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Abstract

Most complex information systems are event-driven: each part of the system

reacts to the events happening in the other parts, potentially generating new

events. Complex Event Processing (CEP) engines in charge of interpreting, fil-

tering, and combining primitive events to identify higher level composite events

according to a set of rules, are the new breed of Message Oriented Middleware,

which is being proposed today to better support event-driven interactions.

A key requirement for CEP engines is low latency processing, even in pres-

ence of complex rules and large numbers of incoming events. In this paper we

investigate how parallel hardware may speed up CEP processing. In particu-

lar, we consider the most common operators offered by existing rule languages

(i.e., sequences, parameters, and aggregates); we consider different algorithms

to process rules built using such operators; and we discuss how they can be

implemented on a multi-core CPU and on CUDA, a widespread architecture for

general purpose programming on GPUs.

Our analysis shows that the use of GPUs can bring impressive speedups in

presence of complex rules. On the other hand, it shows that multi-core CPUs

scale better with the number of rules. Our conclusion is that an advanced CEP

engine should leverage a multi-core CPU for processing the simplest rules, using

the GPU as a coprocessor devoted to process the most complex ones.

Keywords: Complex Event Processing, Parallel Hardware, Multi-core CPUs,

General Purpose GPU Computing
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Figure 1: The high-level view of a CEP application

1. Introduction

As observed by [1] and acknowledged by most, the large majority of existing

information systems are ultimately event-driven. Information flows are trig-

gered by events and generate events. Each part of the system reacts to events

happening in other parts and by reacting makes new events happen. This ob-

servation originated a large number of works in the area of ICT, looking for

the best way to support and automate such event-driven interactions. Message

brokers, Message-Oriented Middleware (MOM) [2], and Publish/Subscribe in-

frastructures [3] were some of the technologies developed to answer this need in

the past 20 years. They succeeded in supporting exchange of messages among

distributed components, but they failed in capturing the complex relationships

among such messages (i.e., among the data they carry or the events they notify),

which remain hidden into each component and are potentially lost.

To overcome this limitation two classes of systems were proposed recently:

Data Stream Management Systems (DSMSs) and Complex Event Processing

(CEP) systems. Albeit they use a different terminology to describe what they

do, they act similarly: both process incoming information as it enters the system,

to produce new information according to a set of rules. In principle, “pure”

DSMSs differ from “pure” CEP systems as the former (rooted on the relational

model) focus on transforming the incoming flow of information, while the latter

focus on detecting patterns of information (i.e., events) [4]. On the other hand,

things are much more blurred in reality, as currently available DSMSs (e.g., [5,

6]) enrich their relational core with primitives to detect sequences of incoming
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data, while most advanced CEP include the ability to aggregate the data carried

by incoming event notifications, to build their output. To avoid confusions and

concentrate on a single aspect, in this paper we adopt the CEP terminology (see

Figure 1) and focus on the problem of detecting pattern of primitive events,

generating new composite events whose content aggregates and combines the

content of the primitive events it comes from. This is done by a CEP engine,

which interprets a set of rules written in an ad-hoc rule definition language [4, 7].

As we observed at the beginning, while a CEP infrastructure intrinsically fits

those application areas that by their own nature manage events explicitly, like

WSN applications for environmental monitoring [8, 9], financial applications,

which analyse stock prices to detect trends [10], fraud detection tools, which

observe streams of credit card transactions to prevent frauds [11], RFID-based

inventory management, which analyses data in real-time to track valid paths

of shipments and to capture irregularities [12], most information systems would

benefit from the availability of a CEP engine. This is confirmed by the growing

number of DSMSs and CEP engines that have been proposed both from the

academy1 and the industry [5, 13, 14, 15, 6, 16] in the last years. These works

put in evidence how a key requirement for a CEP engine is low latency process-

ing. Consider for example financial applications for high frequency trading: a

faster processing of incoming information may produce a significant advantage

over competitors. Similarly, in computerized control systems for industrial au-

tomation, the ability to react to events as quickly as possible is crucial to keep

control of the automated factory.

In this paper we start from this desire of performance and investigate how

a CEP engine may take advantage of parallel hardware to speed up processing.

