
Adapting Publish-Subscribe Routing to Traffic Demands

Matteo Migliavacca
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy
migliava@elet.polimi.it

Gianpaolo Cugola
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy
cugola@elet.polimi.it

ABSTRACT
Most of currently available content-based publish-subscribe
systems that were designed to operate in large scale, wired
scenarios, build their routing infrastructure as a set of bro-
kers connected in an acyclic network. The topology of such
network is critical for the performance of the system. De-
pending on the traffic profile, the same topology may pro-
vide good performance or be very inefficient. Starting from
this consideration, in this paper we first analyze this issue in
detail, then we describe a distributed algorithm to address
it, by adapting the topology of a content-based publish-sub-
scribe routing network to the application demand.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems

General Terms
Algorithms, Performance

Keywords
Optimization, publish-subscribe Systems, Content-Based Rout-
ing, Adaptive Routing, Autonomic Computing

1. INTRODUCTION
Large scale publish-subscribe applications are usually built

around an overlay dispatching network composed of a set of
interconnected brokers that cooperate to provide the publi-
sh-subscribe service [17]. Each component of the application
is connected to one of such brokers that acts as its entry
point to the dispatching network. Through this broker, the
component may publish messages and receive the messages
it subscribed to. This interaction among the brokers and the
components that build the publish-subscribe application ex-
plains why the latter are usually called “clients”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07, June 20–22, 2007 Toronto, Ontario, Canada

Copyright 2007 ACM 978-1-59593-665-3/07/03 ...$5.00.

Figure 1: Routing on an acyclic overlay. Clients C1
and C2 are subscribed to the same “filled” filter,

while client C3 is subscribed to a “dashed” filter.

Where present, arrows represent the content of bro-

kers’ routing tables, while thick lines represent the

links followed by a message sent by client C4, which

matches the filled filter.

Most of the existing publish-subscribe systems designed
to operate on large scale, wired networks (usually IP net-
works) connect all brokers in a single acyclic overlay (i.e.,
an unrooted tree) [17, 16]. This is true, in particular, for
content-based systems, where subscriptions are expressed as
predicates (usually called filters) on the content of messages.
Such systems, in fact, lack any explicit notion of “group” or
“subject”, as in traditional multicast or in subject-based
systems1. The dispatching network must compute the set
of recipients of each message by looking at its content and
at the set of subscriptions known at publishing time. This
makes it impossible to use separate dispatching trees for each
group, as it happens in traditional multicast and subject-
based systems. Conversely, by joining all the brokers in a
single tree, messages can be easily routed, either by send-
ing each published message to all the brokers and letting
them to compute the set of clients interested in the message
(see Figure 1, left), or by propagating information about
clients’ subscriptions along the same dispatching tree and
subsequently using such information to route messages only
toward interested brokers, i.e., those that have at least one
subscribed client attached to them (see Figure 1, right).

As the first type of routing does not scale well when the

1Also known as “topic-based” systems.

size of the system grows, most of the proposals in the area
of content-based publish-subscribe focus on the second form
of routing, dispatching messages only toward interested bro-
kers along a single acyclic overlay. At the same time, even
this strategy has a potential weakness: the cost of routing
depends on the topology of the dispatching network, which
is usually defined at deployment time and never changes.
Indeed, if the publisher of a message m is connected to the
opposite side of the routing network w.r.t. the subscribers of
m, the message must traverse a large number of brokers to
reach its recipients. Even worse, if the subscribers are very
sparse w.r.t. each other, m must flood the entire dispatching
network.

In this paper we propose a distributed algorithm to over-
come the limitation above. It uses information about the
messages effectively routed by the publish-subscribe system
to periodically reconfigure the dispatching network at run-
time to reduce the overall routing cost.

The paper is organized as follows. Section 2 models pu-
blish-subscribe routing and formally states the problem we
address, studying its complexity in general terms. Section 3
describes the reconfiguration algorithm we propose, while
Section 4 place our work in the context of related research
efforts. Finally Section 5 provides some concluding remarks
and illustrates future work.

