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Abstract

Modern society increasingly relies on mobile devices. This explains the growing demand for high quality software for such devices.
To improve the efficiency of the development life-cycle, shortening time-to-market while keeping quality under control, mobile
applications are typically developed by composing together ad-hoc developed components, services available on-line, and other
third-party mobile applications. Applications are thus built as heterogeneous compositions, whose characteristics strongly depend
on the components and services they integrate. To cope with unpredictable changes and failures, but also with the various settings
offered by the plethora of available devices, mobile applications need to be as adaptive as possible. However, mainstream adaptation
strategies are usually defined imperatively and require complex control strategies strongly intertwined with the application logic,
yielding to applications that are difficult to build, maintain, and evolve. We address this issue by proposing a declarative approach
to compose adaptive heterogeneous mobile applications. The advantages of this approach are demonstrated through an example
inspired by an existing worldwide distributed mobile application, while the implementation of the proposed solution has been
validated through a set of simulations and experiments aimed at illustrating its performance.
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1. Introduction

Software is a fundamental asset of modern society. Nowa-
days, most human activities are either software enabled or en-
tirely managed by software. The recent massive adoption of
mobile devices—such as smartphones and tablet PCs—which
support people in their daily tasks, makes this phenomenon
even more relevant. Mobile devices make software literally
ubiquitous and pervasive, creating an increasing demand for
high quality mobile applications to meet societal needs.

“Invented” by Apple for its iOS operating system and succes-
sively adopted by Google for the Android OS, apps are driving
the growth of this mobile phenomenon. They are usually small-
sized, often distributed and single-task applications, which the
user may easily download (often for free) and install on her de-
vice to empower it with new capabilities with respect to those
that come pre-installed.

The mobile market that enables this interaction is an ex-
tremely dynamic and vibrant ecosystem characterized by thou-
sands of new apps published worldwide every week. This is
posing new challenges to modern Software Engineering, first
and foremost the need for effective development strategies cen-
tered around strong time-to-market constraints. To answer this
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challenge while keeping the various qualities of developed soft-
ware under control, a component-based development process
is usually adopted. This is enabled by the same development
frameworks that come with modern mobile OSs, which allow
components installed on the same device to easily communi-
cate and invoke each other. As a result, most mobile apps are
developed by composing together: (1) ad-hoc developed com-
ponents, (2) existing services available on-line, (3) third-party
apps, and (4) platform-dependent components to access device-
specific hardware (e.g., camera, GPS, etc.).

The typical approach to develop such heterogeneous soft-
ware artifacts follows a (possibly iterative) three-step approach.
Developers first conceive the list of needed functionality and
they organize them in a suitable workflow of execution. Sec-
ondly, they evaluate the trade-offs between implementing such
functionality directly or resorting to existing services or third-
party apps. Finally, they build the app by implementing the
needed components and integrating all the pieces together.

Building apps as orchestrations of components, services
and/or other third-party applications, however, introduces a di-
rect dependency of the system with respect to external software
artifacts which may evolve over time, fail, or even disappear,
thereby compromising the application’s functionality. More-
over, differently from traditional software systems, the devel-
opment of mobile apps is characterized by an increased, often
explicit dependency with respect to hardware and software set-
tings of the deployment environment. Indeed, even if devel-
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oped for a specific platform (e.g., iOS or Android), the same
app may be deployed on a plethora of different devices char-
acterized by heterogeneous hardware and software configura-
tions (e.g., available sensors and networking hardware, list of
pre-installed components, OS version, etc.). As an example,
consider the case of an iPhone application using the built-in
camera. The current iPhone has an auto focus camera while
previous versions, still in widespread use, were equipped with
fixed focus cameras. As we will show in our running example,
this difference, albeit apparently minor, if left unmanaged may
impact the application’s ability to satisfy its requirements.

To cope with these peculiarities apps need to be adap-
tive (Cheng et al. (2009); McKinley et al. (2004)), both with re-
spect to the heterogeneous deployment environments and with
respect to the external services and apps they rely upon. The
traditional way to achieve this goal is to explicitly program the
needed adaptations by heavily using branches in the execution
flow and exception handling techniques to manage unexpected
scenarios when they occur. This is not easy to do and results
in complex code that intertwines the application logic with the
logic to cope with the peculiarities of each device and with un-
expected situations that may happen at run-time. This brings
further complexity, resulting in hard to read and maintain code.

This paper precisely addresses this issue by proposing a dif-
ferent approach. We abandon the mainstream path in favor of a
strongly declarative alternative, called SelfMotion,1 which al-
lows apps to be modeled by describing: (1) a set of Abstract
Actions, which provide a high-level description of the elemen-
tary activities that realize the desired functionality of the app,
(2) a set of Concrete Actions, which map the abstract actions to
the actual steps to be performed to obtain the expected behav-
ior (e.g., invoking an external service or calling a pre-installed,
third-party application), (3) a QoS Profile for each concrete ac-
tion that models its non-functional characteristics (e.g., energy
and bandwidth consumption), and (4) the overall Goal to be
met and the QoS Policy to be adopted in reaching such goal
(e.g., minimizing power consumption).

SelfMotion apps are then executed by a middleware that
leverages automatic planning techniques to elaborate, at run-
time, the best sequence of abstract actions to achieve the goal,
mapping them to the concrete actions to execute in accordance
with the specified QoS Policy. Whenever a change happens in
the external environment (e.g., a service becomes unavailable)
that prevents successful completion of the defined plan of ex-
ecution the middleware automatically – and transparently with
respect to the user – builds an alternative plan toward the goal.
This reifies in a nice and effective self-healing behavior that al-
lows the app to seamlessly continue its execution.

In this paper we describe our approach in details, and we
show, through a set of experiments, its effectiveness and its per-
formance, showing how the approach based on a planner scales
well even when the goal becomes complex and requires, to be
satisfied, several activities (i.e., abstract and concrete actions)
to be called in the correct order.

1Self-Adaptive Mobile Application.

SelfMotion brings several contributions and advantages with
respect to the existing solutions in the area of self-adaptive and
context-aware mobile apps:

1. The proposed solution represents the first attempt to support
the design and development of adaptive mobile apps that relies
on planning as well as on a declarative language.

2. SelfMotion represents a novel approach to adaptive mobile
apps that conjugates functional adaptivity and non-functional
awareness. More precisely, the former is achieved through
planning, while the latter is obtained with QoS profiles and poli-
cies.

3. We contribute to the area of mobile development investigat-
ing the intersection of mobile app and services and in particular
shedding light on the adaptivity of mobile apps achieved via
service re-binding.

SelfMotion was initially introduced in Cugola et al. (2012b,c).
Beyond a significantly more detailed description of the ap-
proach, this paper reports on several new contributions and ex-
periments. First, we extended SelfMotion by introducing the
support for QoS policies and profiles. This is the subject of
Sections 3.2.4 and 3.2.5. Second, we extended and improved
our validation of the approach, using not only a real-world mo-
bile application to qualitatively evaluate the approach, but also
running several synthetic simulations aimed at stressing its scal-
ability and performance. This is the subject of Section 5. More
precisely, for a clear and effective explanation of the proposed
approach, we rely on a realistic mobile app illustrated in Section
2 and used as a reference example throughout the paper. The
SelfMotion approach is described in detail in Section 3, while
Section 4 discusses its advantages with respect to the state of
the art. Section 5 evaluates the performance of SelfMotion in
several scenarios of growing complexity, while Section 6 dis-
cusses related work. Finally, Section 7 draws some conclusions
and briefly illustrates future work.

