first generation PMLs bear close remembrance to
programming languages or to workflow languages. The former are computationally powerful,
but their abstraction are too low level to easily describe complex software process, while the
latter tend to be higher level but relatively limited computationally. JIL tries to keep the best
from these two approaches by providing a PML that is semantically rich and also features
high-level, process specific constructs.

JIL is an activity-oriented language combining proactive and reactive control flow
together with a powerful mechanism to describe the actions that have to be undertaken if
something goes wrong and an exception arises. The central construct in JIL is the step. A JIL
step is intended to represent a step in a software process. A JIL program is a composition of
steps. The elements of a step specification include:
• the declarations of the software artifacts used in the step;
• a specification of the resources needed by the step, including people, software, and

hardware;
• a set of substeps that contribute to the realization of the step;
• a set of constraints on the relative execution order of substeps;
• an imperative specification of the order in which substeps are to be executed (direct

invocation);
• a reactive specification of the conditions or events in response to which substeps are to be

executed (indirect invocation);

- 15 -

• a set of preconditions, constraints, and postconditions, which define artifact consistency
conditions that must be satisfied (respectively) prior to, during, and subsequent to the
execution of the step;

• a set of exception handlers for local exceptions, including handlers for consistency
violations (e.g., precondition violations).

To provide the necessary flexibility to software processes, JIL provides constructs to
specify the control flow, including the ORDERED, UNORDERED, and PARALLEL operators to
describe the desired sequence of process steps and the REACT construct for programming
reaction to events.

As this brief description hints, JIL is a very complex language, whose ambition is to
cover all the requirements posed by a complex cooperative and distributed environment like
the software process. We view JIL as an example of a maximalist approach to the process
programming problem. This is in contrast with a minimalist approach, which would try to
develop a very minimal set of constructs and a lightweight support environment. We will
outline an example of a minimalist approach in Section 5, as a manifesto for our future
research in the area.

It is also interesting to discuss JIL's approach to handling unexpected situations, which
is based on exception handling. Exception handlers can be used to specify the actions that
have to be pursued if an anomaly arises during the process. Examples of anomalies include
violating process constraints (i.e., step preconditions or postconditions) or failing in
accomplishing an operation. Based on our previous discussion, we would argue that this
approach to managing unexpected situations is not general enough. It allows users to cope
with a predefined number of situations, sometimes called expected exceptions (see [31]),
which are captured by one of the exception handlers provided as part of the model. If an
exception arises, which does not have a corresponding exception handling procedure, the
PSEE cannot provide any help to its users. In other words, JIL does not provide support to
managing deviations and inconsistencies as they were defined in Section 4.

4.1.2 Oz and Oz Web

Developed at Columbia University as a successor of Marvel [49], Oz [13] was the first
“decentralized” PSEE. Several PSEEs developed before Oz support physical distribution of
the developers that cooperate in a software process by adopting a client-server architecture to
implement the structure described in Figure 5. People may access the services provided by a
PSEE by running the front-end tools on their client, and connecting to a server providing the
interpreter and a centralized repository. This solution is suitable to supporting small-to-
medium, strongly connected teams, which cooperate on the same process through a LAN.
Usually, these teams are composed of people working for the same organization. The
increasing complexity of software development processes, however, requires the adoption of
new development paradigms to support the cooperation of different teams, possibly belonging
to different and geographically distributed organizations. The standard client-server PSEE
architecture we mentioned in Section 3.6 cannot support such a kind of "multi-team
development". Each team has to be able to use its own set of tools, procedures, and data. At
the same time, these “autonomous” teams need to collaborate in order to develop the product.
For example, they may need to share tools, to exchange files and other data, and they may
need to agree on some common policies or procedures, at least for the part of the work that
involves collaboration. Oz supports such kind of “decentralized” (as opposed to “distributed”)
development.

The Oz PSEE is composed of a federation of two or more sub-environments. Each sub-
environment has complete control of its process, tools, and data, while allowing access by
remote sub-environments under restrictions that are solely determined by the local sub-
environment. In order to support cooperation of sub-environments a common sub-process has
to be defined. This is obtained by defining one or more treaties. A treaty defines a common
sub-process, a common sub-schema for accessing data, and a set of access constraints, to
allow the cooperation between two sub-environments. The common sub-process defined by a

- 16 -

treaty is executed by adopting a summit model. During a summit two sub-environments
cooperate by executing a sub-process previously defined by means of a treaty. The treaty and
summit negotiation model allows the required level of interoperation among separate PSEE,
still keeping each PSEE autonomous.