2. PROBLEM STATEMENT
As mentioned in the previous section, the problem we ad-

dress in this paper can be defined informally as: to adapt the
topology of an acyclic content-based publish-subscribe routing
network to the application demand, minimizing the routing
cost. We call this problem OCBR, an acronym which stands
for Optimal Content-Based Routing.

To formalize the OCBR problem, we model a publish-sub-
scribe system as a set of brokers B and clients C, building a
routing network Net = (N, L), where N = B∪C is the set of
network nodes, while L is the set of available network links.
We assume symmetric links, so the graph Net is undirected,
and we use the notation 〈n1, n2〉 to designate the link that
joins node n1 with node n2. Moreover, since the clients of
a publish-subscribe system always connect to brokers and
never connects directly among them, we assume that the
set L does not include links that directly joins two clients.
Formally: ∀c1, c2 ∈ C (〈c1, c2〉 /∈ L). Finally, observe that, if
the publish-subscribe system we consider builds its routing
infrastructure as a true overlay network (e.g., on top of an
IP infrastructure) the set L includes all the links that joins
every broker with every other and every client with every
broker, otherwise only some of those links are available, e.g.,
when the content-based routing infrastructure is built at the
networking layer (in the OSI jargon), with brokers joined by
data-link layer connections.

To model the application demand, we assume that given
a set of n clients: c1, . . . , cn, the cost of routing a message
published by one of them to all the others does not depend
on the choice of the publisher. In other words, the cost of
routing a message from c1 to c2, . . . , cn equals the cost of
routing a message from c2 to c1, c3, . . . , cn, and so on. This
assumption is easily verified if links are symmetric and mes-
sages are routed following the same tree spanning the pub-
lisher and the subscribers, independently from the identity
of the publisher itself.

Given this assumption, we model the application demand

as a couple (T, d), where T ⊆ P(C) is a set of traffic classes
and d : T → N is a function that maps each traffic class
t = {c1, . . . , cnt

} to its traffic demand d(t), expressed as the
total number of messages published by any of c1, . . . , cnt

and
delivered to all the others, and only to them.

As for the cost of routing a message, it can be decomposed
into a cost associated to the traversal of links, plus a cost
of matching associated with brokers. We model these costs
through two functions: Cl : L → N models the average
cost of sending a message through a link, while Cb : B →
N models the average cost borne by a broker to process a
message.

To calculate the total cost of routing a single message for a
traffic class t, we need some information about the way mes-
sages are routed. In particular, we assume a topology that
joins brokers in a single spanning tree and each client to one
and only one broker. We call valid a spanning tree on Net
that satisfies such constraints. On top of a valid topology,
we assume a routing strategy that behaves as in Figure 1,
right, by routing messages along the minimal subtree that
connects the publisher with all the subscribers. Under these
assumptions, which, as mentioned in Section 1, are satisfied
by most of the existing content-based publish-subscribe sys-
tems, the problem we stated informally at the beginning of
this section can be formalized as follows:

OCBR problem

given a routing network Net , a set of traffic classes T , with
associated demands d, and two cost functions Cl and Cb

find a valid spanning tree ST on Net
minimizing the routing overhead:

X

t∈T

„

α
X

l∈E(STt)

Cl(l) ·d(t)+β
X

b∈(V (STt)∩B)

Cb(b) ·d(t)

«

(1)

where STt is the minimal subtree of ST including the clients
in t, while E(STt) and V (STt) are the set of links and nodes
in STt, respectively.

The two parameters α and β must be chosen to find the
required compromise between minimizing the overall cost
associated with links and that associated with brokers.