In particular, we consider multi-core CPUs and CUDA [17], a widespread ar-

chitecture for general purpose GPU programming. We select the key operators

1The reference conferences for distributed systems and data bases, like ICDCS and VLDB,

publish tens of papers each year that describe advances in CEP and DSMSs, while DEBS is

a conference entirely devoted to these systems.
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offered by almost all existing CEP rule languages, and we describe two algo-

rithms for interpreting them: a traditional one, taken as a reference, and one

explicitly conceived for parallel processing. We detail how the former can be

implemented on multi-core CPUs and how the latter can be implemented (with

several differences coming from the differences in the two architectures) on both

multi-core CPUs and CUDA GPUs. Finally, we compare the performance of

the three resulting engines under various workloads, to understand which as-

pects make the choice of each architecture and algorithm more profitable. Our

study shows that the use of GPUs brings impressive speedups in all scenarios

involving complex rules, when the processing power of the hardware overcomes

the delay introduced by the need of copying events from the main to the GPU

memory and vice versa. At the same time, multi-core CPUs scale better with

the number of rules deployed in the engine. Accordingly, our conclusion is that

an advanced CEP engine should leverage a multi-core CPU for processing the

simplest rules, using the GPU as a coprocessor devoted to process the most

complex ones, thus getting the best from the two worlds.

The rest of the paper is organized as follows: Section 2 presents the oper-

ators we consider in our analysis; Section 3 offers an overview of the CUDA

architecture and programming model; Section 4 and Section 5 discuss the event

detection algorithms and their implementations, while Section 6 evaluates their

performance. Finally, Section 7 presents related work and Section 8 provides

some conclusive remarks.

2. Rule Definition Language

Over the last few years a large number of CEP engines have been developed,

both by the academia and the industry. They differ significantly on several

aspects, including syntax, semantics, and expressiveness of the rule definition

languages, processing models, and algorithms [4]. To present results that could

be easily adapted to a wide range of systems, we focus on the key event process-

ing operators, which are supported by almost all existing engines. Moreover,
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to offer a precise and unambiguous definition of these operators we introduce

them using TESLA [18], the language adopted by the T-Rex CEP engine [19].

Indeed, TESLA adopts a simple syntax, easy to read and understand, while

providing a formal semantics (presented in [18] using temporal logic). This al-

lowed us to check the correctness of the algorithms we developed, while it helps

the interested reader in precisely capturing the meaning of each operator.

To introduce the operators we chose, we use an example, part of an environ-

mental monitoring application, where sensors periodically notify their position,

the temperature they measure, and the presence of smoke. Now, suppose a

user has to be notified in case of fire. She has to teach the system to recognize

such a critical situation starting from the raw data measured by the sensors.

Depending on the environment and the user preferences, the notion of fire can

be defined in many different ways. Consider the following definitions:

D1 Fire occurs when there is smoke and a temperature higher than 45 degrees

has been detected in the same area of smoke within 5 min. The fire notifi-

cation must embed the area of detection and the measured temperature.

D2 Fire occurs when there is smoke and the average temperature in the last 5

min. in the same area of smoke is higher than 45 degrees. The fire notifi-

cation must embed the area of detection and the measured temperature.

Definition D1 can be expressed in TESLA using the following rule:

Rule R1

define Fire(area: string, measuredTemp: double)

from Smoke(area=$a) and each Temp(area=$a and value>45)

within 5 min. from Smoke

where area=Smoke.area and measuredTemp=Temp.value

TESLA assumes events to be timestamped (either at the source or when

they enter the engine) and order them according to such timestamps. In partic-

ular, as exemplified above, each TESLA rule defines composite events by: (i.)

defining their structure, i.e., their type and the list of attributes they include (in
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the define clause); (ii.) specifying the sequence of primitive events whose oc-

currence leads to the composite ones (in the from clause); and (iii.) defining the

actual values of the attributes of the new event (in the where clause). Rule R1

also shows how in TESLA the occurrence of a composite event is always bound

to the occurrence of a primitive event (Smoke in our example), which implicitly

determines the time at which the new event is detected. This anchor point is

coupled with other events (Temp in our example) through sequence operators,

like each-within, which capture the temporal relationships among events, i.e.,

the relevant window into the history of events. Also notice how in Rule R1

event selection is restricted by parameter $a, which binds the value of attribute

area of Smoke and Temp events.

Although very simple, Rule R1 puts in evidence how the definition of fire D1

is ambiguous. Indeed, it is not clear what happens if the Smoke event is preceded

by more than one Temp event. In such cases we say that the selection policy of

the rule is ambiguous [4]. TESLA allows users to precisely define the selection

policy they have in mind. By using the each-within operator, Rule R1 adopts

a multiple selection policy: when a Smoke event is detected the engine notifies

as many Fire events as the number of Temp events observed in the last 5 min.

Other policies can be easily defined in TESLA by substituting the each-within

operator with the last-within or the first-within operators. As an example,

in presence of three temperature readings greater than 45 degrees followed by

a Smoke event, Rule R1 would notify three Fire events, while Rule R2 below

would notify a single Fire event carrying the last temperature read.