2. A Motivating Example: The ShopReview App

Let us now introduce ShopReview (SR), the mobile app we
will use throughout the paper. SR is inspired by an existing ap-
plication (i.e., ShopSavvy2) and it allows users to share various
information concerning a commercial product. In particular,
an SR user may use the app to publish the price of a product
she found in a certain shop (chosen among those close to her
current location). In response, the app provides the user with
alternative nearby places where the same product is sold at a
more convenient price. The unique mapping between the price
signaled by the user and the product is obtained by exploiting
its barcode. In addition, users may share their opinion concern-
ing the shop where they bought the product and its prices on a
social network, such as Twitter.

2http://shopsavvy.mobi/
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As already mentioned, the development process for an app
like SR starts by listing the needed functionality and by de-
ciding which of them have to be implemented through an ad-
hoc component and which can be realized by re-using existing
solutions (i.e., external services available online or third party
apps that can be found pre-installed on the device or that can
be installed on demand). For example, the communication with
social networks may be delegated to a third party app to be in-
stalled on demand, while geo-localization of the user may be
performed by exploiting a pre-existing component that accesses
the GPS sensor on the device.

In making these choices developers have to remember that
run-time conditions may change and may subvert design-time
assumptions, impacting on the ability of the app to operate
correctly. As an example, developers must consider the dif-
ferences in the various devices that will run their app to let it
adapt to these different devices. Similarly, they have to make
the right choices to minimize the impact of changes in the ex-
ternal services they rely upon, either letting the app adapt to
those changes or not using them at all, with the result of being
forced to re-implement a functionality that may be easily found
on line.

Given these premises, let us assume we choose the function-
alities listed in Table 1 as the main building blocks for the SR
app. Let us also assume we decide to realize the ReadBarcode
functionality as an ad-hoc developed component that extracts
the product’s barcode from a picture taken using the mobile
camera.3 Since such component may execute correctly only
on devices with an auto focus camera and does not work prop-
erly on other devices, our choice would limit the usability of
our app. To overcome this limitation and allow a correct bar-
code recognition also on devices with fixed focus cameras, SR
needs to provide a form of adaptivity. Indeed, it has to detect if
the camera on the current device supports auto-focus; if it does
not, it has to invoke an external service to process the acquired
image with a special blurry decoder algorithm. A similar ap-
proach can be used to get the user location (i.e., to implement
the GetPosition functionality), which in principle requires a
GPS,4 a hardware component that may not be available on ev-
ery device. To execute SR on devices lacking a GPS we may
offer a different implementation of the GetPosition function-
ality, which shows a map to the user for a manual indication of
the current location.

The code snippet reported in Listing 1 describes a possible
implementation of the described adaptive behavior for the An-
droid platform (Rogers et al. (2009)). Although this is just a
small fragment of the SR app, which is by itself quite a sim-
ple app, it is easy to see how convoluted and error prone the
process of defining all possible alternative paths may turn out
to be. Things become even more complex considering run-time
exceptions, like an error while accessing the GPS or invoking an
external service, which have to be explicitly managed through
ad-hoc code. We argue that the main reason behind these prob-

3This is the choice made by the original ShopSavvy app.
4We are assuming that a Network Positioning System is not precise enough

for our needs.

1 PackageManager mng = getPackageManager ( ) ;
2 i f (mng. hasSystemFeature ( PackageManager .FEATURE CAMERA AUTOFOCUS) ) {
3 / / Run l o c a l barcode r e c o g n i t i o n
4 } else {
5 / / Invoke remote serv i ce wi th b l u r r y decoder a lgo r i t hm
6 }
7
8 Locat ion l o c a t i o n = nul l ;
9 i f (mng. hasSystemFeature ( PackageManager .FEATURE LOCATION GPS ) ) {

10 Locat ionProv ider p rov ide r = LocationManager .GPS PROVIDER;
11 LocationManager locManager =
12 ( LocationManager ) getSystemService ( Context . LOCATION SERVICE ) ;
13 t ry {
14 / / Return n u l l i f the GPS s i g n a l i s c u r r e n t l y not a v a i l a b l e
15 l o c a t i o n = locManager . getLastKnownLocation ( p rov ide r ) ;
16 } catch ( Except ion e ) {
17 l o c a t i o n = nul l ;
18 }

19 }
20
21 i f ( l o c a t i o n ==nul l ) {
22 / / Device wh i tou t GPS or an excpet ion was ra ised invok ing i t .
23 / /We show up a map to a l low the user to i n d i c a t e
24 / / i t s l o c a t i o n manually
25 showMap ( ) ;
26 }

Listing 1: Adaptive Code Example.

lems is that the mainstream platforms for developing mobile
applications are based on traditional imperative languages in
which the flow of execution must be explicitly programmed. In
this setting, the adaptive code —represented in Listing 1 by all
the if-else branches— is intertwined with the application logic,
reducing the overall readability and maintainability of the re-
sulting solution, and hampering its future evolution in terms
of supporting new or alternative features, which requires addi-
tional branches to be added.

Notice that these concepts apply also to the case of the third-
party apps invoked to obtain specific functionality, like those
used by SR to access the various social networks. These apps
are typically installed by default on devices but they can be re-
moved by users, thus jeopardizing the app’s ability to accom-
plish its tasks.

3. The SelfMotion Approach

Here we introduce the SelfMotion approach and explain how
to design an app like SR to achieve a form of self-adaptation
that overcomes the problems discussed above.

3.1. Introducing SelfMotion
To help developing adaptive mobile applications SelfMotion

adopts a novel approach, which includes several steps both at
design-time and run-time. At design-time it supports the activ-
ities of domain experts and software engineers through a multi-
layer declarative language, which supports the design of an ap-
plication through different abstraction levels, while at run-time
it offers a middleware, which uses planning techniques to reach
the app’s goals, adapting to the various situations that that may
be encountered. More specifically, as shown in Figure 1, a Self-
Motion application includes the following layers:

1. The app’s Goals, expressed as a set of facts that are required
to be fulfilled by the app’s execution;
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Name Description
GetPosition Retrieves the current user location
InputPrice Collects the product’s price from the user

ReadBarcode Acquires the barcode of the product
GetProductName Translates the barcode into the product name

SearchTheWeb Retrieves, through the Internet, more convenient
prices offered on e-commerce sites

SearchTheNeighborhood Retrieves, through the Internet, other nearby shops
which offer the product at a more convenient price

SharePrice Lets the user share the price of a product
found on a given shop on Twitter

Table 1: ShopReview functionality.

2. the Initial State, which models the set of facts one can as-
sume to be true at app’s invocation time. It includes application-
specific facts specified at design-time and context-specific facts,
automatically derived by the SelfMotion middleware at run-
time, like the availability of a GPS device or the presence of an
auto-focus camera;

3. A set of Abstract Actions, which specify the primitive oper-
ations that can be executed to achieve the goal;

4. A set of Concrete Actions, one or more for each abstract ac-
tion, which map them to the executable snippets that implement
them (e.g., by invoking an external service);

5. A QoS Profile for each concrete action, which models its
non-functional characteristics (e.g., energy and bandwidth con-
sumption);

6. The QoS Policy to be adopted in reaching the goal (e.g., min-
imizing energy consumption).

At run-time, the Interpreter translates the goal, the initial
state, and the abstract actions into a set of rules and facts,
used by the Planner to build an abstract execution plan, which
lists the logical steps through which the desired goal may be
reached. This plan is taken back by the Interpreter to be enacted
by associating each step (i.e., each abstract action) with the con-
crete action that may better satisfy the given QoS policy. These
concrete actions are then executed, possibly invoking external
services, third-party apps, or ad-hoc components. If something
goes wrong the SelfMotion middleware adapts to the new situ-
ation by looking for alternative concrete actions to accomplish
the failed step of execution or by invoking the Planner again to
avoid that step altogether.