It is easy to see that the optimization problem above is
not solvable in polynomial time. To prove this fact consider
the Steiner tree problem [13] below:

Steiner tree problem

given a graph Net stein = (Bstein, Lstein), a cost function
Cstein : Lstein → N , and a subset of terminal nodes tstein ⊆
Bstein

find a minimal cost tree STstein spanning all the terminals
tstein.
If we pick:

• a network Net = (Bstein ∪ Ct, Lstein ∪ Lt), where Ct

is a set of |tstein| clients and Lt is the set of |Ct| links
connecting each client in Ct with a different broker in
tstein;

• a single traffic class t0 = Ct, with demand d(t0) = 1;

• a cost function Cl such that: ∀l ∈ Lstein|Cl(l) = Cstein(l),
while ∀l ∈ Lt|Cl(l) = 0; and

• α = 1 and β = 0;

we easily see that the resulting OCBR problem solves the
Steiner tree problem above. More specifically, under the

conditions above, the cost function (1) we consider coincides
with the cost of the tree spanning all the terminals tstein.
This shows that it is possible to reduce any Steiner tree
problem to a specific OCBR problem, which, consequently,
must be at least as complex to solve as the Steiner tree one.

At the same time, the approach taken in the proof above,
showing how the OCBR problem with a single traffic class
is equivalent to the Steiner tree problem, suggests that the
real OCBR problem, involving hundreds of traffic classes to
be optimally organized on a single tree, is fundamentally
different from the Steiner tree problem. Accordingly, ap-
proximate solutions available for the latter are not easily
adaptable to the former.

3. THE ALGORITHM
Before going into the details of an algorithm capable of ap-

proximating the solution of the OCBR problem, we observe
that the formalization given above does not specify how the
application demand is obtained. While building our formal
model it was reasonable to consider it a known input of the
problem, now it is time to define how it can be obtained in
practice.

Clearly, the demand of a content-based publish-subscri-
be application cannot be known before running it. On the
other hand, our final goal is to implement a publish-subscri-
be system capable of adapting its routing infrastructure to
application demands at run-time. Consequently, we need a
way to forecast the application demand. We do so by col-
lecting traffic information for a given time period ∆t and by
rearranging the dispatching network at the end of such time
period to minimize the routing overhead as if the same traf-
fic would repeat in the future. This “measure → rearrange”
process is repeated every ∆t.

This approach is reasonable as soon as the overall pat-
tern of application traffic changes slowly during time, which
seems to be a reasonable assumption for most publish-sub-
scribe applications. We will not be able of finding the best
solution for the actual demand but we will find a good ap-
proximation.

Unfortunately, this is neither the only problem we have,
nor the most complex. Indeed, in the last section we shown
that the OCBR problem cannot be solved in polynomial
time even if a single traffic class is considered. In a real
content-based publish-subscribe system the total number of
traffic classes is much greater. Since T ⊆ P(C), such number

can grow up to 2|C|. This is a typical consequence of content-
based routing, where each message has not to be routed to
a group of recipients chosen among a limited, predefined
set of groups, as in subject-based systems [18]. Moreover,
determining such traffic classes and the associated demands
requires a global view of the network, something hard to
obtain in practice.

In other words, even the problem of determining the in-
puts of the OCBR problem, i.e., the traffic classes with their
associated demands, during the period of observation ∆t, is
intractable if we consider the entire network as a whole. We
need a distributed solution.

3.1 Towards a distributed optimization algo-
rithm

Fortunately, to solve the OCBR problem and overcome
all the difficulties above, we may take benefit of its own
distributed nature. Instead of looking for a solution to the

Figure 2: An example of the simplification of the

OCBR problem coming from looking at local recon-

figurations only.

problem as a whole, we restrict it to smaller portions of the
publish-subscribe network and perform the optimization in
parallel on separate subnetworks. In particular, since we
operate on a tree shaped network, we consider the smallest
possible sub-network: the tree composed of a broker and its
immediate neighbors. Accordingly, our algorithm operates
by letting each broker periodically rearrange its neighbor-
hood to minimize (1); to avoid interference among concur-
rent reconfigurations involving the same brokers, we lock
such neighborhood before rearranging it.

More specifically, periodically each broker bm, the mas-
ter of the current local reconfiguration tries to minimize (1)
by only considering the network composed of itself and its
neighbors. This means that it collects the traffic classes it
observes directly, i.e., those formed of its neighbors only,
and locks and rearranges its neighborhood in a spanning
tree that minimizes (1).