Based on Oz, OzWeb [50] allows a set of users to collaborate by accessing and
manipulating a set of hypermedia documents according to a well-defined workflow model. It
uses standard web technologies (i.e., the HTTP protocol, the HTML language, and
conventional web servers) to support access and manipulation of hypermedia documents, but
it improves the standard web infrastructure by introducing workflow modeling and support
facilities. OzWeb is based on two concepts: subwebs and groupspaces. A subweb organizes
on-line material of plausible interest to a process or organization over its lifetime. It supports
structured associative and navigational queries, and unstructured information retrieval and
navigation via hyperlinks. A groupspace provides the services needed to define and enact a
process model that defines the way hypermedia documents managed by subwebs have to be
accessed and manipulated to fulfill a particular task. OzWeb extends the Oz server to operate
as a subweb server exporting all the needed services to implement a groupspace. In particular,
the Oz process modeling language, the Oz process engine, and the Oz object-oriented DBMS
have been extended to use standard web technologies. The result is a hypermedia
collaboration environment in which people dispersed across the Internet may collaborate to
pursue a common goal.

4.1.3 APEL

Developed at “Laboratoire Logiciels, Systèmes, Réseaux”, France, APEL [32] is a PSEE,
which pursue two main goals:
1. To support interoperability among heterogeneous PSEEs, allowing a process designer to

build a a federation of PSEEs to manage complex, distributed processes;
2. To support process evolution, in order to cope with unforeseen situations during

enactment.
To support federation of existing PSEEs, the APEL team has identified two basic
architectures:
• In a control based architecture interaction between PSEEs is based on “process routine

calls”. Each PSEE is an autonomous entity, which encapsulates the part of the process it
is responsible for. A supervisor PSEE exists, which holds the common process model.
Such model expresses the relative ordering among sub-processes to be executed by other
PSEEs. It formalizes, at a high abstraction level, the process performed by the federation.
According to the common model it executes, the supervisor PSEE invokes other PSEEs to
perform the required sub-tasks.

• In a state based architecture, each PSEE shares a common representation of the state of
the global process. Interaction among PSEEs is implicit (i.e., direct call are never
performed) and based on the common state. In particular, each PSEE in the federation can
observe the common state, and update its local state accordingly, or change the common
state according to changes performed in its local state during execution of its local model.

Each of these approaches has pros and cons. In the control based approach, PSEEs have
a very limited view of the process they are participating in, but there is formal knowledge of
what will be executed (i.e., the overall process is formalized into what has been called the
common process). In the state based approach, each PSEE has a precise view of the current
state of the process, but a description of (and consequently the control over) the overall
process is lacking. APEL adopts a mixed architecture, which provides the benefits of both the
previous approaches and allows a smooth transition between control and state based
federations, if required. The APEL environment includes the following components:
• A common state, available to each PSEE and kept by a process server. During enactment,

the process sever holds both a reification of the common process model and a reification
of all the entities created during execution. The process server interface allows

- 17 -

components to create any entity and to change the current process as well as the process
model. This capability is the basis for evolution support.

• A common PSEE, which executes the common process model with respect to the
common meta-model semantics [27], and makes the common state evolve. The common
PSEE ignores other PSEEs, which coordinate through the common state. The common
process model includes a high level description of the “functional” aspects of the overall
process, ignoring the operational aspects.

• An interoperability PSEE, which executes an interoperability model. This model contains
operational information related to the consistency control of the common model, like
ordering of tasks and transaction control.

• A set of heterogeneous PSEEs, which can access the common state and can be controlled
by the interoperability PSEE.

• An event server used to support event-based communication among the process server,
the common PSEE, the interoperability PSEE, and the other PSEEs which compose the
environment.

4.1.4 Endeavors

Developed at the University of California at Irvine, Endeavors [15] is an open, extensible,
Internet-based PSEE whose main goal is to support software process flexibility by minimizing
the effort needed to change the process model on the fly (i.e., during enactment).

Endeavors supports an object-oriented definition and specialization of activities,
artifacts, and resources associated with a software development process. Endeavors' activity
networks define the inter-relationships among activities, artifacts, and resources as well as
sub-networks. Networks include the definition of control flow, data flow, and resource
assignments, and can be easily defined using a graphical network editor.

To enable cooperation among large groups, Endeavors supports both distribution of
people and distribution of artifacts and process fragments via WWW protocols. The process
fragments that compose the process model being executed can be downloaded through the
network and the artifacts produced during the process can be maintained in a distributed
repository and accessed via standard protocols like HTTP and FTP.

To support on-the-fly change of the process model being executed, Endeavors allows
dynamic modification of object fields, methods, and behaviors at runtime. Stakeholders can
customize the abstraction levels for behavior and data that are appropriate for their site and
their customization skill and authorization level. For example, technically sophisticated
stakeholders may customize behaviors while non-technical people may be limited to simply
setting the value of some fields (essentially, they perform some kind of parameterization).
Activity networks may be also changed at run-time through a graphical interface, thus
allowing users to change the control and data flow.