Rule R2

define Fire(area: string, measuredTemp: double)

from Smoke(area=$a) and last Temp(area=$a and value>45)

within 5 min. from Smoke

where area=Smoke.area and measuredTemp=Temp.value

Finally, definition D2 can be translated in TESLA using the Rule R3 below.

It introduces the use of aggregates (Avg in our example), i.e., functions that

extract a value from a set of events. Notice how the value of an aggregate can
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be used to filter out composite events that do not match certain conditions (45

< $t in our example).

Rule R3

define Fire(area: string, measuredTemp: double)

from Smoke(area=$a) and 45 < $t=Avg(Temp(area=$a).value

within 5 min. from Smoke)

where area=Smoke.area and measuredTemp=$t

The subset of TESLA operators presented above, i.e. sequences with cus-

tomizable selection policies, parameters, and aggregates are among the main

building blocks of almost all existing languages adopted by CEP engines. Com-

bined together they offer a good starting point to write a wide range of different

rules. The rest of the paper focuses on them.

3. GPU Programming with CUDA

Introduced by Nvidia in Nov. 2006, the CUDA architecture offers a new

programming model and instruction set for general purpose programming on

GPUs. Different languages can be used to interact with a CUDA compliant

device: we adopted CUDA C, a dialect of C explicitly devoted to program

GPUs. The CUDA programming model is founded on five key abstractions:

i. Hierarchical organization of thread groups. The programmer is guided

in partitioning a problem into coarse sub-problems to be solved independently

in parallel by blocks of threads, while each sub-problem must be decomposed

into finer pieces to be solved cooperatively in parallel by all threads within a

block. This decomposition allows the algorithm to easily scale with the number

of available processor cores, since each block of threads can be scheduled on any

of them, in any order, concurrently or sequentially.

ii. Shared memories. CUDA threads may access data from multiple mem-

ory spaces during their execution: each thread has a private local memory for

automatic variables; each block has a shared memory visible to all threads in

the same block; finally, all threads have access to the same global memory.
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iii. Barrier synchronization. Since thread blocks are required to execute

independently from each other, no primitive is offered to synchronize threads

of different blocks. On the other hand, threads within a single block work in

cooperation, and thus need to synchronize their execution to coordinate memory

access. In CUDA this is achieved exclusively through barriers.

iv. Separation of host and device. The CUDA programming model assumes

that CUDA threads execute on a physically separate device (the GPU), which

operates as a coprocessor of a host (the CPU) running a C/C++ program. The

host and the device maintain their own separate memory spaces. Therefore,

before starting a computation, it is necessary to explicitly allocate memory on

the device and to copy there the information needed during execution. Similarly,

at the end results have to be copied back to the host memory and the device

memory have to be deallocated.

v. Kernels. kernels are special functions that define a single flow of execution

for multiple threads. When calling a kernel k, the programmer specifies the

number of threads per block and the number of blocks that must execute it.

Inside the kernel it is possible to access two special variables provided by the

CUDA runtime: the threadId and the blockId, which together allow to uniquely

identify each thread among those executing the kernel. Conditional statement

involving these variables can be used to differentiate the execution flows of

different threads.

Architectural Issues. The CUDA model provides thread programming at a

relatively low level. There are details about the hardware architecture that a

programmer cannot ignore while designing an algorithm for CUDA.

The CUDA architecture is built around a scalable array of multi-threaded

Streaming Multiprocessors (SMs). When a CUDA program on the host CPU

invokes a kernel k, the blocks executing k are enumerated and distributed to the

available SMs. All threads belonging to the same block execute on the same SM,

thus exploiting fast SRAM to implement the shared memory. Multiple blocks

may execute concurrently on the same SM as well. As blocks terminate new
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blocks are launched on freed SMs. Each SM creates, manages, schedules, and

executes threads in groups of parallel threads called warps. Individual threads

composing a warp start together but they have their own instruction pointer

and local state and are therefore free to branch and execute independently. On

the other hand, full efficiency is realized only when all threads in a warp agree

on their execution path, since CUDA parallels them executing one common

instruction at a time. If threads in the same warp diverge via a data-dependent

conditional branch, the warp serially executes each branch path taken, disabling

threads that are not on that path, and when all paths complete, the threads

converge back to the same execution path.

An additional issue is represented by memory accesses. If the layout of

data structures allows threads with contiguous ids to access contiguous memory

locations, the hardware can organize the interaction with memory into several

memory-wide operations, thus maximizing throughput. This aspect significantly

influenced the design of PCM’s data structures, as we discuss in the next section.