We can relate the traffic classes perceived from the master
bm viewpoint in terms of the network-wide traffic classes
defined in the formalization given in the previous section, in
fact

1. bm does not perceive and is not interested into the
traffic classes composed of clients that are all part of
the same subtree rooted at one of its neighbors: in fact
the related messages do not enter the portion of the
system considered by bm, thus cannot be affected by
any bm’s neighborhood reconfiguration;

2. for each traffic class t among the remaining ones, and
for each client c ∈ t that is not directly attached to
it, bm view substitutes c in t with the broker at the
root of the subtree that includes c2. This way bm view
“merge” several traffic classes together, further reduc-
ing their number.

As an example, consider the publish-subscribe system in
Figure 2 and the related set of traffic classes with associated
demands. When the gray broker bm operates as a mas-
ter of a local reconfiguration, it looks only at the subtree
composed by itself and its neighbors: b1, b2, b3, b4, and

2In doing so we extend the definition of “traffic class” to
include also the brokers as possible end-points of the com-
munication.

c4. Consequently, it may ignore the traffic class {c1, c2},
whose 5 messages do not flow through the subtree it con-
siders. Also, it is not interested in (and usually it cannot
determine) the specific source of the messages that come
from the same neighbor. Accordingly, it perceives the traf-
fic class {c1, c2, c4} as {b1, c4}, and it merges the two classes
{c1, c2, c3} and {c2, c3, c5} into a single class {b1, b3}. At
the end, the total number of traffic classes to consider halves
(from 4 to 2). In real scenarios, with thousands of traffic
classes, the simplification can be much greater.

Before proceeding, we must evaluate how the local recon-
figuration performed by a broker bm by only looking at its
neighborhoods impacts the global overhead. It is easy to
see that, independently from the choice of the broker bm,
the improvement to the local routing cost it measures using
the rules above equals the improvement in the global routing
cost calculated by (1). This is a consequence of the additive
nature of (1) and of the way the systems we consider route
messages. This guarantees that an algorithm that repeat-
edly let each broker rearrange its neighborhood until none
of them can find a better topology will eventually terminate:
a fundamental feature of any optimization algorithm.

The last issue to consider is how each local reconfigura-
tion is performed. As we noticed, operating locally greatly
reduces the complexity of the problem to solve: the number
of nodes involved reduces to the neighborhood of the mas-
ter bm and the number of traffic classes reduces accordingly.
At the same time, the problem still remains np-hard. In
particular, the number of possible configurations (i.e., span-
ning trees) that a master bm of a local reconfiguration has
to consider, depends on the number N of its neighbors and
equals NN−2. An exhaustive search is feasible only for very
small neighborhoods. In real scenarios, when the number of
neighbors of each broker grows, some heuristic is required:
the next section describes indeed the one we adopted.

3.2 Reconfiguring the neighborhood efficiently
A general approach often used to approximate complex

problems is to use a local search technique. It is composed
of an initialization step, which consists of processing the
input data for the problem and building a starting feasible
solution, followed by three repeating steps:

1. defining a set of moves that bring from the current
solution to a set of “similar” ones;

2. exploring them, evaluating their quality with respect
to the objective function;

3. selecting and applying the best move.

These steps are repeated until the optimum is reached or a
certain number of moves has been applied.

A specific local search technique is Tabu [12]. It applies
the best move found at step 3 even if the resulting solution
is worse than the current one. Afterwards, it inserts the
selected move into a tabu list, which is consulted in further
iterations to exclude moves that could bring to solutions
already explored. This results in escaping local minima,
thus more easily converging toward the best solution.

We apply the tabu strategy to explore the space of all the
valid trees spanning the master of a local reconfiguration
and its neighbors. The master bm of a local reconfiguration
builds a view of that part of the overall network Net that
includes only itself and its neighbors, and determines the

application demand that concerns this part of the network
as explained in the previous section.

As shown in Figure 3, the optimize algorithm executed
by bm starts by initializing the currentTopology. At the
beginning this is a star centered at the master. The moves
we consider are those that add a link to the current topology
and remove the link (among those that build the resulting
loop) that, once removed, causes the greatest decrease in
(1). Since the possible number of such moves can be too big
to be tractable in a reasonable time, at each round we limit
our analysis to N of them, with N being a parameter that
balances the total time required to find a solution with the
accuracy of such solution.