4.1.5 Sentinel

To support people when something unexpected happens, two approaches are possible:
(i) change the process model on-the-fly in order to describe the new situation and then

operate according to the new model; or
(ii) allow people to explicitly deviate from the process model.

A few first-generation PSEEs identified the importance of managing unexpected
situations during the process and adopted the former approach. As an example, SPADE
provides a reflective PML that allows process modelers to formalize not only a software
development process but also the process of changing the model itself (i.e., the meta-process).
The experience gained using SPADE has shown that supporting process change is
fundamental to cope with major deviations, that are likely to occur again in the future, but it is

- 18 -

not adequate to cope with minor deviations that require an immediate answer. The effort
needed to change the process model makes this solution inadequate in the latter case.

Figure 6 [20] illustrates the problem of managing deviations in a PSEE. Case 1
describes the previous approach (i); cases 2 and 3 describe two ways of supporting deviations.
Case 2 describes the situation where people deviate from the model by performing some
actions outside PSEE's control. For example, the PSEE does not allow deletion of certain
document at a certain stage, thus the developer decides to exit the PSEE and deletes the file
storing the document. As a consequence of case 2 deviations, the environment may enter a
critical situation in which its internal state does not reflect the state of the actual process (we
call this situation an inconsistent state). As a consequence, it cannot further support the
process in a sensible way. Case 3 describes the situation where the PSEE allows developers to
deviate from the process model in a controlled fashion The PSEE is aware of the fact that
developers deviate from the prescribed course of actions. Its internal state continues to reflect
the state of the actual process. It may analyze the deviation, continue to support the process,
and even suggest the actions needed to reconcile the actual process and the process model. To
the best of our knowledge, SENTINEL [23] is the first example of a PSEE that supports case
3 deviations. The approach adopted by SENTINEL to manage inconsistencies has been
inspired by the work of Balzer [3], which set the initial stage for research efforts aiming at
tolerating inconsistencies in PSEEs.

Process
model

PSEE

Case 2: unmanaged deviation

Case 3: managed deviation

Case 1: o
n-th

e-fly
 ch

ange

ReconcilingActual process

Figure 6: Possible approaches to cope with unexpected situations during enactment

Activities are modeled in LATIN (SENTINEL’s PML) as collections of task types.
Each task type describes an activity as a state machine and is characterized by a set of state
variables, a set of transitions, and a state invariant. State variables determine the structure of
the internal state of a task type. The state invariant is a logical predicate that has to hold
during the process. It models process-specific constraints. State transitions are characterized
by a precondition, called ENTRY, and a body. The ENTRY is a logical predicate defining a
property that must be satisfied to execute the corresponding transition. LATIN offers two
kinds of transitions: normal transitions and exported transitions. A normal transition is
automatically executed by the process engine as soon as its ENTRY evaluates true. If more
than one transition precondition evaluates to true, one of them is chosen nondeterministically.
An exported transition is executed if the user requests it and its ENTRY is true. However, the
user can force the execution of an exported transition even if its ENTRY is not verified. In
such a case, we say that the transition fires illegally. By forcing exported transitions to fire
illegally, users can deviate from the process model to deal with unexpected situations.
SENTINEL records the relevant events occurred during enactment in a knowledge base for
later use. The enactment is suspended only if one of the invariants is violated. If this happens
a reconciling activity starts to reconcile the actual process and the process model. To perform

- 19 -

this activity the process modeler may benefit from accessing the information stored in the
knowledge base to perform pollution analysis. Pollution analysis identifies illegally fired
transitions and potentially polluted variables through a logical reasoning on the knowledge
base.

5 A path to the future
Modern software factories have changed the way they produce software. Just as an example,
the experience of Microsoft [25] shows that the adoption of loose processes, which can
provide maximum flexibility, has been a crucial success factor. More generally, this proved to
be true for software that has to compete in highly dynamic markets (e.g., software for the
Internet, multimedia software, and more generally software for the mass market). In such
fields time to market is a key factor. Moreover, the network is not only increasingly becoming
“the” environment, but it is also becoming the global marketplace in which competition takes
place. Products can be easily advertised and distributed through the network and this enables
small companies to compete with large ones. Small companies are usually more flexible and
dynamic than large ones. To remain competitive and to continue expanding, large software
factories have to adopt flexible processes similar to the ones adopted by small companies.