Finally, to give an idea of the capabilities of a modern GPU supporting

CUDA, we provide some details of the Nvidia GTX 460 card we used for our

tests. It includes 7 SMs, which can handle up to 48 warps of 32 threads each

(for a maximum of 1536 threads). Each block may access a maximum amount

of 48KB of shared, on-chip memory within each SM. Furthermore, it includes

1GB of GDDR5 memory as global memory. This information must be carefully

taken into account when programming: shared memory must be exploited as

much as possible, to hide the latency of global memory accesses, but its limited

size significantly impacts the design of algorithms.

4. Processing Algorithms

Most CEP engines, both from the academia [20, 19, 21] and the industry [5],

adopt an incremental approach to detect composite events. They model rules

as automata, which store the intermediate results derived from the computation

of primitive events, until composite events are detected. In the following we de-
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scribe our own implementation of this approach, which we call Automata-based

Incremental Processing (AIP), and use it as a baseline for our analysis. In [19],

we have shown that the performance of AIP are in line (actually better) with

those of Esper [5], a widely adopted commercial system which has performance

as a key goal. This, together with the fact that AIP processes the TESLA lan-

guage that we use in this paper as a reference, makes it an ideal baseline for our

comparison.

While incremental processing through automata is becoming a standard for

implementing CEP engines, it is hard to implement on massively parallel hard-

ware like GPUs. We will come back to this point after presenting AIP in detail,

what is important here is to notice that other approaches can be followed to

process CEP rules as those presented in Section 2: approaches that better suit

the peculiarities of GPUs. In particular, it is possible to accumulate primitive

events as they arrive, delaying all the processing to the time when some specific

event arrives. Indeed, CEP rules bind the occurrence time of a composite event

to the arrival time of the last event in the sequence they define: rules cannot

fire before this terminator event arrives. The Column-based Delayed Process-

ing (CDP) algorithm we propose leverages this fact to reduce the complexity

of processing non terminator events, resulting in an algorithm that is easier to

implement and better fits the data parallel programming model of GPUs.

The rest of the section presents AIP and CDP in detail, while Section 5

describes how we implemented them on CPU and CUDA.

4.1. AIP Algorithm

AIP is a simplified version of the algorithm implemented in the T-Rex en-

gine [19] and works as follows. First, each rule is translated into an automaton

model, which is a linear, deterministic, finite state machine. As an example, Rule

R1 of Section 2 is translated into the automaton model M of Figure 2. Each

event in the sequence defined by R1 is mapped to a state in M , and a transition

between two states of M is labeled with the content and timing constraints that

an incoming event has to satisfy to trigger the transition. Additional constraints
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Figure 2: Automaton model for Rule R1

introduced by parameters are represented using dashed lines, as parameter a in

Rule R1 that constrains the value of attribute area in Smoke and Temp events.

Algorithm 1 AIP Algorithm

1 for each model in getMatchingModels ( e )

2 for each s t a t e in model . getMatchingStates ( e )

3 for each aut in getAutomata (model , s t a t e )

4 i f ( aut . exp i red ( ) ) automata . remove ( aut )

5 i f ( ! aut . satParameters ( ) ) continue ;

6 autDup = aut . dup ( )

7 autDup . nextState ( event )

8 i f ( autDup . i s InAccept i ongState ( ) )

9 acceptingAutomata . i n s e r t ( autDup ) ;

10 else

11 automata . i n s e r t ( autDup )

12 i f (model . c h e ckS ing l eS e l e c t i on ( s t a t e ) ) break ;

13 generateCompositeEvents ( acceptingAutomata )

At the beginning, each automaton model is instantiated in an automaton

instance (or simply automaton), which waits in its initial state for the arrival

of appropriate events. When a new event e enters the engine, AIP operates as

shown by Algorithm 1. First, it extracts all the automaton models that may be

affected by the arrival of e (line 1), and for each model selects all the starting

states of transitions that can be triggered by e (line 2). This operation involves

checking the type and content constraints that characterize each state.

Potentially, there may be several instances of an automaton model waiting in

the same state. For each automaton aut, AIP performs the following operations.

i. It checks the timing constraints (line 4), eliminating it if it cannot proceed

to the next state since the time limit for future transitions has already expired.

Notice that an automaton in its initial state is never deleted as it cannot expire.

ii. It checks all parameter constraints (line 5); these constraints have to be

evaluated on each instance separately since they do not depend only from the

automaton model, but also from the content of the events that led the instance

to its current state. iii. If all constraints are satisfied, AIP creates a copy of
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S1

S3 = Smoke(area=Area1)

Figure 3: An example of processing using AIP

aut, autDup (line 6), and uses e to advance it to the next state (line 7). The

original automaton aut remains in its state, waiting for further events. iv. If

the new automaton autDup has reached the accepting state, then it is stored

inside the set of accepting automata, otherwise it is added to the set of available

instances (i.e., into automata). v. When a single selection policy is adopted it is

sometimes possible to skip the analysis of further instances waiting in the same

state as soon as one is advanced (line 12). This optimization potentially reduces

the number of duplicated automata, reducing the complexity of processing. vi.

