
RACED: an Adaptive Middleware for
Complex Event Detection

Gianpaolo Cugola, Alessandro Margara
Dip. di Elettronica e Informazione

Politecnico di Milano, Italy
[cugola, margara]@elet.polimi.it

ABSTRACT
While several event notification systems are built around a
publish-subscribe communication infrastructure, the latter
only supports detection of simple events. Complex events,
involving several, related events, cannot be detected. To
overcome this limitation, we designed RACED, an adaptive
middleware, which extends the content-based publish-sub-
scribe paradigm to provide a complex event detection ser-
vice for large scale scenarios. In this paper we describe its
main aspects: the event definition language; the protocol en-
abling efficient and distributed detection of complex events
through a network of service brokers; the mechanism that
enables RACED to dynamically adapt to network traffic. A
preliminary evaluation shows the benefits of RACED w.r.t.
more traditional publish-subscribe infrastructures.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols—Routing protocols; C.2.4 [Computer Commu-
nication Networks]: Distributed Systems—Distributed ap-
plications

General Terms
Design, Languages, Measurement

Keywords
Publish-Subscribe, Complex Event Detection

1. INTRODUCTION
In the last years, the publish-subscribe communication

paradigm [12], and in particular its content-based incarna-
tion [7], has shown its effectiveness in a wide range of sce-
narios, by providing a strong decoupling among communi-
cation parties, which simplifies the design of loosely coupled

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM 2009, December 1, 2009, Urbana Champaign, Illinois, USA.
Copyright 2009 ACM 978-1-60558-850-6/09/12 ...$10.00.

systems. For this reason publish-subscribe has been widely
adopted as a natural substrate to build event notification
systems; in this field, however, single events are often use-
less on their own, while they become relevant when their
mutual relations are considered as well.

The traditional publish-subscribe paradigm lacks the ex-
pressive power to express and detect complex events [10],
i.e. events defined as patterns involving relations between
other events. To overcome this limitation, different systems
have been proposed recently, which extend publish-subscri-
be with the ability to cope with complex event detection [6,
14, 15]. However, these works are mainly focused on the
definition of a rich language for event specification and only
few of them address the problem of efficiently distributing
events in large scale networks.

In this paper we describe a novel approach for the design
of a complex event detection middleware, called RACED
(Rate-Adaptive Complex Event Detection). The contribu-
tion of our work is threefold: i. we propose a simple language
for complex event definition which is suitable for distributed
processing; ii. in order to support large scale scenarios in-
volving thousands of nodes, we developed a protocol to let
a set of service brokers, connected in an overlay network,
cooperate to efficiently provide the complex event detection
service to their clients; iii. we augment this protocol with
a mechanism that enables RACED to dynamically adapt to
network traffic, and in particular to event generation rates.

The rest of the paper is organized as follows: in Section 2
we present the general architecture and the API of our sys-
tem; in Section 3 we describe our complex event definition
language; in Section 4 we present our protocol for distributed
event detection, focusing on its capability to dynamically
adapt to event generation rates; in Section 5 we evaluate
such protocol, using the Omnet++ network simulator [16].
Finally in Section 6 we survey related work, providing some
concluding remarks in Section 7.

2. SYSTEM ARCHITECTURE
The architecture of RACED is shown in Figure 1.

Dispatching ServiceSources Subscribers

System
Administrators

Brokers

Figure 1: System architecture

Sources notify the dispatching service about events. Ex-
amples of sources are temperature and smoke sensors send-
ing notifications about some location, or a traffic monitoring
system, notifying about congestioned routes. We call such
event notifications messages. System administrators define
complex events: for example they can define that an event of
type fire is detected when the system receives both a mes-
sage about high temperature and a message about smoke
coming from the same room. Finally, subscribers ask the sys-
tem to be notified about the detection of certain (complex)
events. Internally, the dispatching service is built around
different brokers, connected in an overlay network, which
cooperate to detect and route events from sources to sub-
scribers. Table 1 presents the API of RACED.