To compete on these new markets, it is often necessary to change product (and process)
requirements up to the point of delivery, to respond to new market trends or to new products
of competitors. The underlying management philosophy is that one should be allowed to
delay process and product related decisions to the latest possible point in time to respond to
changes in the market with changes in the product (and in the process). Ideally, product
changes should be accommodated up to the delivery time. As an example, according to
Cusumano and Selby [25], Microsoft managers consider product specification an “output” of
the development process instead of an “input”, and they adopt a very flexible process based
on a limited number of strong rules. 4

This need for flexibility should guide researchers in designing a new generation of
PSEEs that could succeed where old PSEEs failed. When the design of a new PSEE starts
several strategic decisions have to be taken, which will guide the design process. In the
following we try to identify the most crucial decisions and provide an initial answer to them.
Minimalism vs. maximalism. A maximalist approach aims at providing a PML that can model

all the possible situations that may arise in a software process. Its ultimate goal is
completeness of process descriptions, from the general properties down to the details.
Completeness is viewed as a way to prevent deviations. It is also viewed as a way to
achieve the highest possible degrees of automation. The inevitable consequence is that
developers aim at a complete description of the process before the process starts, and
therefore they spend their efforts in trying to anticipate detail process aspects that are
subject to change later. In addition, the maximalist approach requires the PSEE to provide
a complex and heavyweight infrastructure. Conversely, a minimalist approach does not
overspecify the process and results in lightweight support, where humans play a crucial
role in deciding how the process has to progress.

We argue that a minimalist approach is preferable in the context of highly flexible and
dynamic processes, which require support systems to easily adapt to changes in the
process. The PSEE should help in identifying the minimum set of relevant constraints that
developers should follow to achieve cooperation, leaving them free to decide their
preferred way to accomplish their process tasks.

4 The question whether the emphasis on timeliness in software development detracts from quality of the
products is open to the discussion. We believe that the real challenge is to achieve the right balance
between the two, which depends on the type of product. A discussion of this issue, however, is out of
the scope of this paper. Here we simply acknowledge that current market strategies for software
products demand shorter time to market and late binding of product and process decisions.

- 20 -

Infrastructure for cooperation vs. automation. The goal of a PSEE is to support cooperative
software development and to automate the portions of the process that are amenable to
mechanization. As such, they integrate the features of CSCW (Computer Supported
Cooperative Work) with the features of CASE (Computer Aided Software Engineering)
tools. Although automation is an important goal, we argue that it should not be the
primary goal of a PSEE. We also argue that the exceeding importance given to
automation was one of the main cause of failure of first generation PSEEs. Software
processes are human-intensive processes. The automated environment should help
developers in making design decisions by managing complexity. It should support
collaborative design. Automated tasks are a small number (even if they are usually
performed quite often during the process, e.g., build or test activities). As a consequence,
we feel that next generation PSEEs should focus more on supporting communication and
cooperation.

Centralized vs. decentralized process support infrastructure. First generation PSEEs adopted
the architecture shown in Figure 5, where a server provides both the process engine and
the repository. As we mentioned, this architecture has severe limitations. First of all, it
centralizes process enactment, which results in a reduced scalability. Second, it depends
on a DBMS to store the artifacts and the process state, which may be an obstacle when
external tools have to access the artifacts managed by the engine. Third and last, it is
characterized by a strict coupling between external tools and the process engine. The
engine must know about the existence of the tools it has to control and they have to be
able to interact with the engine. This may complicate the activity of integrating off-the-
shelf tools into the environment.

Modern PSEEs need to be based on an open infrastructure capable of simplifying the
integration of external tools and supporting the dynamic reconfiguration of the system to
cope with changes in the external environment. Moreover, PSEEs should be able to
support nomadic users, who use mobile devices (like Notebooks or PDAs) to interact with
the environment. Nomadic users connect to the network from arbitrary locations, move
from a location to another during system interaction, and may also be disconnected for a
period of time. Supporting nomadic users poses additional constraints to the PSEE
infrastructure. Nomadic users have to be supported during their migration and even when
they are not connected.

Activity-oriented vs. artifact-oriented. In an artifact-oriented PML, processes are modeled
through a description of the artifacts produced during the process and the actions that can
be applied to these artifacts. In an activity-oriented language, processes are described as
activities, composed of sequences of steps. Most of the arguments raised to demonstrate
the benefits of object-oriented languages with respect to procedural programming
languages could be applied to artifact-oriented PMLs versus activity-oriented PMLs. The
most compelling one, in our opinion, is that focusing on activities results in a premature
concern for control flow, which, in turn, may result in over-specifying the process.
Conversely, an artifact-oriented PML focuses on semantic aggregations. Constraints are
associated with the artifacts, rather than being implemented by suitably sequencing the
steps of the activities. Furthermore, as we will further describe in Section 5.1, an artifact-
oriented PML can support the management of deviations during process enactment in a
natural way.

Section 5.1 outlines PROSYT, a prototype PSEE in which we are trying to address the
above research challenges.

5.1 PROSYT: a step towards second generation PSEEs
PROSYT [20,19] exhibits two main distinguishing features: (i) it allows developers to deal
with unexpected situations by deviating from the predefined process in a controlled fashion
and (ii) it supports geographically distributed workgroups through a distributed cooperative

- 21 -

infrastructure. The infrastructure is based on open technologies, which simplify the
integration of existing tools into the environment.