Finally, AIP generates the composite events for all the automata that arrived

to their accepting state. The content of the events stored in each automata is

used to compute the attribute values of those composite events.

As an example of how the algorithm works, consider Rule R1 and the cor-

responding model M . Figure 3 shows, step by step, how the set of incoming

events drawn at the bottom is processed. At time t = 0 a single automaton A

of model M is present in the system, waiting in its initial state. Since A does

not change with the arrival of new events, we omit it in the figure for all time

instants greater than 0. At time t = 1 an event T1 of type Temp enters the

engine. Since it matches type, content, and timing constraints for the transition

to state T , A is duplicated, creating A1, which advances to T . Similarly, at

t = 2, the arrival of a new event T2 of type Temp creates a new automaton A2

from A and moves it to state T . At time t = 5 a Smoke event arrives from a
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wrong area, so it is immediately discarded. At time t = 7, A1 is deleted, since

it has no possibility to proceed without violating the timing constraint of its

outgoing transition. At the same time, the arrival of event T3 generates a new

automaton A3. At time t = 8 A2 is deleted, while the arrival of an event S2 of

type Smoke from the correct area duplicates A3, generating and advancing A31

to its accepting state S. This means that a valid sequence, composed by events

T3 and S2 has been recognized. After detection, the automaton A31 is deleted.

Similarly, at t = 9, the arrival of S3 causes the creation of automaton A32 and

the detection of the valid sequence composed by T3 and S3.

4.2. CDP Algorithm

While the AIP algorithm processes rules incrementally, as new events enter

the engine, the CDP algorithm takes the opposite approach: it stores all events

received until a terminator is found. To simplify the analysis, instead of keeping

a flat history of all received events, each rule R organizes them into columns,

one for each primitive event appearing in the sequence defined by R. As an

example, consider the following rule:

Rule R4

define ComplexEvent()

from C(p=$x) and each B(p=$x and v>10) within 8 min. from C and

last A(p=$x) within 3 min. from B

It defines a sequence of three primitive events of type A, B, and C, so CDP creates

three columns (see Figure 4), each labeled with the type of the primitive events

it stores and with the set of constraints on their content. The maximum time

interval allowed between the events of a column and those of the previous one

(i.e., the window expressed through the *-within operator) are modeled using

a double arrow. Similarly, additional constraints coming from parameters are

represented as dashed lines. Notice that the last column reserve space for a

single event: the terminator.

When a new event e enters the engine, CDP operates as shown by Algo-

rithm 2. First, it extracts all the rules, and all the columns in each rule, whose
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B.p=A.p

B, {v>10}3 C, { }8

C.p=B.p

Figure 4: Columns for Rule R4

A, { }

B.p=A.p

B, {v>10}3 C, { }8

C.p=B.p

A(p=5)@1
A(p=4)@4
A(p=1)@7
A(p=2)@9

A(p=3)@12
A(p=3)@14

B(p=2)@2
B(p=4)@3
B(p=3)@6
B(p=1)@8
B(p=3)@11
B(p=3)@13

C(p=3)@15

C(p=3)@15B(p=3)@13

B(p=3)@11

A(p=3)@12

C(p=3)@15

Figure 5: An example of processing using CDP

type and content constrains are satisfied by e (lines 1 and 2), and adds e on

top of them (line 3). If among the matched columns there is an ending one, the

processing of the events stored so far starts. Processing is performed column

by column, from the last to the first one, creating partial sequences of increas-

ing size at each step. First, CDP deletes old events, i.e., events that cannot

participate in a valid sequence since they do not satisfy the timing constraints

expressed by the rule. This is performed recursively by the deleteOldEvents

function (line 5). Second, CDP starts computing valid sequences (line 7). This

is also performed recursively, by the computeSequences function. At each step,

CDP compares the partial sequences computed so far with the events in each

column. When an event satisfies timing and parameter constraints it is used to

create a new partial sequence. Finally (line 8), valid sequences returned by the

computeSequences function are used to generate new composite events.

To better understand how the algorithm works, consider again Rule R4 and

the situation in Figure 5, where the events stored in each column are represented

with their type, their value for the attribute p, and their timestamp (which we

assume integer, for simplicity). The event C(p=3)@15 was the last entering the

engine. Since it is a terminator for Rule R4, it starts the processing algorithm.