Advertise(MessageType t)

Publish(Message m)

Subscribe(EventType t)

DefineEvent(EventType t, Pattern p)

Table 1: The RACED API

Before sending messages, sources have to invoke the ad-

vertise operation, to declare the type of messages they will
publish. This build a contract between sources and the dis-
patching service: only messages whose type has been adver-
tised can be published; such contract is exploited by the dis-
patching service to enable distributed detection of complex
events, as explained in Section 4. The Publish operation
is used to inject new messages into the dispatching system,
while the Subscribe operation is invoked by subscribers to
express the type of events they are interested in. Finally,
complex events are defined by system administrators using
the DefineEvent operation, which specifies the type t of the
new event and a Pattern that expresses when an event of
type t occurs. Next section introduces the syntax and se-
mantics of such patterns.

3. EVENT DEFINITION LANGUAGE
Several languages have been recently proposed to define

complex events [6, 14, 15]. In most cases they privilege ex-
pressiveness over simplicity. Being interested in providing a
complex event detection system tailored to large scale sce-
narios, we took the opposite approach and designed a low
level language with few operators, optimized to allow detec-
tion of complex events in a distributed way.

The RACED language provides just five constructs: i.
message filters, ii. composition operators, iii. parameters,
iv. windows, and v. event definitions.

Higher level constructs can be easily built on top of it (e.g.
sequences and repetitions can be represented by combining
message filters and composition operators).

Message filters. Filtering is the capability, offered by con-
tent-based publish-subscribe systems, to select or discard
single messages according to their content. Our language
offers the same functionality. Messages have a type and a
set of attributes represented as key-value pairs as in 1. Mes-
sage filters define the type of the matched messages and the
possible values for attributes through a predicate (a conjunc-
tion of constraints on single attributes). As an example, the
filter given in 2 matches the message given in 1.

(1) Temp[Value:20, Location:"office 1"]

(2) Temp[Value>10 AND Location="office 1"]

Composition operators. Message filters can be combined
through the operators AND and NOT to define events whose
occurrence requires different messages to be published. As
an example, in 3 we combine two messages that have to
occur and a third that have not to occur for a certain event
to happen.

(3) Temp[Value>30] AND Alert[Type="smoke"] AND NOT

Weather[State="rain"]

Parameters. Consider Example 3: in many scenarios the
fact that a message containing a high temperature and a
smoke alert have been published in a non raining condition
may be meaningless. However, it becomes useful if the three
notifications are all related to the same area, as they may in-
dicate a possible fire. To express patterns in which different
messages are selected only if they satisfy mutual relations,
our language enables the definition of parameters and con-
straints on them. Example 4 shows a pattern that satisfies
the aforementioned requirements using a parameter $X.

(4) Temp[Value>30 AND Location=$X] AND

Alert[Type="smoke" AND Location=$X] AND NOT

Weather[State="rain" AND Location=$X]

Windows. Sometimes the composition of multiple mes-
sages is meaningful only if they are published in a limited
amount of time. For example high temperature and smoke
notifications from the same location are not relevant if they
are generated in different days while they become signifi-
cant if generated within 5 minutes. Additionally there exist
patterns that cannot be processed without time constraints.
Consider again Example 3: how long does the system have
to wait until it can decide that no rain messages have been
received? The NOT operator cannot be evaluated without
explicit timing constraints1.

For these reasons our language includes windows defined
using the WITHIN operator as in Example 5. When the
WITHIN clause is not specified we assume that a default value
is used.

(5) Temp[Value>30] AND Alert[Type="smoke"]

WITHIN 5 min

It is worth mentioning that the exact semantics of the
windowing mechanism depends on the time model provided
by the underlying system. In particular, in our system pub-
lished messages are time-stamped by the first broker receiv-
ing them, while brokers’ clocks are kept in sync with an
error that we assume being not significant for the kind of
applications we focus on.