More specifically, PROSYT offers the following main features:
1. As for process modeling, the PROSYT PDL (called PLAN: the Prosyt LANguage) adopts

an artifact-based approach. Each artifact produced during the process is an instance of an
artifact type, which describes its internal structure and behavior. Each artifact type is
characterized by

(i) a set of attributes whose values define the internal state of its instances;

(ii) a set of exported operations that may be invoked by the users upon artifacts; and

(iii) a set of automatic operations that are automatically executed when certain events
happen (like invoking an exported operation on another artifact). Automatic
operations are used to automate the process and to react to changes in the state of the
tools controlled by the environment.

It is possible to express the constraints under which exported operations are allowed to
start and organize them in different classes, depending on the type of condition they
express. As an example, a class of constraints is used to describe the preconditions of
operations and another class is used to control the users who are allowed to invoke each
operation. It is also possible to specify a set of artifact invariants, to characterize
acceptable process states.

To describe activities and invariants that refer to a collection of artifacts, PLAN provides
the concepts of repository and folder. Each repository is an instance of some repository
type and contains a set of folders organized in a tree structure. Each folder (instance of
some folder type) is a container of artifacts and other folders. Attributes, states, exported
operations, automatic operations, and invariants may be associated either with repository
types or with folder types. Exported operations and invariants for folders and repositories
may be used to describe business activities and constraints that refer to structured
collections of artifacts.

Finally, PLAN provides the concept of project type. Each PLAN process is described as
an instance of some project type. It is characterized by a statically defined set of
repositories, by a set of groups (each user belongs to one or more groups), and by a set of
exported operations, automatic operations, and invariants, which refer to the entire
process.

2. As for process enactment, to improve flexibility, PROSYT users are not obliged to satisfy
the constraints stated in the process model. They can invoke operations even if the
associated constraints are not satisfied. PROSYT keeps track of the results of these
deviations and controls that the invariants are not violated as a result of such deviations.

To better control process execution, PROSYT allows process managers to specify a
deviation handling and a consistency checking policy. Such policies state the level of
enforcement adopted (i.e., the classes of constraints that can be violated during
enactment) and the actions that have to be performed when invariants are violated as a
result of a deviation, respectively. Both these policies may by changed at enactment-time,
and may vary from user to user.

3. As for system architecture, PROSYT adopts an event-based communication paradigm.
The experience gained with previous event-based frameworks, like the Field [65] and Sun
ToolTalk [69] environments, shows that the event-based coordination infrastructure
simplifies the integration of third-party tools into the environment. Moreover, it simplifies
system reconfiguration. New components may be added, existing components may be
removed, and components may be moved from a host to another without affecting the
remaining components. The PROSYT run-time architecture (see Error! Reference
source not found.) adopts JEDI [21] as the communication middleware. JEDI is an

- 22 -

event-based Java framework, which includes features to move running components from
host to host [74].

6 Summary and conclusions
The attention to software processes dates back to the early 70’s, when software engineers
realized that the desire to improve the quality of software products required a disciplined flow
of activities to be defined and managed. Most of the software process work, however,
remained in an informal stage until the mid 80’s. From then on, the software process was
recognized by researchers as a specific subject that deserved special attention and dedicated
scientific investigation, the goal being to understand its foundations, develop useful models,
identify methods, provide tool support, and help manage its progress.

In this paper we described both the initial approaches to software processes and the
evolution of software process research from the early 80’s up to now. By analyzing this
evolution, we observed that several important results have been attained but also that some
fundamental research issues are still open. In particular, we discussed process programming,
which was the main research focus for more than a decade. We analyzed the reasons why
process programming did not deliver what it promised, i.e., why none of the PMLs and
PSEEs developed so far gained general acceptance or widespread use.

Until recently, the primary emphasis has been on describing process models as
normative models. The focus of PMLs and PSEEs was on describing the expected sequence
of activities and on pushing automation as far as possible. The result of this choice was the
development of a class of PSEEs that are unable to achieve a high degree of flexibility.
However, modern software factories compete in a highly dynamic market, which requires
them to adapt to frequent changes in the “environment” in which they operate.

In Sections 4 and 5 we identified some strategic issues that should be taken into
consideration in developing new PSEEs and we outlined the approach followed by our current
research in the development of the PROSYT prototype. PROSYT adopts a lightweight
process support, manages process deviations, supports geographically distributed workgroups,
and handles nomadic users. It increases system flexibility by allowing developers to explicitly
deviate form the modeled process, still continuing to control that the most relevant constraint
regarding the overall process are verified.

Our work is just a first step in these directions and several issues are still open: How to
support the reconciliation between the modeled process and the process actually followed
after deviations occur? How to find the best balancing between support to cooperation and
automation? How to provide effective support to widely distributed processes and nomadic
users? How to find the best balancing between flexibility and control? Only when adequate
answers to these questions have been found will PSEEs have a better chance of being
accepted by industrial practitioners.