3.2. The SelfMotion Declarative Language
This section provides a detailed description of the fundamen-

tal concepts behind the SelfMotion declarative language.

3.2.1. Abstract Actions
Abstract actions are high-level descriptions of the primi-

tive actions used to accomplish the app’s goal. They rep-
resent the main building blocks of the app. Listing 2 illus-
trates the abstract actions for the SR reference example: they

correspond to the high level functionalities listed in Table 1.
Note that, in some cases, the same functionality may corre-
spond to several abstract actions, depending on some contex-
tual information (e.g., if the device has an auto focus camera
or not). For example, we split the GetPosition functional-
ity into two abstract actions getPositionWithGPS (lines 1-3)
and getPositionManually (lines 9-11). We also introduce an
enableGPS abstract action (lines 5-7), which encapsulates the
logic to activate the GPS. Similarly, the blurryReadBarcode

abstract action (lines 25-27) represents a component in charge
of recognizing barcodes from pictures taken with fixed focus
cameras.

Abstract actions are modeled with an easy-to-use, logic-like
language, in terms of their signature, a pre-condition, and a
post-condition. The signature provides the action name and its
list of arguments. The precondition is expressed as a list of
facts that must be true in the current state for the action to be
enabled. As an example, for the searchTheNeighborhood ac-
tion (lines 37-39) we use the expression barcode(Barcode),

position(Position) to denote the fact that the Barcode ar-
gument must be a product barcode, while the Position argu-
ment must represent the user’s position. The post-condition
models the effects of the action on the current state of ex-
ecution by listing the facts to be added to (and those to
be removed from) the current state. As an example, when
the inputPrice action (lines 13-15) is executed the fact
price(productPrice) is added to the state, while no facts
are deleted (deleted facts, when present, are denoted by using
the “∼” symbol).

Facts are expressed as propositions, characterized by a name
and a set of parameters, which represent relevant objects of
the domain. By convention, parameters that start with an up-
percase letter denote unbound objects; they must be bound to
instances, whose name starts with a lowercase letter, to gen-
erate a valid execution plan. For instance, if at any point the
fact image(barcodeImage) is added to the state, the object
barcodeImage becomes available to be bound to the Image pa-
rameter in the readBarcode or blurryReadBarcode actions.
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Figure 1: SelfMotion Conceptual Architecture.

Name Description
hasGPS The device has a GPS sensor

isGPSEnabled The device has a GPS sensor
and it is enabled

hasCamera The device has a camera
hasAutoFocusCamera The device has a camera and

it supports auto-focus
hasFixedFocusCamera The device has a camera but

it does not support auto-focus
lowBattery The device’s battery level is low

Table 2: Example of facts automatically added to the initial state by the Self-
Motion middleware.

3.2.2. Goal and Initial State
Besides abstract actions, the goal and initial state are also

used to model apps in SelfMotion. The goal specifies the de-
sired state resulting from the app’s execution. One may actu-
ally specify a set of states, which reflect all the alternatives to
accomplish the app’s goal, listed in order of preference. The
Planner will start by trying to build an execution plan to sat-
isfy the first goal; if it does not succeed it will try to satisfy the
second goal, and so on. As an example, in the SR app (see List-
ing 3) we have two alternative goals. The first one requires the
GPS sensor and the second relies on the user input to retrieve
the current location.

The initial state complements the goal by asserting the facts
that are true at app’s invocation time. It includes application-
specific facts asserted by app’s designers at design-time and
context-specific facts automatically added at run-time by the
SelfMotion middleware, which detects the features of the mo-
bile device in which it has been installed. Table 2 illustrates
some examples of the latter. Note that they are added in negated
form if a given fact is not true, e.g., ∼hasGPS is included to the
initial state if the current device does not have a GPS sensor.

For the SR app, no application-specific fact is included in the
initial state, which is fully populated by the SelfMotion mid-

dleware. Assuming that SR is deployed in a device equipped
with a fixed-focus camera and with a GPS sensor that is cur-
rently disabled, the initial state becomes the one shown in List-
ing 4.

3.2.3. Concrete Actions
Concrete actions are the executable counterparts of abstract

actions. In general, several concrete actions may be bound to
the same abstract action. For example (see Table 3), in our SR
app we have different implementations for some of the abstract
actions. The getProductName abstract action can be mapped
to three concrete actions: two of them exploit a remote Web
service (i.e., searchupc.com and simpleupc.com) to map the
barcode to a product name, while the third one explicitly asks
the product name to the user. Having multiple concrete actions
for the same abstract one allows the SelfMotion middleware to
choose the one that better satisfies the QoS policy (more on this
later) but, most important, it allows the Interpreter to overcome
unexpected situations in which a given concrete action does not
execute successfully (e.g., a web service fails) by invoking an
alternative concrete action.

As for the actual code of concrete actions, in our current
SelfMotion prototype, which runs on Android, they are imple-
mented as Java methods, extended with ad-hoc annotations. For
instance, we use the annotation @Action to refer to the imple-
mented abstract action, as in Listing 5, which shows the three
concrete actions that reify the getProductName abstract action
(we will come back later to this example, explaining the exact
meaning of the other annotations).

3.2.4. QoS Profiles
The concrete actions mapped to the same abstract one

are functionally equivalent but they may differ in sev-
eral non-functional aspects. For instance, consider the
getProductName abstract action and the three corresponding
concrete actions reported in Table 3. Those that rely on a re-
mote service are characterized by a higher energy consumption
with respect to the one that rely on the input manually provided
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Abstract Actions Concrete Actions
getPositionWithGPS Ad-hoc Component (user localization via GPS)

enableGPS Ad-hoc Component (enable GPS sensor)
getPositionManually Ad-hoc Component (manual user localization)

inputPrice Ad-hoc Component (textual input from the user)
acquirePhoto Ad-hoc Component (photo acquisition from the mobile camera)
readBarcode Ad-hoc Component (local barcode recognition)

burryReadBarcode WebService (remote barcode recognition)
Web service (http://searchupc.com/)

getProductName Web service (http://simpleupc.com/)
Ad-hoc Component (textual input from the user)

searchTheWeb Web service (http://www.kelkoo.it/)
Web service (http://www.buscape.com/)

searchTheNeighborhood Web service (http://shopsavvy.mobi/)
Third-party app (UberSocial: http://ubersocial.com/)

sharePrice Third-party app (Twicca: http://twicca.r246.jp/)
Web service (https://dev.twitter.com/)

Table 3: ShopReview Concrete Actions.

by the user. Thus, from an energy perspective, the last option
is preferable. Conversely, considering usability, the concrete
action that needs the user intervention is less preferable. Fi-
nally, considering cost, one of the three alternative relies on
a Web service that charges a fee on a per-request basis (i.e.,
simpleupc.com), while the others do not have any associated
cost.