Event definitions. System administrators define events in-
voking the DefineEvent operation (part of the system API).
It includes a pattern defined using the operators above to-
gether with the definition of the attributes valid for the new
event. As an example, in 6 we define the new event Fire

with two attributes: Temp and Location.

(6) DefineEvent(Fire[Temp:$X, Location:$Y],

Temp[Value=$X>30 AND Location=$Y] AND

Alert[Type="smoke" AND Location=$Y]

WITHIN 5 min)

1NOT is known as a blocking operator [8].

4. EVENT DETECTION PROTOCOL
To support large scale scenarios, we designed a proto-

col that defines how multiple service brokers cooperate in
RACED. Such protocol delivers subscriptions exploiting the
shortest path tree rooted at the subscriber2; during deliv-
ery, subscriptions are partitioned at each hop, letting each
source receive only those parts that are relevant for the mes-
sage types it advertised. Messages follow the opposite route
ascending the tree up toward the relevant subscribers, being
filtered and combined along the route.

In particular, each broker runs a link-state protocol to
collect information about the topology of the dispatching
network. It exploits such information to compute its short-
est path tree (SPT) using Dijkstra. The computed SPT is
forwarded to all other brokers in the network, so that ev-
eryone could store its position (i.e., children and parent) in
the defined tree. The SPT is initially used to propagate new
event types defined using the DefineEvent primitive so that
every broker could store them.

Next sections detail how advertisements, subscriptions and
messages are forwarded. For simplicity, we consider a single
subscriber and its SPT.

4.1 Forwarding of Advertisements
Advertisements are forwarded from sources up to the sub-

scriber. Each broker saves all the message types contained
in the advertisements coming from its descendants in an ad-
vertisement table. In Figure 2 we show the advertisement
table of broker 2 after it has been filled (we denote the set
of message types advertised by broker x as types(x)). Broker
1 is the subscriber.

1 2

3 6

5

4

7

5 types(5) ∪ types(7)
4 types(4) ∪ types(6)
2 types(2)

Message TypesBroker
Advertisement Table

Figure 2: Forwarding of advertisements

4.2 Forwarding of Subscriptions
When a client connected to a broker B calls the Subscribe

operation for an event type t, the broker B looks at the
Pattern p defining t and creates a packet we call subscription
that contains the following fields:

• Positive Filters (PF): it is the set of all non-negated
message filters that appear in p.

• Negated Filters (NF): it is the set of all negated (pre-
ceded by the NOT clause) filters that appear in p.

• Window (W): is the timing window expressed in the
WITHIN clause of p.

2For simplicity we forget about subscribers and sources to
focus on the overlay network of brokers; for this reason in
the following we use the term subscriber (resp. source) to
indicate the broker to which a subscriber (resp. source) is
connected.

• Type (T): is the type of the packet, which can be either
push or pull (more on this later).

This packet is sent to all other brokers along B’s SPT by
partitioning it while it travels. To understand how such par-
titioning works we have to introduce the concept of sending
set. The sending set of a filter f for a broker B is the set
of all brokers in B’s advertisement table that advertised the
type of f .

When a broker B′ (including B) have to forward a sub-
scription s it partitions the filters in s (i.e., in PF and NF)
according to their sending sets (filters with the same sending
set belong to the same partition); then it creates a new sub-
scription s′ for each partition, including the filters in that
partition; finally it sends each subscription s′ to all children
in the sending set of the filters in s′.

Using this mechanism the detection of a complex event is
recursively decomposed into the detection of its parts. When
a broker B′ receives a subscription s, it becomes responsi-
ble for the detection of messages matching the positive and
negated filters of s and for the transmission of collected in-
formation up to its parent. By partitioning s, B′ delegates
part of this detection to its children.