We determine the best move among the N identified at the
step above by looking at the cost function (1), and use the
chosen move to calculate a new configuration. At the end,
we add the move just selected to the tabu list. In particular,
we use two different lists. The addedLinks list is consulted
when choosing the link to remove, to avoid removing a link
just inserted. Similarly, the removedLinks list is used to
avoid adding a link just removed.

We repeat this process a given number of times, ending
with the best configuration found. If it is better than the
starting “star” topology, we apply it to the real system, by
reconfiguring the network composed of the master and its
neighbors; otherwise we decide that no better configuration
exists.

4. RELATED WORK
During the last years, several content-based publish-sub-

scribe middleware have been developed, both by the indus-
try and academia. After the first implementations, built
around a centralized dispatcher, most of the research focused
on improving scalability: a goal that has been achieved by
distributing the dispatcher. Accordingly, today the large
majority of content-based publish-subscribe systems designed
to operate in large-scale, wired scenarios adopt a dispatch-
ing network composed of a set of brokers, which cooperate
to route messages from publishers to subscribers. As ac-
knowledged by several surveys of the area: [3, 11, 16, 17],
most of these systems organize their dispatching network in
an acyclic graph, which is exactly the assumption we started
from. The main consequence of this fact is that the OCBR
algorithm we propose can be easily applied to all these sys-
tems.

An exception to the acyclic topology we took as our start-
ing point is represented by two systems: XNet [7, 8] and Her-
mes [20, 21], and by the routing protocols described in [5,
6]. While OCBR cannot be directly applied to these rout-
ing strategies, we think that it could be interesting to test
whether they provide effective improvements with respect
to a self optimizing, single-tree based strategy, as that real-
ized by OCBR. We plan to answer this question in future
research.

Other content-based publish-subscribe systems that adopt
different routing strategies are those proposed for very dy-
namic, mobile scenarios like MANETs [9]. While these pro-
posals are very interesting, they are out of the scope of
OCBR, which was explicitly designed to optimize the over-
lay routing network of publish-subscribe systems for large
scale, wired scenarios.

As for a direct comparison with other works, the problem
of adapting publish-subscribe routing to traffic has been al-

// Netlocal is the neighborhood of the master
// Cl and Cb are the costs associated to links and brokers, respectively
// Tlocal and dlocal models the application demand seen by the master

// n is the number of iterations of the algorithms
optimize(Netlocal, Cl, Cb, Tlocal, dlocal, n) begin

// Initial topology is a star centered at the current node
currentTopology ← starTopology
addedLinks← ∅
removedLinks← ∅
bestTopology ← currentTopology

for n iterations do
// Calculate a set of N possible moves
moves← ∅
while |moves| < N do

Let linkToAdd be a random link in Netlocal but neither in currentTopology.links() nor in removedLinks

Let linkToRemove ← bestLinkToRemove(currentTopology, Tlocal, dlocal, Cl, Cb)
if linkToRemove ∈ addedLinks then

continue
end

Add 〈linkToAdd, linkToRemove〉 to moves

end

// Find the best move

best ← best(moves, currentTopology, Tlocal, dlocal, Cl, Cb)
// Update tabu lists and currentTopology
Add best.linkToAdd to addedLinks

Add best.linkToRemove to removedLinks
currentTopology.addLink(best.linkToAdd)
currentTopology.removeLink(best.linkToRemove)
// Update best solution found, if necessary
if cost(currentTopology, Tlocal, dlocal, Cl, Cb) < cost(bestTopology, Tlocal, dlocal, Cl, Cb) then

bestTopology ← currentTopology
end

end

// If the best solution found is worth applying, apply it

if cost(bestTopology, Tlocal, dlocal, Cl, Cb) < cost(starTopology, Tlocal, dlocal, Cl, Cb) then
reconfigureNeighborhood(bestTopology)

end

end

Figure 3: The main reconfiguration algorithm used by each broker to change its neighborhood.