SelfMotion allows developers to declare all these non-
functional aspects by relying on the @QoSProfile annotation,
as illustrated in Listing 5. In particular, this annotation con-
tains two lists of parameters: metrics and values. The list
of metrics allows developers to declare the QoS attributes they
are interested in. In the example, the list of metrics includes
usability, cost, and energy. The second list contains the value
associated with each metric. For example, concerning energy
consumption, the actions that invoke remote services are anno-
tated with −1, while the action that performs a local computa-
tion is annotated with 0. With these values we express the fact
that remote invocations affect the battery usage more than local
computation. Similarly, concerning usability, we annotate the
three actions with different impact values to indicate that the au-
tomatic alternatives are preferable over those which bother the
user asking for an explicit input. Finally, concerning cost, we
annotated with 1 the action that invokes the simpleupc.com

service since it charges a fee for each invocation.
Summing up, by relying on the @QoSProfile annotation, we

are able to characterize the non-functional behavior of concrete
actions. In particular, it is important to notice that, using the
described approach we do not need to necessarily know the real
QoS values of each alternative concrete action but only their rel-
ative difference (this also depends on the way the QoS Policy
is specified, see later). In other words, considering for exam-
ple the energy consumption, we do not need to know the actual
energy consumed by each action but only the fact that those
actions that use the network consume more energy than those

that only perform local computations. This brings two signif-
icant advantages. First, we may ignore the real QoS values,
which may be difficult to measure and dependent on the specific
device. Second, this approach allow us to express application-
specific QoS values, such as usability, which can hardly be mea-
sured to produce an absolute value, but rather may be more eas-
ily stated in relative terms with respect to different alternatives.

3.2.5. QoS Policies
Given the QoS characterization as described so far, it is also

necessary to instruct the SelfMotion middleware about the dif-
ferent policies used to guide, at run-time, the Interpreter in pri-
oritizing metrics, comparing their associated values, and choos-
ing the best concrete actions to execute.

A QoS policy is defined in the SelfMotion language with the
keyword qos followed by the name of the policy. In addition,
each policy definition contains: (1) a pre-condition, similar to
that of abstract actions, and (2) an ordered list of QoS prefer-
ences decorated with the min and max keywords.

Since a SelfMotion application may have multiple QoS Poli-
cies, pre-conditions are used to enable or disable each policy.
In particular, at start-up, the Interpreter evaluates the policies in
order and adopts the first one whose pre-condition is enabled in
the initial state.

Let us consider Listing 6, which reports two possible QoS
policies for the SR example: energySaver and default.
Imagine the scenario in which the middleware set in the ini-
tial state the fact lowBattery, indicating the current low state
of the battery. In this case, the first policy with a valid pre-
condition is energySaver and, as a consequence, the SR ap-
plication will be executed using this specific policy. In partic-
ular, energySaver is composed by three ordered constraints:
(1) min: energy, (2) max: usability, and (3) min: cost.
The three constraints will be applied in order. Every time the
Interpreter must execute an abstract action with many corre-
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1 action getPosit ionWithGPS
2 pre : hasGPS, isGPSEnabled
3 post : p o s i t i o n ( gpsPos i t ion )
4
5 action enableGPS
6 pre : ∼isGPSEnabled
7 post : isGPSEnabled
8
9 action getPos i t ionManua l l y

10 pre : t r ue
11 post : p o s i t i o n ( userDef inedPos i t ion )
12
13 action i n p u t P r i c e (Name)
14 pre : productName (Name)
15 post : p r i ce ( produc tPr ice )
16
17 action acquirePhoto
18 pre : hasCamera
19 post : image ( barcodeImage )
20
21 action readBarcode ( Image )
22 pre : image ( Image ) , hasAutoFocusCamera
23 post : barcode ( productBarcode )
24
25 action blurryReadBarcode ( Image )
26 pre : image ( Image ) , hasFixedFocusCamera
27 post : barcode ( productBarcode )
28
29 action getProductName ( Barcode )
30 pre : barcode ( Barcode )
31 post : productName (name)
32
33 action searchTheWeb (Name)
34 pre : productName (Name)
35 post : p r i ces ( on l i nePr i ces )
36
37 action searchTheNeighborhood ( Barcode , Pos i t i on )
38 pre : barcode ( Barcode ) , p o s i t i o n ( Pos i t i on )
39 post : p r i ces ( l o c a l P r i c e s )
40
41 action sharePr ice (Name, Pr ice )
42 pre : productName (Name) , p r i ce ( Pr ice )
43 post : pr iceShared

Listing 2: ShopReview Abstract Actions.

sponding concrete actions, it will invoke the one with minimum
required energy. If this criterion does not result in the selection
of a unique concrete action (i.e., many actions have the same
minimum energy value), the Interpreter applies the second con-
straint (i.e., the maximum usability) to the set of actions with
the minimum energy value. If even this criterion is not able
to identify a unique candidate, the Interpreter applies the third
constraint (i.e., minimum cost). If neither this is enough to find
a unique concrete action to invoke, the Interpreter chooses non-
deterministically among the available actions. The same occurs
if all actions do not have an associated QoS Profile or if none of
the existing QoS policies has a valid precondition. Conversely,
if the battery is fully charged, the middleware set in the initial
state the fact ∼lowBattery and thus the Interpreter will dis-

1 pr i ces ( l o c a l P r i c e s ) and pr i ces ( on l i nePr i ces ) and
2 pr iceShared and p o s i t i o n ( gpsPos i t ion )
3
4 or
5
6 pr i ces ( l o c a l P r i c e s ) and pr i ces ( on l i nePr i ces ) and
7 pr iceShared and p o s i t i o n ( userDef inedPos i t ion )

Listing 3: ShopReview Goal.

1 hasFixedFocusCamera and hasGPS and ∼isGPSEnabled

Listing 4: ShopReview Initial State.

1 @Action (name= ” getProductName ” )
2 @ReturnValue ( ”name” )
3 @QoSProfile ( met r i cs ={ ” u s a b i l i t y ” , ” cost ” , ” energy ” } ,
4 values = {1 ,0 , −1 } )
5 public S t r i n g getProductNameViaSearchUPC ( Barcode barcode ) {
6 S t r i n g barcodeValue = barcode . getValue ( ) ;
7 / / Invoke h t t p : / / searchupc . com/
8 S t r i n g productName = searchupc ( barcodeValue ) ;
9 return productName ;

10 }
11
12 @Action (name= ” getProductName ” )
13 @ReturnValue ( ”name” )
14 @QoSProfile ( met r i cs ={ ” u s a b i l i t y ” , ” cost ” , ” energy ” } ,
15 values = {1 ,1 , −1 } )
16 public S t r i n g getProductNameViaSimpleUPC ( Barcode barcode ) {
17 S t r i n g barcodeValue = barcode . getValue ( ) ;
18 / / Invoke h t t p : / / simpleupc . com/
19 S t r i n g productName = simpleupc ( barcodeValue ) ;
20 return productName ;
21 }
22
23 @Action (name= ” getProductName ” )
24 @ReturnValue ( ”name” )
25 @QoSProfile ( met r i cs ={ ” u s a b i l i t y ” , ” cost ” , ” energy ” } ,
26 values = { −1 ,0 ,0 } )
27 public S t r i n g getProductNameFromUser ( Barcode barcode ) {
28 S t r i n g barcodeValue = barcode . getValue ( ) ;
29 / / Ask the user f o r the product name
30 S t r i n g productName = . . . ;
31 return productName ;
32 }

Listing 5: getProductName Concrete Actions.

card the energySaver and will apply the default profile that
prioritizes usability over cost and energy.

Given these premises, if we consider, for example, the
getProductName abstract action, with its concrete counter-
parts reported in Listing 5, and the default QoS policy, the
Interpreter first selects the getProductNameViaSearchUPC

and getProductNameViaSimpleUPC actions, which have
the maximum usability value. Then it applies the sec-
ond constraint (i.e., minimum cost) selecting only the
getProductNameViaSearchUPC, the one that is invoked.

Let us consider now a more complex scenario to explain
how SelfMotion may consider and satisfy more articulated
QoS requirements. Let us consider in particular a scenario
where the profiles of concrete actions include an additional
QoS profile called network that indicates the amount of band-
width consumed by each concrete action and let us add – on
top of the QoS policies reported in Listing 6 – the additional
slowConnection policy reported in Listing 7.