Figure 3 provides a concrete example of partitioning. Types
are represented using capital letters and filters are repre-
sented through their type. Assuming that broker 2 receives
from its parent (broker 1) the subscription s shown in fig-
ure, which contains four positive filters and one negated, we
show the sending sets calculated by 2 and, for each child of
2, the subscriptions it receives.

1

2

3 5 64

B, C, E6

Message TypesBroker

5 F
4 B, C, D

A, E, F3
s: PF={A,C,D,E} NF={B}
Received Subscriptions

s3: PF={E} NF={}
s1: PF={A} NF={}

Received Subscriptions

s4: PF={D} NF={}
s2: PF={C} NF={B}

Received Subscriptions

s3: PF={E} NF={}
s2: PF={C} NF={B}

Received Subscriptions

Advertisement Table

E {3, 6}
{4}D

Sending SetFilter

C {4, 6}
B {4, 6}

{3}A

Figure 3: Processing of subscriptions: an example

4.3 Forwarding of Notifications
Each broker stores the data contained in all subscriptions

it receives and uses them to filter and combine messages.
In particular, when a broker B receives a message m from
one of its clients, it first checks, for each stored subscription
s, whether m matches one of the filters contained in s. If
this happens, then m is stored inside a data structure called
History, which B uses to detect the matching sets for s, i.e.
the sets of messages satisfying all the filters in s.

An example of message processing is shown in Figure 4.
Consider the subscription s shown there; it requires the de-
tection of a message matching filter A and one matching
filter B in a window of size 3. At time T=1 the broker re-
ceives the message A1 that matches filter A; at time T=2 it
receives the message B1 that matches filter B. Messages A1
and B1 together form a matching set for s. When, at T=3,
the broker receives the message B2, it forms a new matching
set with A1 and B2. Finally, at T=4, A1 is deleted from the

A1

A1 B1

A1 B1 B2

B1 B2 A2T = 4

T = 3

T = 2

T = 1

History

s: PF = {A, B}; NF = { }; W = 3

Matching Sets

{ }

{ (A1, B1) }

{ (A1, B2) }

{ (A2, B1) (A2, B2) }

Figure 4: Processing of messages: an example

History, as it is too old for the detection window considered,
while A2 arrives, resulting in two new matching sets, one
with A2 and B1 and one with A2 and B2.

Notice how in the case of negated filters inside the sub-
scription, matching sets are detected only if there are no
messages matching negated filters in the window.

Detected matching sets are delivered to the parent node
inside packets called notifications. Each notification may in-
clude multiple matching sets, each including multiple mes-
sages. At the parent node, messages contained in the re-
ceived notifications are processed again using the same pro-
cedure described above. Whether message sets matching a
subscription s are delivered immediately when detected, or
stored and delivered later, is determined by the type of s as
described below.

4.4 Push vs. Pull-Based Forwarding

1

2

3 5 64

B6

Message TypesBroker

5 A
4 A

A3
PF={A,B} NF={} W=w

Received Subscriptions

Received Subscriptions
PF={B} NF={} W=w

Received Subscriptions
PF={A} NF={} W=w

Advertisement Table

Figure 5: Pull-based Forwarding: an example

Consider now the situation shown in Figure 5, in which
broker 2 receives a subscription containing two positive fil-
ters, one for messages of type A and one for messages of
type B. According to its advertisement table, it delegates
the detection of messages of type A to brokers 3, 4, and 5,
and the detection of messages of type B to broker 6. In this
case broker 2 can satisfy all the constraints of its subscrip-
tion only if it receives both a message matching the first filter
and a message matching the second filter generated within
w. This means that, if broker 6 never sends notifications, all
messages received from brokers 3, 4, and 5 are useless and
only waste network resources.

Starting from these considerations we introduced in our
protocol the concept of pull-based forwarding as opposed to
the more common push-based approach. In particular, every
subscription has an associated type(T) which can be either
push or pull. A push subscription requires the broker receiv-
ing it to promptly send all matching sets of messages up to
its parent; on the contrary a pull subscription requires the
broker to store matching sets of messages until the parent
explicitly asks for them. So, in the example of Figure 5,

broker 2 could decide to send the subscription for messages
of type A as a pull subscription and to ask for the delivery
of stored messages only after receiving messages of type B
from broker 6.