Its timestamp (i.e., 15) is used to compute the index of the first valid element

in Column B, i.e., B(p=1)@8, as it results by noticing that the window between

Columns B and C is 8. Previous events are removed from Column B, while

the timestamp of B(p=1)@8 is used to remove elements from Column A whose

14



Algorithm 2 CDP Algorithm

1 for each ru l e in getMatchingRules ( e )

2 for each column in getMatchingColumn ( ru l e )

3 column . add ( event )

4 i f ( column . i sLa s t ( ) )

5 deleteOldEvents ( column )

6 par t i a lSequence s . i n s e r t ( e )

7 sequences = computeSequences ( part ia lSequence , column )

8 generateCompositeEvents ( sequences )

9

10 deleteOldEvents ( co l )

11 i f ( c o l . i s F i r s t ( ) ) return

12 co l . getPreviousCol ( ) . deleteOlderThan ( co l . getFirstTS−co l . getWin ( ) )

13 deleteOldEvents ( co l . getPreviousCol ( ) )

14

15 computeSequences ( partSeqs , c o l )

16 i f ( c o l . i s F i r s t ( ) ) return partSeqs

17 previousColumn = column . getPreviousColumn ( )

18 for each p in partSeqs

19 for each ev in co l . getPrev iousCol ( ) . getEvents ( )

20 i f (p . checkParameters ( ev ) )

21 newPartSeqs . i n s e r t ( createPartSeq (p , ev ) )

22 i f ( ch e ckS ing l eS e l e c t i on ( ) ) break

23 computeSequences ( newPartSeqs , c o l )

timestamp is lower than 5. The remaining events are evaluated to detect valid

sequences. First, Column B is analyzed: events B(p=3)@13 and B(p=3)@11 are

both valid. Both are selected, since a multiple selection policy is defined between

events B and C. This generates two partial sequences (<C(p=3)@15, B(p=3)@13>

and <C(p=3)@15, B(p=3)@11>), as shown at the bottom of Figure 5. Event

B(p=1)@8 is not selected, since it violates the constraint on attribute p. The

two partial sequences above are used to select events from Column A. Sequence

<C(p=3)@15, B(p=3)@13> selects event A(p=3)@12, which is the only one satis-

fying both its timing and parameter constraints. Indeed, the event A(p=3)@14

is not valid since its timestamp is greater than the timestamp of B(p=3)@13.

On the contrary, sequence <C(p=3)@15, B(p=3)@11> does not select any event

as none of those in Column A satisfies its timing and parameter constrains.

At the end of the processing, the only valid sequence detected is <C(p=3)@15,

B(p=3)@13, A(p=3)@12>, so a single composite event is generated.
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4.3. Computing Aggregates

In describing the AIP and CDP algorithms we did not mention how aggre-

gates are computed. Indeed, the two algorithms do not differ in this regard, as

both of them calculate aggregates only when a valid sequence is detected. In

principle, AIP could calculate them incrementally but we expect most applica-

tion scenarios to present workloads in which a small number of valid sequences

are extracted from a large amount of primitive events. Under these conditions,

postponing the computation of aggregates reduces the total amount of work to

do. Accordingly, our approach is the following: for each rule R, and for each

aggregate a in R, a different column is created to store the events matching the

type and content constraints of a. When a valid sequence for R is detected the

column for a (and those for the other aggregates of R) is processed as follows.

i. The timestamp of the terminator is used to determine, looking at the win-

dows in R, the events to consider according to pure timing constraints, deleting

the others. ii. The values and timestamps of the events participating in the

sequence are used to select events in the column according to timing and pa-

rameter constraints. iii. the selected events are used to compute the value of

the desired aggregate (e.g., sum, average, etc.).

5. Implementation

GPUs offer a lot of computational power but the CUDA programming model

only fits data parallel algorithms on pre-allocated memory areas. Unfortunately,

the AIP algorithm does not fall in this category. Each automaton differs from the

others and requires different processing, while new automata are continuously

created and deleted at runtime. For these reasons in the following we describe

how AIP can be implemented on CPUs only, while we consider both CPUs and

GPUs for CDP.

5.1. Implementing the AIP Algorithm

When a new event e enters the engine, the AIP algorithm performs three

operations: i. it selects relevant automata; ii. it deletes useless automata; iii.
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it duplicates and advances automata using e. Our implementation focuses on

optimizing these operations. First of all, for each automaton model m (i.e., for

each rule) we group the instances of m according to their current state s. This

simplifies the lookup operations in lines 1 and 2 of Algorithm 1. Automata in

the same state s are stored in chronological order, according to the timestamp

of the event used to trigger the last transition, and they are processed in order,

starting from the most recent. When we first encounter an automaton that is

too old to satisfy the timing constraints for the next transition we can safely

stop and delete all the remaining automata.

Moreover, since instances of the same automaton model m share the same

structure, the same type and content constraints on states, and the same timing

constraints for state transitions, we store all these information once and refer to

them, through pointers, in instances. This way we reduce memory occupation

and minimize the effort in duplicating instances, which only store the set of

pointers to the events used to arrive to their current state2.