Acknowledgements
We wish to thank all the people with whom we shared the experience of working on

software process technology, and—more specifically—in the design of SPADE, SENTINEL,
and PROSYT. In particular, we are indebted to Alfonso Fuggetta and Elisabetta Di Nitto for
their insights. We would also like to thank the anonymous referees, who provided many
valuable comments and improvement suggestions.

References
1. T. K. Abdel-Hamid and S. E. Madnick, "Lessons Learned from Modeling the Dynamics

of Software Development", In Communications of the ACM, 32(12), December 1989.

- 23 -

2. V. Ambriola, R. Conradi, and A. Fuggetta, “Assessing Process-Centered Environments”.
ACM Transactions on Software Engineering and Methodology, 6(1), July 1997.

3. R. Balzer, "Tolerating Inconsistency". In Proceedings of 13th International Conference
on Software Engineering, Austin (Texas - USA), May 1991.

4. R. Balzer and K. Narayanaswamy, “Mechanisms for Generic Process Support”. In
Proceedings of the First ACM SIGSOFT Symposium on Foundations of Software
Enginering. ACM, Software Engineering Notes, 18(5), December 1993.

5. S. Bandinelli, E. Di Nitto, and A. Fuggetta, "Supporting Cooperation in the SPADE-1
Environment". IEEE Transactions on Software Engineering, 22(2), December 1996.

6. S. Bandinelli, A. Fuggetta, and C. Ghezzi, “Process Model Evolution in the SPADE
Environment”. IEEE Transactions on Software Engineering, IEEE Computer Society,
December 1993.

7. S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza, “SPADE: an environment for
Software Process Analysis, Design, and Enactment”. In A. Finkelstein, J. Kramer, and B.
Nuseibeh, editors. Software Process Modelling and Technology. Research Studies Press
Limited (J. Wiley), 1994.

8. S. Bandinelli, A. Fuggetta, C. Ghezzi, and A. Morzenti, “A Multi-Paradigm Petri Net
Based Approach to Process Description”. In Proceedings of the 7th. International
Software Process Workshop, Yountville, California (USA), October 1991.

9. N. S. Barghouti and B. Krishnamurthy, “Using Event Contexts and Matching Constraints
to Monitor Software Processes”. In Proceedings of 17th International Conference on
Software Engineering, Seattle (Washington - USA), April 1995.

10. F. L. Bauer, B. Moeller, M. Partsch, and P. Pepper, "Formal Program Construction by
Transformations: Computer Aided, Intuition Guided Programming". IEEE Transaction on
Software Engineering, 15(2), February 1989.

11. L. A. Belady and M. M. Lehman, "Characteristics of Large Systems". In Research
Directions in Software Technology, P. Wegner Editor, The MIT Press, 1979.

12. N. Belkhatir, J. Estublier, and W. L. Melo, “Adele2: A Support to Large Software
Development Process”. In Proceedings of the 1st International Conference on the
Software Process, Redondo Beach CA (USA), October 1991.

13. I. S. Ben-Shaul and G. E. Kaiser, “A Paradigm for Decentralized Process Modeling and
its Realization in the Oz Environment”. In Proceedings of the 16th International
Conference on Software Engineering, May 1994.

14. G. D. Bergland, “A Guided Tour of Program Design Methodologies”, Computer, vol. 14,
no. 10, Oct. 1981, pp. 13-37.

15. G. A. Bolcer and R. N. Taylor, “Endeavors: A Process System Integration Infrastructure”.
In Proceedings of the Fourth International Conference on Software Process (ICSP4),
Brighton, UK, December 1996.

16. G. Canals, N. Boudjlida, J.-C. Derniame, C. Godart, J. Lonchamp, “ALF: A Framework
for Building Process-Centered Software Engineering Environments”. In A. Finkelstein, J.
Kramer, and B. Nuseibeh, editors. Software Process Modelling and Technology. Research
Studies Press Limited (J. Wiley), 1994.

17. R. Conradi, J. Larsen, M. N. Nguyên, B. P. Munch, P. H. Westby, W. Zhu, M. L.
Jaccheri, C. Liu, “EPOS: Object-Oriented and Cooperative Process Modelling”. In A.
Finkelstein, J. Kramer, and B. Nuseibeh, editors. Software Process Modelling and
Technology. Research Studies Press Limited (J. Wiley), 1994.

18. J. E. Cook and A. L. Wolf, “Toward Metrics for Process Validation”. In Proceedings of
the 3rd International Conference on the Software Process, Reston (Virginia - USA),
October 1994.

19. G. Cugola, Inconsistencies and Deviations in Process Support Systems. Ph. D. Thesis,
Politecnico di Milano - Dipartimento di Elettronica e Informazione, February 1998.