In this setting, the slowConnection policy will be enabled
by the Middleware on every device in which the WiFi connec-
tion is not available. By relying on this profile, the app de-
signers may prioritize concrete actions that consume less band-
width when a reliable and fast connection is not available in or-
der to guarantee a smoother user experience. Conversely, if the
slowConnection profile is disabled (i.e., a WiFi connection is
available) the remaining other two QoS profiles that predicate
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1 qos : energySaver
2 pre : l owBat te ry
3 min : energy
4 max : u s a b i l i t y
5 min : cost
6
7 qos : d e f a u l t
8 pre : t r ue
9 max : u s a b i l i t y

10 min : cost
11 min : energy

Listing 6: QoS Policy Definitions.

over the battery state are considered for execution.
It is important to notice that the SelfMotion mechanism

based on policies and profiles represents a well balanced trade-
off among the simplicity and efficiency required by the mobile
domain and the expressiveness needed by developers. Indeed,
profiles and policies allow application designers to effectively
prioritize multiple and conflicting QoS requirements as illus-
trated in this example in which effective bandwidth manage-
ment is prioritized over battery management. Summing up, by
specifying one or more QoS policies developers encode a hier-
archical system of priorities among available concrete actions,
which in turn allows an adaptive behavior of the resulting app,
as discussed later on in Section 4.2. Finally, it is important to
mention that in our previous work Cugola et al. (2012d) we in-
vestigated a more comprehensive and expressive approach to
QoS for the specific domain of service orchestrations.

3.3. The SelfMotion middleware

As previously introduced, the SelfMotion middleware is in
charge of executing the app. First of all, at start-up it analyzes
the current device and populates the initial state with the set of
facts that describe the device’s features (i.e., the available sen-
sors, the battery state, etc.). Second, it invokes its two internal
components: the Planner and the Interpreter.

The Planner analyzes the goal, the initial state, and the ab-
stract actions and produces an Abstract Execution Plan, which
lists the logical steps (i.e., the abstract actions) to reach the goal.
The Interpreter, takes this plan and executes it by associating
each abstract action with a concrete one, chosen according to
the QoS policy that is currently active, invoking external com-
ponents where specified.

During execution of the plan, the actual state of the app is
represented by the abstract objects manipulated by the Planner
and by the concrete (i.e., Java) objects manipulated by the In-
terpreter at run-time. Both are kept by the Interpreter into the
Instance Session: a key-value database that maps each abstract
object used by the Planner and referenced inside the plan with
a corresponding concrete object. When the Interpreter must in-
voke a concrete action to execute the next step of the plan, it
uses the Instance Session to retrieve the concrete objects to be
passed to the action, while the value returned by the action, if
any, is stored into the Instance Session, mapped to the abstract
object whose name is given through the @ReturnValue anno-
tation (see Listing 5 for an example). This way the abstract

1 qos : slowConnection
2 pre : ∼hasWiFi or ∼wiFiEnabled
3 min : network
4 max : u s a b i l i t y
5 min : cost
6 min : energy

Listing 7: Additional QoS Policy Definition.

plan produced by the Planner is concretely executed by the In-
terpreter, step by step.

If something goes wrong during this process (e.g., an external
service returns an exception), the Interpreter first tries a differ-
ent concrete action for the abstract action that failed (following
the order of precedence established by the QoS policy in use).
If no alternative actions can be found or all alternatives have
failed, it invokes the Planner again to build an alternative plan
that skips the abstract action whose concrete counterparts have
all failed. This approach allows SelfMotion to automatically
adapt to the situations (and failures) it encounters at run-time,
maximizing reliability. All of this occurs without requiring de-
signers to explicitly code complex exception handling strate-
gies. Everything is managed by the SelfMotion middleware,
which uses the set of alternative concrete actions associated to
the same abstract action as backups of each other, while the
Planner is in chrge of automatically determining the sequence
of steps that satisfies the goal under the circumstances actually
faced at run-time.

As far as the implementation is concerned, the current Self-
Motion prototype uses an ad-hoc planner, built as an exten-
sion of JavaGP (Meneguzzi and Luck (2009); JavaGP (2010)),
a Java open-source version of the Graphplan (Blum and Furst
(1997)) planner. In particular, we extended the JavaGP planner
to support multiple goals and the possibility of setting the ini-
tial state of the plan at run-time. The JavaGP planner was also
modified to introduce the ability of inhibiting the use of some
steps in the plan, i.e., those that are mapped to concrete actions
whose invocation failed at the previous round.

Listing 8 reports a possible plan of the SR example for a
device with fixed focus camera (i.e., hasFixedFocusCamera is
set to true) and with a GPS sensor available but not enabled (i.e.,
hasGPS set to true, isGPSEnabled set to false). As mentioned,
this plan is a list of abstract actions that lead from the initial
state to a state that satisfies the goal, as in Listing 3. Notice that:
(1) when several sequences of actions could satisfy the goal
the Planner chooses one non-deterministically;5 (2) although
the plan is described as a sequence of actions, the middleware
is free to execute them in parallel, as soon as the respective
precondition becomes true.

From a deployment point of view, the Interpreter is installed
on the mobile device, since it is in charge of actually executing
the app. The Planner, instead, may be deployed either locally
or remotely. In the first case, plan generation and interpreta-
tion take place in the same execution environment, while in the

5As a consequence of the use of the Graphplan planning algorithm, the cur-
rent implementation prioritizes plans with the smaller number of actions
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1 acquirePhoto
2 blurryReadBarcode ( barcodeImage )
3 enableGPS
4 getPosit ionWithGPS
5 getProductName ( productBarcode )
6 i n p u t P r i c e (name)
7 searchTheWeb (name)
8 searchTheNeighborhood ( productBarcode , gpsPos i t ion )
9 sharePr ice (name, p r i ce )

Listing 8: A Possible Abstract Execution Plan.

second case the Planner is deployed on a remote server and the
Interpreter invokes it as a service when needed. The two strate-
gies differ in their performance, as we will discuss in Section 5.

4. Advantages of the SelfMotion Approach

This section describes the main advantages of our approach
with respect to the development process usually adopted for
apps. The discussion refers to the SR example.

4.1. Decouple Design from Implementation.

SelfMotion achieves a clear separation among the different
aspects of the app: from the more abstract ones, captured by
goals, initial state, and abstract actions, to those closer to the
implementation domain, captured by concrete actions. In defin-
ing abstract actions, developers may focus on the functionali-
ties the app has to provide, ignoring how they will be imple-
mented (e.g., through ad-hoc developed components, invoking
external services, or launching third party apps). This choice is
delayed to the time when concrete actions are defined. More-
over, if different concrete actions are associated with the same
abstract one, the actual choice of how a functionality is imple-
mented is delayed to run-time, when abstract actions are bound
to concrete ones. For example, consider the GetProductName
functionality of the SR app. In the initial phase of the app’s de-
sign, developers may focus on the features it requires —the pre-
condition— and the features it provides —the post-condition.
Later on, they can implement a first prototype of this functional-
ity (a concrete action) that leverages an ad-hoc developed com-
ponent (i.e., the manual input of the product name) and they
may realize that this solution needs to be improved in terms of
usability. After this first try, the app may gradually evolve by
adding other concrete actions that implement the same func-
tionality, e.g., exploiting a Web service. This approach, that
decouples system design from its implementation, is typical of
mature engineering domains but it is not currently supported by
mainstream apps’ development environments. SelfMotion is
an attempt to address this issue.