More specifically, the mechanism to decide the type of sub-
scriptions to send to children and to ask for stored messages
(in case of pull subscriptions) works as follows. When a bro-
ker B receives a subscription s, it processes and partitions
it as explained above. For each newly generated subscrip-
tion s′ it looks at the sets PF and NF. If PF is empty then
the subscription is processed in a special way: its type is
set to push and the receiving children is asked to promptly
send up messages matching the filters in NF. Among all the
subscriptions (if any) having a non empty PF only one is
selected as the master subscription, while all the others are
considered slave subscriptions. The master is sent as a push
subscription while the slaves are sent as pull. When broker
B detects a matching set of messages for the master sub-
scription, it sends an open packet to all children processing
slave subscriptions. The open packet causes children to send
all message sets they had detected so far (if any) and to con-
tinue to send new sets using a push approach for a period
long w, where w is the window of s.

It is worth mentioning that in case of shared parameters
between filters of the master subscription and filters of the
slave subscriptions, the open packet asks only for messages
having the right values for the shared parameters (the values
that appear in the messages that matched the master). This
reduces the number of message sets that have to be sent in
reply to an open packet.

4.5 Adaptive Selection of Masters
The right choice for the master vs. slave subscription

may strongly influence the performance of our protocol. In
fact, if messages satisfying the master subscription are re-
ceived sporadically, then fewer requests are sent to children
holding slave subscriptions, which may drop several pack-
ets locally (i.e., those exiting the window) resulting in less
network traffic. On the contrary a master subscription that
continuously receives notifications eliminates the benefit of
the pull-based approach. To address this issue, our protocol
monitors traffic flowing in the network and let each broker
adapt its choice of master subscriptions to the traffic mon-
itored in the previous time frame. More specifically each
broker B stores, for each subscription s it has received, the
number n of matching sets it has detected in a given amount
of time t and computes the generation rate of s, gr(s) = n/t.
At the same time, periodically B decides the master selec-
tion for s by asking to its children the generation rates of all
the partitions of s that it sent them. The part having the
lowest generation rate is chosen as the new master.

In summary, the mechanism combining push and pull-
based forwarding, coupled with this adaptive mechanism in
the choice of which part of a subscription to manage as push
and which to treat as pull, results in the ability for our proto-
col to optimize complex event detection to the actual traffic,
minimizing the route followed by messages to be matched
and combined together.

5. EVALUATION
To evaluate the benefits of the distributed detection pro-

tocol of RACED, we compared it with PADRES [9]. As ex-
plained in Section 1, only few works have addressed the prob-

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 5 10 15 20 25

N
o
ti
fi
c
a
ti
o
n
s
 (

th
o
u
s
a
n
d
s
)

Window Size (s)

PADRES
RACED

(a) Window Size

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10

N
o

ti
fi
c
a

ti
o

n
s
 (

th
o

u
s
a

n
d

s
)

Positive filters (number)

PADRES
RACED

(b) Number of Filters

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 10 20 30 40 50

N
o
ti
fi
c
a
ti
o
n
s
 (

th
o
u
s
a
n
d
s
)

Time between publications - Std Dev (s)

PADRES
RACED

(c) Publications Rate Distribution

Figure 6: Number of notifications generated

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25

N
o

ti
fi
c
a

ti
o

n
s
 r

e
d

u
c
ti
o

n
 (

%
)

Window size (s)

nf=0
nf=1
nf=2

(a) Window Size

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

N
o

ti
fi
c
a

ti
o

n
s
 r

e
d

u
c
ti
o

n
 (

%
)