20. G. Cugola, “Tolerating deviations in Process Support Systems via Flexible Enactment of
Process Models”. In IEEE Transactions of Software Engineering, 24(11), November
1998.

- 24 -

21. G. Cugola, E. Di Nitto, and A. Fuggetta, “Exploiting an Event-Based Infrastructure to
Develop Complex Distributed Systems”. In Proceedings of the 20th International
Conference on Software Engineering (ICSE98), Kyoto (Japan), April 1998.

22. G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi, “A Framework for Formalizing
Inconsistencies in Human-centered Systems”. ACM Transactions On Software
Engineering and Methodology (TOSEM), 5(3), July 1996.

23. G. Cugola, E. Di Nitto, C. Ghezzi, and M. Mantione, “How to Deal with Deviations
during Process Model Enactment”, In Proceedings of the 17th International Conference
on Software Engineering, Seattle (Washington - USA), April 1995.

24. M. A. Cusumano, Japan's Software Factories. Oxford University Press, 1991.
25. M. A. Cusumano, R. W. Selby, Microsoft Secrets: How the World's Most Powerful

Software Company Creates Technology, Shapes Markets, and Manages People. Free
Press, October 1995.

26. O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming. Academic
Press, 1972.

27. S. Dami, J. Estublier, and M. Amiour, "APEL: a Graphical Yet Executable Formalism for
Process Modeling". Kuwler Academic Publisher, pp. 60-96, Boston, January 1998.

28. T. De Marco, Structured Analysis and System Specification. Yourdon Press, 1978.
29. E. W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.
30. G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka, “Business Process Modeling in

the Workflow-Management Environment Leu”. In Proceedings of the Entity Relationship
Conference, December 1994.

31. J. Eder and W. Liebhart, “The Workflow Activity Model WAMO”. In Proceedings of the
3rd International Conference on Cooperative Information Systems (CoopIS), Vienna,
Austria, May 1995.

32. J. Estublier, P. Y. Cunin, and N. Belkhatir, "Architectures for Process Support System
Interoperability". In Prooceedings of the Fifth International Conference on the Software
Process, Lisle, IL, June 1998.

33. C. Fernström, “Process Weaver: Adding Process Support to Unix”. In Proceedings of the
2nd International Conference on the Software Process, Berlin (Germany), February 1993.

34. A. Finkelstein, J. Kramer, and B. Nuseibeh, editors. Software Process Modelling and
Technology. Research Studies Press Limited (J. Wiley), 1994.

35. P. K. Garg and M. Jazayeri, Proces-Centered Software Engineering Environments. IEEE
Computer Society Press, 1996.

36. C. Ghezzi, M. Jazayeri, and D. Mandrioli, "Software Qualities and Principles". In The
Computer Science and Engineering Handbook, A. B. Tucker, Jr editor, ACM Press, 1992.

37. C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fudamentals of Software Engineering. Prentice
Hall, 1991 (2nd Edition forthcoming).

38. D. Gries, The Science of Programming. Springer-Verlag, 1981.
39. A. N. Habermann and D. Notkin, “Gandalf Software Development Environments”. In

IEEE Transactions on Software Engineering 12(12), pp. 1117—1127, December 1986.
40. D. Heimbigner, S. M. Sutton, and L. Osterweil, “Managing Change in Process-Centered

Environments”. In Proceedings of the 4th ACM/SIGSOFT Symposium Software
Development Environments, ACM Software Engineering Notes, vol. 15, December 1990.

41. Hewlett/Packard Company, Developing SinerVision Processes. Part Number: B3261-
90003, 1993.

42. W. S. Humphrey, A Discipline for Software Engineering. SEI Series in Software
Engineering , Addison Wesley, 1995.

43. W. S. Humphrey, Managing the Software Process, Addison-Wesley, SEI Series in
Software Engineering, 1989.

44. ISO 9000-3 task force, Quality management and quality assurance standards - Part 3:
guidelines for the application of ISO 9000 to the development, supply and maintenance of
software, ISO--International Organization for Standardization, 1991.

45. M. A. Jackson, Principles of Program Design. Academic Press, 1975.
46. M. A. Jackson, System Development. Prentice Hall, 1983.

- 25 -

47. M. A. Jackson, Software Requirements and Specifications. Addison Wesley, 1995.
48. G. Junkermann, B. Peuschel, W. Schäfer, and S. Wolf, “MERLIN: Supporting

Cooperation in Software Development Through a Knowledge-Based Environment”. In A.
Finkelstein, J. Kramer, and B. Nuseibeh, editors. Software Process Modelling and
Technology. Research Studies Press Limited (J. Wiley), 1994.