4.2. Enable Transparent Adaptation.

By separating abstract and concrete actions (with their QoS
profile) and by supporting one-to-many mappings among ab-
stract and concrete actions we solve two key problems of mo-
bile apps: (1) how to adapt the app to the plethora of devices

available today, and (2) how to cope with failures happening at
run-time.

As an example of problem (1), consider the implementation
of the GetPosition functionality given in Listing 1 and com-
pare it with its SelfMotion counterpart, which relies on sev-
eral abstract actions with different preconditions (see Listing 2).
The former requires to explicitly hard-code (using if-else con-
structs) the various alternatives (e.g., to handle the potentially
missing GPS), and any new option introduced by new devices
would increase the number of possible branches. Conversely,
SelfMotion just requires a separate abstract (or concrete) action
for each option, leaving to the middleware the duty of selecting
the most appropriate one, given the current device capabilities
and the order of preference provided by the app’s designers.

As for problem (2), consider the example of the
GetProductName functionality, which is implemented in Self-
Motion by a single abstract action mapped to three different
concrete actions (Listings 2 and 5). The middleware initially
tries the first concrete action, which invokes an external ser-
vice. If this returns an exception, the second concrete action
is automatically tried. In the unfortunate case this also fails,
the third concrete action is tried. Finally, if none of the avail-
able concrete actions succeeds, SelfMotion may rely on its re-
planning mechanism to build an alternative plan at run-time.
As an example, consider the case in which the Interpreter is
executing the plan reported in Listing 8 and let us assume that
the GPS sensor fails to retrieve the user location (e.g., because
we are indoor) and throws a system exception. The middle-
ware automatically catches the exception and recognizes the
getPositionWithGPS as faulty, which has no alternative con-
crete actions. In this setting the Planner is invoked to generate
a new plan that avoids the faulty step. The new plan will in-
clude the getPositionManually abstract action, whose con-
crete counterpart will ask the position to the user through an
ad-hoc pop-up. Again, obtaining the same behavior using con-
ventional approaches would require a complex usage of excep-
tion handling code, while SelfMotion does everything automat-
ically, relieving programmers from the need of explicitly han-
dling the intertwined exceptional situations that may happen at
run-time.

Finally, the possibility of specifying multiple QoS policies
also reveals the adaptive nature of SelfMotion apps. Indeed,
let us recall the policy example in Listing 6. In the previous
section we considered the case of a device with a fully charged
battery, which would select the default policy. If we con-
sider now the alternative scenario in which batteryLow is set
true in the initial state, the energySaver policy would be se-
lected. This change results in a different behavior of the Inter-
preter (and consequently a different behavior of the app), which
will prioritize the energy efficient actions. As an example, the
GetProductName functionality this time would be realized by
executing the getProductNameFromUser concrete action. In
other words, through an accurate use of QoS policies, Self-
Motion allows developers to easily build apps that adapt to the
execution context.
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4.3. Improve Code Quality and Reuse.

As a final advantage of SelfMotion we observe that by pro-
moting a clean modularization of the app’s functionality into a
set of abstract actions and their concrete counterparts, and by
avoiding convoluted code using cascaded if-elses and excep-
tion handling constructs, SelfMotion improves readability and
maintainability of apps’ code.

Moreover, by encapsulating the various features of an app
into independent actions and by letting the actual flow of exe-
cution to be automatically built at run-time by the middleware,
SelfMotion increases reusability, since the same action can be
easily reused across different apps. This advantage is funda-
mental to shorten the development life-cycle, which is crucial
in the mobile domain.

5. Validating the SelfMotion Approach

To validate the SelfMotion approach, we implemented a
publicly available open-source tool where the implementation
the SR app can also be found (see Section 7). Although our ap-
proach is general and applies with limited technological modi-
fications to several existing mobile frameworks, we focused on
the Android mobile platform Rogers et al. (2009) for our proto-
type.

The initial validation we report in this section consists of a
testing campaign we performed, exploiting the Android emula-
tor as well as several real mobile devices, to measure the over-
head introduced by SelfMotion w.r.t. conventional approaches.
The experiments showed that this overhead exists but it is prac-
tically negligible. More specifically, we measured how the plan
generation step performed at run-time by the Planner represents
the major element of overhead and the potential bottleneck of
SelfMotion. The time to execute this step depends on two fac-
tors: (1) the plan length, and (2) the number of abstract actions
in the domain, while it is not affected by the number of available
concrete actions, as the binding between concrete and abstract
actions is performed separately, by the Interpreter. As far as
this aspect is concerned, we measured that it does not add a
measurable overhead to the overall running time.

Before showing the results we obtained, we describe the test-
ing platforms we chose. For the experiments involving a local
deployment of the Planner we used two different hardware set-
tings: an LG Nexus 4, which represents the typical Android-
enabled device available today, and a netbook equipped with
2GB of RAM, an Atom processor, Ubuntu Linux 32 bit, and
OpenJDK 1.6.0 The latter represents next generation Android
devices (e.g., the Lava Xolo X900) powered by the new Intel
SOC for smartphones, which integrates the same Atom CPU.
For the experiments involving a remote deployment, we in-
stalled the Planner on a remote server equipped with an AMD
Phenom II X6 1055T processor, 8GB of RAM, Ubuntu Linux
64 bit, and Sun Java Virtual Machine 1.7.0. Moreover, we re-
peated all experiments discussed hereafter at least thirty times,
varying the seeds to generate the workload, for each described
scenario. The figures shown below provide the average results

we obtained, report through error bars the 95% confidence in-
terval, and indicate their interpolation with a second grade poly-
nomial trend line.

Moving from the consideration above, we started analyzing
how the plan length impacts performance. In particular, we de-
veloped a scenario in which we had fifty abstract actions and
a goal definition satisfiable through a plan composed of five
of these actions. We measured the time needed to obtain the
plan and we repeated the experiment changing the goal defi-
nition in order to obtain plans of increasing length—from five
to twenty—recording the time needed to compute them, both
with a local and with a remote deployment of the Planner. Fig-
ure 2(a) shows that, by running this testbed with a local Planner
and with an initial plan composed by five actions, the Planner
takes around 385ms to complete. The time needed to generate
the plan gradually increases up to 6530ms for a plan composed
by twenty actions.

Figure 2(b) shows instead how the Atom-based platform pro-
vides improved performance, reducing the times by an order of
magnitude. Finally, if we choose to rely on a remote execution,
the plan generation time decreases of another order of magni-
tude, as reported in Figure 2(c). Notice that the results we report
for the remote case—here and in the following experiments—
do not include the time required to invoke the Planner remotely,
as the time to traverse the network strongly depends on the ac-
tual connection type of the device (e.g., gprs vs. WiFi), and the
characteristics of the deployment in general.

Our second test set focuses on the impact of the number of
abstract actions on the plan generation time. For this we built
a scenario in which there is an increasingly large set of abstract
actions and a goal definition that generates a plan using ten of
them. Figure 3(a) shows that, with twenty abstract actions and
a local deployment on the LG Nexus 4, the SelfMotion Planner
takes about 1136ms to complete. This time gradually increases
up to 1778ms when eighty abstract actions are available. As
in the previous scenario, the Atom platform and the remote de-
ployment provide further advantages, as reported in Figure 3(b)
and 3(c).

In general these results show an acceptable overhead even on
today’s devices: an overhead that should not affect the overall
app usability. This is especially true if we consider that load-
ing a typical mobile app on today’s devices may require one or
more seconds —not milliseconds— and executing it requires
tens of seconds. Moreover, our implementation, albeit efficient,
is just a prototype, and significant performance improvements
may be achieved by introducing ad-hoc features, such as plan
caching. Finally, we observe that our experiments considered
plans of length up to twenty and up to eighty abstract actions.
These are overestimates of the values we may encounter on real
apps, which are typically characterized by a limited number
of abstract functionality as shown by the example described in
Section 2. Indeed, the plan length of the SR app includes eight
or nine abstract actions (depending on the device capabilities)
and the Planner generates the most complex of these plans in
214ms (LG Nexus 4), 114ms (Atom), and 32ms (remote execu-
tion).