ready faced in [2]. The approach adopted by the authors
is quite different from that described here. First of all, the
authors adapt the publish-subscribe routing tree on the ba-
sis of the similarity among the interests of each client, while
OCBR considers the traffic effectively exchanged. As a re-
sult, our approach is more general (it does not depend on
any specific subscription language), it is simpler (it does not
require to compare subscriptions, which is usually a hard
task), and it is more precise (it considers the messages effec-
tively exchanged)3. Also, the proposed approach uses a very
simple metric (the number of hops to route messages), which
does not consider the effective cost of routing. Also, accord-
ing to the way the algorithm works, there is no guarantee
that it would converge. It may happen that two brokers
are joined because they have similar interests but, to keep
the graph acyclic, a link should be removed resulting in in-
creasing the distance among other brokers that had also very
similar interests. Conversely, every OCBR local reconfigura-
tion is guaranteed to reduce the overall routing cost, i.e., the
figure we want to minimize. Finally, while OCBR confines
each step of the protocol (i.e., each “local reconfiguration”)
within the neighborhood of the master, the algorithm pro-
posed in [2] involves, at each step, a much larger area of
the network. This requires, if implemented in a real setting,
to synchronize large part of the publish-subscribe network
in order for the reconfiguration to happen without loosing
messages.

Another work that addresses the reconfiguration problem

3A subsequent proposal by the same authors: [1], has recog-
nized and removed this limitation.

we consider, is described in [14]. The author describes the
very preliminary results of a research in the area, by pro-
viding an in depth analysis of the work described in [2],
identifying all the weaknesses we mentioned above. Unfor-
tunately, it does not provide any solution to them. To this
end, OCBR represents the first comprehensive proposal to
overcome most of them.

Two proposals exploiting mechanisms similar to our iter-
ated local rearrangement to optimize dispatching tree over-
lays are [4]. and [19]. However both works are only applica-
ble to hierarchical overlays (rooted trees). The work in [4]
is in fact tailored to data streams for real-time applications,
and supposing there is a single sender, it tries to optimize
the minimum average-latencies from the clients (receivers).
The work does not consider costs for processing messages
on nodes and is limited to latencies for link costs, our ap-
proach being more general. The metrics optimized by [19]
are instead very customizable. Applications can indeed de-
fine a local cost as combinations of both link and processing
costs. Moreover the cost accounted for a node (called node
cost) can be an aggregation (e.g. max, min, sum) of local
costs towards the root, finally the system cost is, in turn,
an aggregation of node costs. This allows for sophisticated
optimization metrics such as “minimum of the sum of link
latency towards the root” (minimum path latency). How-
ever this metrics flexibility comes at a price: even in this
case routing must be single source for these metric to make
sense wrt the routing process, our OCBR algorithm instead
considers the most general publish-subscribe scenario.

5. CONCLUSIONS
Most of currently available content-based publish-subscri-

be systems organize their routing network as a set of brokers
and clients connected in a single (unrooted) tree. This pro-
vides a good compromize between the complexity of content-
based routing and its efficiency. At the same time, the choice
of the topology of such tree is critical to minimize the overall
routing effort.

In this paper, we addressed this issue by providing a model
to measure the total cost to route a given set of messages.
Using it, we show that determining the best topology to min-
imize the routing effort is a np-hard problem. Starting from
this result, we described the distributed algorithm OCBR
to adapt at run-time the topology of a content-based pu-
blish-subscribe routing network to the application demand,
reducing the routing effort. We are currently completing the
simulation of our algorithm to measure its benefits under
realistic scenarios. The interested reader may refer to [15]
for the preliminary results of such simulations, which were
omitted from this paper, due to space limitations.

Our plan for the future is to complete the set of simula-
tion and then to implement the OCBR algorithm into the
open source REDS content-based publish-subscribe middle-
ware [10]. This will enable a more direct assessment of its
performance in real-world applications.

Acknowledgements
This work was partially supported by the italian National
Research Council (CNR) under the IS-MANET project, and
by the European Community under the IST-034963 WASP
project.