5.2. Implementing the CDP Algorithm on CPU

The CDP algorithm may be straightforwardly implemented on the CPU

following the abstract description presented in Section 4. When an event e

enters the engine, a single copy of e is saved, while columns store pointers to

the events they include. This brings two advantages: on one hand, it reduces

the amount of memory used; on the other hand, it avoids duplication of data

structures, thus making it faster to add the same event to multiple columns.

As we discussed in Section 4, sequence detection is performed by analyzing

columns in order, combining events of a column with the partial sequences pro-

duced at the previous step. Selecting events to form partial sequences involves

evaluating timing constraints and parameters. Since columns store events in

timestamp order, evaluation of timing constraints is implemented as a binary

search of the first and last events satisfying the constraints. This reduces the

2For further details on how AIP is actually implemented the interested reader may see [19].

17



number of events to be considered for evaluating parameters. A further opti-

mization is possible in presence of a single selection policy, by stopping process-

ing as soon as an event matching the constraints on parameters is found.

5.3. Implementing the CDP Algorithm on CUDA

Due to the peculiarities of CUDA, implementing CDP on GPUs is not so

straightforward as it was for CPUs. First of all we had to re-think the data

structures used to represent columns. Indeed, memory management is a critical

aspect in CUDA: the developer is invited to leverage the fact that CUDA as-

sembles together (and computes in a single memory wide operation) concurrent

memory access to contiguous areas from threads having contiguous identifiers

in the same warp. Using pointers to events inside columns, as in the implemen-

tation on CPU, would lead to memory fragmentation, making it impossible to

control memory accesses from contiguous threads. Accordingly, in the CUDA

implementation columns do not hold pointers to events but copies of them.

Moreover, since the GPU memory has to be pre-allocated by the CPU (and

allocation has a non-negligible latency), we implemented each column as a stat-

ically allocated circular buffer. We also choose to perform some operations,

those that would not benefit of a parallel hardware, directly on the CPU, which

keeps its own copy of columns. In particular, when an event e enters the en-

gine and matches a state s for a rule r, it is added to the column for s in the

main memory. Then e is copied asynchronously to the GPU memory: the CPU

can go on without waiting for the copy to end. If e is a terminator for r, the

CPU uses the information about windows to determine which events has to be

considered from each column. We delegate this operation to the CPU since it

requires to explore columns in strict sequence (the result of the computation on

a column is needed to start the computation on the previous one), while each

column can be efficiently processed using a sequential algorithm, i.e., a binary

search. Once this operation has ended, the CPU invokes the GPU to process

the relevant events from each column. We implemented two different kernels,

optimized respectively for multiple selection and single selection policies.
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Multiple selection policy. When using a multiple selection policy to process a

column c, each partial sequence generated at the previous step may be combined

with more than one event in c. Our algorithm works as follows:

• it allocates two arrays of sequences, called seqin and seqout, used to store the

input and output results of each processing step. Sequences are represented

as fixed-size arrays of events, one for each state defined in the rule;

• it allocates an integer index and sets it to 0;

• at the first step seqin contains a single sequence with only the last position

occupied (by the received terminator);

• when processing a column c, a different thread t is executed for each event e

in c and for each sequence seq in seqin;

• t checks if e can be combined with seq, i.e., if it matches timing and parameter

constraints of seq;

• if all constraints are satisfied, t uses a special CUDA operation to atomically

read and increase the value of index (atomicInc). The read value k identifies

the first free position in the seqout array: the thread adds e to seq in position

c and stores the result in position k of seqout;

• when all threads have finished, the CPU copies the value of index into the

main memory and reads it;

• if the value of index is greater than 0 it proceeds to the next column by

resetting the value of index to 0 and swapping the pointers of seqin and

seqout into the GPU memory;

• the algorithm continues until index becomes 0 or all the columns have been

processed. In the first case no valid sequence has been detected, while in the

second case all valid sequences are stored in seqout and can be copied back

to the CPU memory.

To better understand how this implementation works consider the example

in Figure 6(a). It shows the processing of a rule R defining a sequence of 3

primitive events. Two columns have already been processed resulting in six
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Figure 6: CDP algorithm on CUDA

partial sequences of two events each, while the last column c to be processed is

shown in figure. Since there are 6 sequences stored in seqin and 7 events in c,

our computation requires 42 threads. Figure 6(a) shows one of them, thread T ,

which is in charge of processing the event E3 and the partial sequence S3. Now

suppose that E3 satisfies all the constraints of Rule R, and thus can be combined

with S3. T copies E3 into the first position of S3; then, it reads the value of

index (i.e., 3) and increases it. Since this last operation is atomic (atomicInc)

T is the only thread that can read 3 from index, thus avoiding memory clashes

when it writes a copy of S3 into the position of index 3 in seqout.