Finally, we briefly report some considerations on local ver-
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Figure 2: Plan Generation Time over Plan Length.
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Figure 3: Plan Generation Time over Abstract Actions.

sus remote plan generation. The choice among them essentially
depends on: (1) the number of abstract actions —which repre-
sents an upper-bound of the plan length— and (2) the compu-
tational capability of the device. The more powerful a device
is, the larger the set of abstract actions it is able to handle suc-
cessfully in a reasonable time. Since the computational power
is known only at run-time, the decision between local or re-
mote plan generation cannot be made statically but it has to be
delayed to execution time. Clearly, a local plan generation is
generally preferable, since it allows the app to execute success-
fully even if the device is not connected to the Internet. Notice
that SelfMotion is adaptive even in choosing between these two
alternatives, which are affected by the device on which the pro-
totype actually runs. Indeed, at design-time, given the set of
abstract actions available, SelfMotion estimates the length of
the plan. Depending on this value, at run-time, knowing the
characteristics of the device where it is running, the middle-
ware autonomously decides whether the plan generation must
be performed locally or remotely.

6. Related Work

The recent massive adoption of mobile devices generated an
increasing interest on engineering mobile applications. A lot of
research is focusing on the effective and efficient development
of such systems, as summarized by Dehlinger and Dixon (2011)
and Wasserman (2010). Existing works span a wide range of
approaches: from how to achieve context-aware behavior (e.g.,
Gonzlez et al. (2011)) to how to apply agile methods in the
mobile domain (e.g., Abrahamsson et al. (2004)).

6.1. Context-aware Frameworks

Context-aware frameworks aim at supporting the develop-
ment of mobile applications that are sensitive to their deploy-
ment context (e.g., the specific hardware platform) and their ex-
ecution context (e.g., user location) (Hirschfeld et al. (2008)).
For example, Subjective-C (Gonzlez et al. (2011)) provides
context-oriented abstractions on top of Objective-C, a main-
stream language used for programming iOS applications. The
EgoSpaces middleware (Julien and Roman (2006)) can be used
to provide context information extracted from data-rich envi-
ronments to applications. Another approach to mobile comput-
ing middleware is presented in Capra et al. (2003), which ex-
ploits the principle of reflection to support adaptive and context-
aware mobile capabilities. In general these approaches pro-
vide developers with abstractions to query the current context
and detect context changes; i.e., they directly support context-
dependent behavior as first-class concept. In the same direc-
tion, approaches like Appeltauer et al. (2008); van Wissen et al.
(2010) provide specific context-aware extensions to the An-
droid platform.

From our point of view, the aforementioned approaches do
not directly compete with ours, but rather they can be viewed
as orthogonal. SelfMotionmay benefit from their ability to de-
tect context information, for example, to generate plans whose
initial state is populated with information related to the sur-
rounding context. The added value of SelfMotion is instead
its ability to automatically build an execution flow based on the
context and the overall design approach it promotes.
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6.2. Multi-platform Frameworks

Other existing related approaches (e.g., Ohrt and Turau
(2012)) provide solutions for multi-platform app development.
Approaches like PhoneGap (2012) and Appcelerator (2012)
allow developers to code using standard technologies (e.g.,
Javascript and HTML5) and deploy the same codebase on sev-
eral platforms, including as iOS or Android. These frameworks
have a great potential but at the same time they currently suf-
fer from the same limitations as traditional app development,
such as the intertwined business logic with adaptation code and
limited support for code maintainability.

None of the above efforts specifically deals with service-
oriented mobile applications, which instead represent a sig-
nificant portion of the apps developed so far. The work by
Chakraborty et al. (2005) describes an approach for service
composition in mobile environments and evaluates criteria for
judging protocols that enable such composition. They mainly
concentrate on a distributed architecture that facilitates service
composition and do not focus on the application layer nor on
its adaptation capabilities, as instead SelfMotion does. Gener-
ally speaking, the existing approaches to service-oriented mo-
bile app on mobile environments focus on enabling the service
composition, without considering the associated consequences,
such as the need of adaptation as motivated in Section 1.

6.3. Service Compositions

SelfMotion models mobile applications as composition of
ad-hoc developed components and remotely invoked services.
Indeed, SelfMotion brings BPEL-like service orchestration to
mobile app development, allowing the app programmers to de-
fine high-level processes (abstract actions and goals) separately
from low-level details (concrete actions), making it easier for
programmers to compose apps by combining concrete actions
in a declarative way. From this viewpoint SelfMotion shares
foundational concepts with traditional service compositions in
which applications are designed and implemented by combin-
ing the functionality of external services provided by third-
party organizations (Erl (2005)). For this reason it is impor-
tant to relate our approach even with existing solutions in this
area as discussed hereafter. During the last years, various pro-
posals have been made to reduce the complexity inherent in
defining service compositions, with the goal of further increas-
ing the diffusion of this technology. As an alternative to tradi-
tional languages for service compositions such as BPEL (Alves
et al. (2006)) and BPMN (White (2008)), other languages like
JOpera (Pautasso and Alonso (2005)), Jolie Montesi et al.
(2007), and Orc Kitchin et al. (2009), were proposed. While
easier to use and often more expressive than BPEL and BPMN,
they do not depart from the imperative paradigm, and conse-
quently they share with them the same limitations that moti-
vated our work.

The complexity in defining Web service compositions is also
being tackled through Automated Service Composition (ASC)
approaches. While our research is motivated by the desire of
providing abstractions for the development of adaptive applica-
tions, overcoming the limitations of mainstream languages in

terms of flexibility and adaptability to unexpected situations,
ASC is grounded on the idea that the main problem behind ser-
vice composition is given by the complexity in selecting the
right services in the open and large scale Internet environment.
The envisioned solution is to provide automatic mechanisms to
select the right services to compose, usually based on a pre-
cise description of the semantics of the services available. For
example, in Rao et al. (2006), user requirements and Web ser-
vices are both described in DAML-S (Burstein et al. (2002)), a
semantic Web service language, and linear logic programming
is used to automatically select the correct services and generate
a BPEL or DAML-S process that represents the composite ser-
vice. Similarly, McIlraith and Son (2002) presents an extension
of Golog, a logic programming language for dynamic domains,
to compose and execute services described in DAML-S, based
on high-level goals defined by users. Both approaches requires
the exact semantics of services to be defined formally (e.g., in
DAML-S) and they do not support dynamic redefinition of the
orchestration at run-time to cope with unexpected situations.

Similar considerations hold for those ASC proposals that
adopt planning techniques similar to those adopted in SelfMo-
tion. In these approaches the planning domain is composed
by the semantically described services and goals are defined
by end-users. For example, Wu et al. (2003) uses the SHOP2
planner to build compositions of services described in DAML-
S. Similarly, Bertoli et al. (2010) proposes an algorithm, based
on planning via model-checking, that takes an abstract BPEL
process, a composition requirement and a set of Web services
also described in BPEL and produces a concrete BPEL process
with the actual services to be invoked. In SWORD (Ponnekanti
and Fox (2002)), the to-be composed services are described in
terms of their inputs and outputs, creating the “service model”.
To build a new service the developer should specify its input and
output, which SWORD use to decide which services should be
chosen and how to combine them. XSRL, a language to express
service requests, is presented in Lazovik et al. (2006). Users
can use this language to specify how services should be chosen
for a given request. A planner is responsible for choosing the
services based on the specified request, augmenting an abstract
BPEL process with the selected services.