6. REFERENCES
[1] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito.

A self-organizing crash-resilient topology management
system for content-based publish/subscribe. In Proc.
of the Int. Workshop on Distributed Event-Based
Systems (DEBS04), Edinburgh, Scotland, UK, May
2004. IEEE Computer Society.

[2] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito.
Subscription-driven self-organization in content-based
publish/subscribe. In Proc. of the 1st Int. Conf. on
Autonomic Computing (ICAC04). IEEE Computer
Society, 2004.

[3] R. Baldoni and A. Virgillito. Distributed event routing
in publish/subscribe communication systems: a
survey. Technical report, Dipartimento di Informatica
e Sistemistica, Universit di Roma ”La Sapienza”, 2005.

[4] S. Banerjee, C. Kommareddy, K. Kar,
S. Bhattacharjee, and S. Khuller. Construction of an
efficient overlay multicast infrastructure for real-time
applications. In INFOCOM, 2003.

[5] A. Carzaniga, A. J. Rembert, and A. L. Wolf.
Understanding content-based routing schemes.
Technical Report 2006/05, Faculty of Informatics,
University of Lugano, Sept. 2006.

[6] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A
routing scheme for content-based networking. In
Proceedings of IEEE INFOCOM 2004, Hong Kong,
China, Mar. 2004.

[7] R. Chand and P. Felber. XNet: a reliable content

based publish subscribe system. In Proc. of the 23rd
Symp. on Reliable Distributed Systems, Oct 2004.

[8] R. Chand and P. A. Felber. A scalable protocol for
content-based routing in overlay networks. In
Proceedings of the 2nd IEEE Int. Symp. on Network
Computing and Applications (NCA03), page 123,
Washington, DC, USA, 2003. IEEE Computer Society.

[9] G. Cugola, A. Murphy, and G. Picco. Content-based
Publish-subscribe in a Mobile Environment. In
P. Bellavista and A. Corradi, editors, Mobile
Middleware. CRC Press, 2006. Invited contribution.
To appear.

[10] G. Cugola and G. Picco. REDS: A Reconfigurable
Dispatching System. In Proc. of the 6th Int. Workshop
on Software Engineering and Middleware (SEM06),
pages 9—16, Portland, Oregon, USA, nov 2006. ACM
Press.

[11] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 2(35), June 2003.

[12] F. Glover and M. Laguna. Tabu Search. Kluwer
Academic Publishers, 1997.

[13] F. Hwang, D. Richards, and P. Winter. The Steiner
Tree Problem. Elsevier, North-Holland, 1992. (Annals
of Discrete Mathematics, vol. 53).

[14] M. A. Jaeger. Self-organizing publish/subscribe. In
Proc. of the 2nd Int. Doctoral Symp. on Middleware
(DSM05), pages 1–5, New York, NY, USA, 2005.
ACM Press.

[15] M. Migliavacca and G. Cugola. Adapting
publish-subscribe to routing demands. Technical
report, Politecnico di Milano, 2007. Available on-line
at http://www.dei.polimi.it/upload/cugola.

[16] G. Mühl, L. Fiege, F. Gartner, and A. Buchmann.
Evaluating advanced routing algorithms for
content-based publish/subscribe systems. In Proc. of
the 10th IEEE Int. Symp. on Modeling, Analysis, and
Simulation of Computer and Telecommunications
Systems (MASCOTS02), 2002.

[17] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer, 2006.

[18] L. Opyrchal et al. Exploiting IP multicast in
content-based publish-subscribe systems. In Proc. of
the 2nd Int. Conf. on Middleware, 2000.

[19] O. Papaemmanouil, Y. Ahmad, U. Çetintemel,
J. Jannotti, and Y. Yildirim. Extensible optimization
in overlay dissemination trees. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, June
27-29, 2006, pages 611–622, 2006.

[20] P. Pietzuch. Hermes: A Scalable Event-Based
Middleware. PhD thesis, Computer Laboratory,
Queens’ College, University of Cambridge, February
2004.

[21] P. Pietzuch and J. Bacon. Peer-to-peer overlay broker
networks in an event-based middleware. In Proc. of
the 2nd Int. Workshop on Distributed Event-Based
Systems, June 2003.