49. G. E. Kaiser, N.S. Barghouti, and M. H. Sokolsky, “Preliminary Experience with Process
Modeling in the Marvel Software Development Kernel”. In Proceeding of the 23rd

International Conference on System Sciences, 1990.
50. G. E. Kaiser, S. E. Dossick, W. Jiang, and J. J. Yang, “An Architecture for WWW-based

Hypercode Environments”. In Proceedings of the 19th International Conference on
Software Engineering, Boston (MA), USA, May 1997.

51. T. Katayama, “A Hierarchical and Functional Software Process Description and its
Enaction”. In Proceedings of the 11th International Conference on Software Engineering,
1989.

52. M. I. Kellner, "Software Process Modeling: Value and Experience". In SEI Tech. Rev.
Software Engineering Institute, 1989.

53. B. W. Kernighan and R. Pike, The Unix Programming Environment. Prentice Hall, 1984.
54. Kouichi Kishida and Dewayne Perry, “Report on Session V: Team Efforts”. In

Proceedings of the 6th International Software Process Workshop, 28-31, Hakodate,
Japan, October 1990.

55. M. M. Lehman, "Evolution, Feedback, and Software Technology". In Proceedings of the
9th International Software Process Workshop, October 1994.

56. N. H. Madhavji and M. H. Penedo editors, IEEE Transaction on Software Engineering:
Special issue on process evolution. IEEE Computer Society Press , December 1993.

57. C. Montangero and V. Ambriola, “Oikos: Constructing process-centered SDEs”. In A.
Finkelstein, J. Kramer, and B. Nuseibeh, editors. Software Process Modelling and
Technology. Research Studies Press Limited (J. Wiley), 1994.

58. G. J. Myers, The Art of Software Testing. John Wiley & Sons, New York, 1979.
59. L. Osterweil, “Software Processes are Software too”. In Proceedings of the Ninth

International Conference on Software Engineering, 1987.
60. L. Osterweil, “Software Processes are Software too, Revisited: An Invited Talk on the

Most Influential Paper of ICSE 9”. In Proceedings of the 19th International Conference
on Software Engineering, Boston (MA), USA, May 1997.

61. D. L. Parnas and P. C. Clements, “A Rational Design Process: How and Why to Fake It”.
In IEEE Transactions on Software Engineering, 12(2), February 1986.

62. D. E. Perry and G. E. Kaiser, “Models of Software Development Environments”. In IEEE
Transactions on Software Engineering, 17(3), March 1991.

63. D. E. Perry, N. A. Staudenmeyer, and L. G. Votta, “People, Organizations, and Process
Improvement”. In IEEE Software, July 1994.

64. A. A. Porter, L. G. Votta, H. P. Siy, and C. H. Toman, “An Experiment to Assess the Cost
Benefits of Code Inspections in Large Scale Software Development”. In 3rd IEEE
Transactions on Software Engineering, 23(6): 329-346, June 1997.

65. S. P. Reiss, “Connecting Tools Using Message Passing in the Field Environment”, IEEE
Software, July 1990.

66. T. Reps and T. Teitelbaum, "Language Processing in Program Editors". Computer,
20(11), November 1987.

67. W. W. Royce, "Managing the Development of Large Software Systems: Concepts and
Techniques". In Proceedings of WesCon, August 1970.

68. Softool Corporation. CCC User’s Guide, August 1995.
69. SunSoft Inc., The ToolTalk service: An inter-operability solution, SunSoft Press/Prentice

Hall, December 1992.
70. S. M. Sutton Jr. and L. J. Osterweil, “The Design of a Next-Generation Process

Language”. In Proceedings of the Fifth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Zurich, Switzerland, September 1997. LNCS 1301, pp. 142-158.

- 26 -

71. R. N. Taylor, R.W. Selby, M. Young, F.C. Belz, L. A. Clark, J.C. Wileden, L. Osterweil,
A.L. Wolf, “Foundations of the Arcadia Environment Architecture”. In Proceedings of
the Third ACM SIGSOFT/SIGPLAN Symphosium on Software Development
Environments, 1988.

72. I. Thomas, "PCTE Interfaces: Supporting Tools in Software Engineering Environments,
IEEE Software, 6(6), November 1989.

73. United States Department of Defence, Stoneman: Requirements for Ada Programming
Support Environment, February 1980.

74. J. Vitek and C. Tschudin editors, Mobile Object Systems: Towards the Programmable
Internet. Springer-Verlag, LNCS 1222, April 1997.

75. B. Warboys, “The IPSE 2.5 Project: Process Modeling as the Basis for a Support
Environment”. In Proceedings of the First International Conference on System
Development Environments and Factories, 1990.

76. N. Wirth, "Program Development by Stepwise Refinement". In Communications of the
ACM, 14(4), April 1971.

77. E. Yourdon and L. Constantine, Structured Design. Prentice Hall, 1979.
78. http://www.continuus.com
79. http://www.sql.com