Other ASC approaches start from an abstract “template pro-
cess”, expressed either in BPEL, e.g., Ardagna and Pernici
(2007); Aggarwal et al. (2004), or as a Statechart, e.g., Zeng
et al. (2004) and, taking into consideration QoS constraints
and end-user preferences, select the best services among those
available to be actually invoked. As mentioned in the introduc-
tion, these approaches focus on a relatively simpler problem
than SelfMotion , as they focus on “selecting the right services
at run-time”, leaving to the service architect the (complex) task
of defining the abstract “workflow” to follow. Moreover, as they
use traditional, procedural languages as the tool to model this
abstract workflow, they suffer from the limitations and prob-
lems that we identified in Section 1. In addition, most of the
ASC approaches proposed so far operate before the orchestra-
tion starts, while SelfMotion includes advanced mechanisms
to automatically adapt the app to the situations encountered
at execution time. This is particularly evident if we consider
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the problem of compensating actions to undo some already per-
formed steps before following a different workflow that could
bypass something unexpected. A problem that, to the beast of
our knowledge, is not considered by any of these approaches.

A quantitative comparison among our approach based on
planning and declarative languages with respect to the existing
solutions in the domain of service compositions can be found
in Cugola et al. (2012a).

6.4. Declarative Frameworks
To overcome the limitations of imperative solutions, other re-

searchers followed the idea of adopting a declarative approach.
Among those proposals, Declare (Montali et al. (2010); van der
Aalst and Pesic (2006)) is the closest to our work. In Declare
service compositions are defined as a set of actions and the
constraints that relate them. Both actions and constraints are
modeled graphically, while constraints have a formal semantics
given in Linear Temporal Logic (LTL). There are several differ-
ences between Declare and SelfMotion . First of all, Declare
focuses on modeling service choreographies to support verifi-
cation and monitoring. Although it could also be applied to mo-
bile applications, our focus is not restricted to modeling mobile
applications but specifically on enacting them. This difference
motivates the adoption of LTL as the basic modeling tool, as
it enables powerful verification mechanisms but introduces an
overhead that can be prohibitive for an enactment tool (Montali
et al. (2010)), in particular for the mobile domain. The Self-
Motion approach to modeling offers less opportunities for veri-
fication but it can lead to an efficient enactment tool. Secondly,
SelfMotion emphasizes re-planning at run-time as a mecha-
nism to support self-adaptive applications that maximize reli-
ability even in presence of unexpected failures and changes in
the external services. This is an issue largely neglected by De-
clare, as it focuses on specification and verification and it does
not offer specific mechanisms to manage failures at run-time.

GO-BPMN (Greenwood and Rimassa (2007); Burmeister
et al. (2008); Calisti and Greenwood (2008)) is another declara-
tive language, designed as a Goal-Oriented extension for tradi-
tional BPMN. In GO-BPMN business processes are defined as
a hierarchy of goals and sub-goals. Multiple BPMN plans are
attached to the “leaf” goals. When executed, they achieve the
associated goal. These plans can be alternative or they can be
explicitly associated with specific conditions through guard ex-
pressions based on the context of execution. Although this ap-
proach also tries to separate the declarative statements from the
way they can be accomplished, the alternative plans to achieve a
goal must be explicitly designed by the service architect and are
explicitly attached to their goals. The engine does not automat-
ically decide how the plans are built or replaced; it just chooses
between the given options for each specific goal, and it does so
at service invocation time. The SelfMotion ability to build the
plan dynamically and to rebuild it if something goes wrong at
run-time, improves self-adaptability to unexpected situations.

The approach described in Van Riemsdijk and Wirsing
(2007) defines a goal-oriented service composition language
inspired by agent programming languages, like AgentS-
peak(L) (Rao (1996)). One of the main motivations of this ap-

proach is the possibility of following different plans of execu-
tion in the presence of failures. The main difference with our
approach is that the alternative plans need to be explicitly pro-
grammed based on the data stored into the Knowledge Base and
the programmer needs to explicitly reason about all the possi-
ble alternatives and how they are related, in a way similar to that
adopted by traditional approaches. In the presence of faults, the
facts that compose the Knowledge Base are programmatically
updated to trigger the execution of specific steps that have to be
specified in advance to cope with that situation. No automatic
re-planning is supported.

6.5. Other Relevant Related Work

We observe that the three-layered architectural model for
self-management described by Kramer and Magee (2007);
Sykes et al. (2008) was also used as an inspiration for Self-
Motion language and its middleware. In particular, the layers
defined by this architecture are: the goal management layer,
which is based on model checking from the domain model and
goals for the generation of plans (in our approach, the Planner);
the change management layer, which is concerned with using
the generated plans to construct component configurations and
direct their operation to achieve the goal addressed by the plan
(in our approach, the SelfMotion Interpreter, which interacts
with the Planner and executes the generated plan); at last, the
component layer, which includes the domain specific compo-
nents (in our approach, the abstract and concrete actions, used
to build and enact the plan). SelfMotion inherits from these
works, but differs in the way adaptation is achieved (via ab-
stract and concrete actions) and in the focus on the openness
required by mobile applications.

7. Conclusions and Future Work

We presented SelfMotion, a declarative approach supporting
systematic development of mobile apps, modeled in terms of
goals, abstract and concrete actions. The approach exploits au-
tomatic planning techniques to elaborate, at run-time, the best
sequence of activities to achieve the app’s goal. In addition, the
proposed approach also allows to annotate the actions that com-
pose the final apps with a description of their non-functional
behavior (i.e., their QoS profile). By exploiting such annota-
tion, it is possible for engineers to express various QoS policies
that maximize or minimize certain QoS metrics (e.g., the energy
consumption) depending on the actual conditions encountered
at run-time.

The paper contributes to the research in adaptive software
systems and services in two principal ways. First, it investi-
gates a declarative approach for the effective and efficient de-
velopment of adaptive apps conceived as hybrid compositions
of services and components. Secondly, it provides a fully func-
tional middleware, which supports adaptivity and enforces a de-
coupling of the business logic from the adaptation logic, facili-
tating code reuse, refactoring, and code evolution.

To demonstrate the advantages of SelfMotion in terms of:
(1) ease of use, (2) adaptation capabilities, and (3) quality of
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the resulting code, we used the proposed approach to imple-
ment a realistic mobile app inspired by an existing worldwide
distributed mobile application. In addition, we assessed the
overhead introduced by the approach and its scalability by per-
forming a validation campaign, which demonstrated the appli-
cability of the approach.

To encourage the adoption of the proposed approach and to
allow the replication of experiments, the SelfMotion imple-
mentation has been released as an open-source tool for the An-
droid platform, publicly available6.

SelfMotion is part of a long running research stream, which
aims at investigating declarative approaches to enforce adaptive
capabilities in software systems addressing specific domains
that span services (e.g., Cugola et al. (2011, 2012a,d)), mobile
apps (e.g., Ghezzi et al. (2013b)), and the interaction among
the two (e.g., Ghezzi et al. (2013a)). Future work includes
building an IDE, possibly integrated in a widely adopted tool
such as Eclipse, to further simplify the definition of abstract/-
concrete actions and goals. As for the SelfMotionmiddleware,
while the current prototype is operational and publicly avail-
able, there is still space to further improve its performance and
robustness. Finally, our future work also includes a user study
aimed at demonstrating the SelfMotionś usability, its moder-
ate learning curve, and the improvements it brings in terms of
productivity.
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