Positive filters (number)

nf=0
nf=1
nf=2

(b) Number of Filters

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

N
o
ti
fi
c
a
ti
o
n
s
 r

e
d
u
c
ti
o
n
 (

%
)

Time between publications - Std Dev (s)

nf=0
nf=1
nf=2

(c) Publications Rate Distribution

Figure 7: Notifications savings

lem of distributing detection of complex events; PADRES
represents probably the most promising effort in this direc-
tion. Similarly to RACED, PADRES defines an advertise-
ment mechanism and exploits it to partition subscriptions in
a network of brokers. However, it delivers all notifications
using a push-based approach; as a consequence, brokers can-
not prevent the delivery of useless notifications, as it hap-
pens with our push/pull mechanism. Additionally, PADRES
does not provide any mechanism to adapt to network traffic,
as RACED does.

To compare the two protocols, we implemented both in
Omnet++ [16] and tested them in a scenario of 120 brokers
and 600 clients, each one publishing messages of a single type
chosen among 100 different types, with different contents.
We analyzed the cost of forwarding by counting the total
number of notifications generated in the network after all
clients have published 1000 messages.

In particular, we analyzed the impact of three parame-
ters: the size of the detection window, the number of filters
composing the event to be detected and the distribution of
publications rates. In Figure 6 we show the number of noti-
fications generated by the two protocols when the complex
event to match does not contain any negated filter. In Fig-
ure 7 we present the improvement of RACED over PADRES
in the same scenarios showing how it changes when the num-
ber of negated filters in the event definition (nf) varies from
0 to 2.

Figure 6(a) shows how the number of notifications in-
creases in both protocols when the size of the detection win-
dow grows. Looking at Figure 7(a) we notice how small
windows favor RACED more, as notifications coming from

slave subscriptions are stored for less time, increasing the
chance that an open packet is not followed by any reply.

Figure 6(b) shows how the number of notifications in-
creases with the number of positive filters in the event. On
one hand adding positive filters decreases the chance of cap-
turing the event, but this trend is dominated by the huge
number of matching sets detected when many single mes-
sages have to be combined in the matching event. As shown
in Figure 7(b), large numbers of filters increase the gain of
RACED, as they promote the recursive decomposition of the
subscription while it moves from subscriber to sources, thus
maximizing the advantages of our push/pull and adaptive
mechanisms.

Figure 6(c) shows how the traffic decreases when we in-
crease the variance of publication rates. Increasing the vari-
ance, in fact, also increases the possibility of having mes-
sages generated so rarely that they are hardly ever captured
inside a detection window. Figure 7(c) shows the benefits
of our adaptive mechanism with the advantage of RACED
over PADRES increasing from 20% up to more than 35%.

If we look at Figure 7 we may also observe how the num-
ber of negated filters nf reduces the advantage of RACED
over PADRES. There are two reasons for this: first, negated
filters reduce the propagation of useless notification, prob-
lem that affects PADRES more than RACED; at the same
time, negated filters limit the possibility to define pull-based
subscriptions. Finally, it is worth mentioning how our sim-
ulations did not take into account parameterization; consid-
ering it would bring even better results, as it would enable
finer grain selection of notifications from pull-based subscrip-
tions.

6. RELATED WORK
In the last years a large number of content-based publish-

subscribe systems have been developed [12, 7, 11, 5]; pro-
posed solutions were, at the beginning, based on a central-
ized dispatcher, but soon they moved to distributed solu-
tions to improve scalability.

All these systems share the same communication model,
in which messages bring data and subscriptions filter sin-
gle messages according to their content. Recently, a few
works have been proposed that extend the expressive power
of traditional content-based publish-subscribe to take into
account information contained in multiple messages [6, 14,
15]. However, these works are mainly focused on the defi-
nition of rich languages and usually don’t address the prob-
lem of event matching in large scale systems. Among the
few exceptions, the PADRES system [9] adopts a distribu-
tion protocol similar to ours; in particular it exploits a tree-
based topology to distribute information and advertisements
to filter subscriptions. However, all notifications flow using
a push-based approach and the dynamics of network traffic
is never taken into account.

The problem of combining information coming from mul-
tiple sources and to distribute it to users has been addressed
also in the field of so called DSMSs (Data Stream Manage-
ment Systems) [3]. These systems define highly expressive
languages, usually derived from SQL [2, 4], which are suit-
able for generic data manipulation. Even if some of these
systems [1] address the problem of increasing scalability by
distributing processing, the proposed solutions focus on clus-
tering scenario, in which a set of co-located machines shares
the load of processing, while we take the network cost into
account and focus on processing messages as close as possi-
ble to the sources.

Finally, in [13], authors propose an algorithm to distribute
operators in a network of service brokers trying to minimize
a cost function, which involves data generation rates. This
proposal, however, does not contain any mechanism to in-
hibit useless data to be propagated in the network, like our
master-slave algorithm.

7. CONCLUSIONS
In this paper we presented the design of RACED, an adap-

tive middleware that extends the content-based publish-sub-
scribe paradigm to provide a complex event detection ser-
vice for large scale scenarios. In particular, we introduced
an event definition language and we described a protocol en-
abling efficient and distributed detection of complex events
inside a network of service brokers. To increase perfor-
mance, our protocol includes an adaptive mechanism that
allows brokers to dynamically adapt their behavior to net-
work traffic. Our tests show that it provides evident benefits
over more traditional solutions.

We plan to extend our work in two directions: on one
side we are investigating optimization techniques for mul-
tiple subscriptions; at the same time we are extending our
event definition language to provide not only event detec-
tion, but also event processing, for example to compute ag-
gregate values.

Acknowledgment
This work was partially supported by the European Com-
mission, Programme IDEAS-ERC, Project 227977-SMScom;

and by the Italian Government under the projects FIRB IN-
SYEME and PRIN D-ASAP.

8. REFERENCES
[1] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, C. Erwin, E. Galvez, M. Hatoun,
A. Maskey, A. Rasin, A. Singer, M. Stonebraker,
N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. Aurora: a
data stream management system. In SIGMOD. ACM,
2003.

[2] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: semantic foundations and query
execution. The VLDB Journal, 15(2), 2006.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In PODS. ACM, 2002.

[4] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo.
A data stream language and system designed for
power and extensibility. In CIKM. ACM, 2006.

[5] R. Baldoni and A. Virgillito. Distributed event routing
in publish/subscribe communication systems: a
survey. Technical report, DIS, Università di Roma ”La
Sapienza”, 2005.

[6] S. Courtenage. Specifying and detecting composite
events in content-based publish/subscribe systems. In
ICDCS Workshops. IEEE Computer Society, 2002.

[7] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surveys, 2(35), 2003.

[8] Y.-N. Law, H. Wang, and C. Zaniolo. Query languages
and data models for database sequences and data
streams. In VLDB. VLDB Endowment, 2004.

[9] G. Li and H.-A. Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In
Middleware. Springer-Verlag New York, Inc., 2005.

[10] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[11] G. Mühl, L. Fiege, F. Gartner, and A. Buchmann.
Evaluating advanced routing algorithms for
content-based publish/subscribe systems. In
MASCOTS, 2002.

[12] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer, 2006.

[13] P. Pietzuch, J. Ledlie, J. Shneidman,
M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-aware operator placement for
stream-processing systems. In ICDE. IEEE Computer
Society, 2006.

[14] P. R. Pietzuch, B. Sh, and J. Bacon. Composite event
detection as a generic middleware extension. IEEE
Network, 18, 2004.

[15] A. Ulbrich, G. Mühl, T. Weis, and K. Geihs.
Programming abstractions for content-based
publish/subscribe in object-oriented languages.
CoopIS, DOA, and ODBASE, 3291, 2004.

[16] A. Varga. The omnet++ discrete event simulation
system. ESM, 2001.