In our implementation we adopt a bi-dimensional organization of threads.

All threads inside a block are organized on a single dimension and share the

same element in seqin. Depending from the size of seqin, more than one block

may work on the same element. To optimize memory accesses threads of the

same block having contiguous identifiers are used to process contiguous elements

of the column.

Single selection policy. When using a single selection policy to process a

column c, each partial sequence generated at the previous step can be combined

with at most one event in c. Accordingly, the processing algorithm is changed

as follows: instead of a single index, we define an array of indexes, one for each

sequence in seqin. As in the case of a multiple selection policy, each thread

checks whether it is possible to combine an event e from column c with one

partial sequence in seqin. Consider the example in Figure 6(b). Thread T is in

charge of processing event E4 and sequence S1. Now assume that E4 satisfies
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all constraints for Rule R. Assume the last-within operator is adopted. In

this case thread T calls an atomic function (atomicMax) that stores in the

index associated to the sequence S1 the maximum between the currently stored

value (i.e., 1) and the index of E4 in the column (i.e., 4). All positions in

indexes are initially filled with the value −1. When all threads have completed

their processing, each position of indexes contains the index of the last event

in column c that can be combined with the corresponding sequence, or −1 if

no valid events have been found. At this point, seqin is updated by adding the

selected events inside partial sequences and by removing the sequences with a

negative value in the index array. Notice that in this case we directly update

seqin with no need to define an additional array for output. The same algorithm

also applies to the first-within operator: it is sufficient to modify the initial

value in indexes and to compute the minimum index instead of the maximum.

5.4. Computing Aggregates on CPU and CUDA

To compute aggregates on the CPU we navigate through all events stored for

it, selecting the relevant ones (i.e., those that match constraints on parameters,

if any) and calculate the aggregate function on their value. With CUDA, the

process is performed in parallel by using a different thread to combine couples

of stored events. All threads in a block cooperate to produce a single value,

using shared memory to store the partial results of the computation.

To understand how the algorithm works, consider Figure 7. Assume for

simplicity that 8 events (E0, .., E7) have been stored for the aggregate, and

that the function to compute is the sum of a given attribute att for all events
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satisfying some constraints. We use a single block composed of 4 threads (t0, ..,

t3). Each thread tx reads two events stored in the global memory, in position

x and x + 4: for example, thread t0 reads events E0 and E4, as shown in

Figure 7. This way, contiguous threads read contiguous positions in global

memory. Each thread tx checks whether the events it is considering satisfy the

constraints defined by the rule. If this is not the case the events participate in

the aggregate with a value of 0 (neutral for the sum), otherwise the value of att

is used. Then, each thread tx computes the sum and stores the result into the

shared memory, in position x. The rest of the computation is performed in the

shared memory: at each step the size of the array is halved, with each thread

summing two values. This way, at each step, also the number of active threads

is halved. At the last step, only one thread (t0) is active, which stores the final

results into the global memory, where the CPU retrieves it.

This algorithm must carefully consider the constraints imposed by the CUDA

architecture. In particular, we have to limit the number of threads per block

so that all the values stored during processing fit the limited amount of shared

memory. With our reference hardware (GTX 460) we do not hit this limit until

each value exceed 48 bytes. Below this value we may use the maximum number

of threads per block, i.e., 512. This means that each block may analyze up to

1024 events. If the number of events stored for the aggregate is greater we use

more blocks, thus producing more than one result. In this case, we apply the

algorithm recursively, by considering the partial values produced at the previous

step as input values for the next step, until a single value is produced.

5.5. Managing Multiple Rules with CUDA

As we said, in the current CUDA implementation, columns include copies of

events. While this choice is fundamental to obtain good performance it wastes

memory. The amount of memory actually required for each rule depends from

the number of states it defines, from the number of aggregates it includes, from

the maximum size of each column, and from the size of events (at least the part

relevant for the rule). In our tests, complex rules with a relevant history of one
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million events consume up to 100MB of GPU memory. This means that current

GPU models, which usually include from 1 to 2GB of memory, can manage 10 to

20 of such complex rules. Notice that this represents a worst case scenario, since

it is unusual for a rule to involve so many events and since we do not consider

the (common) case of rules sharing events of the same type (i.e., sharing the

same columns). Moreover, for simplicity our code statically allocates columns

as circular buffers, which we sized big enough for the worst scenario. A better

but more complex solution would be to manage GPU memory in chunks of

fixed size, allocating them dynamically (from the CPU) as new events arrive

and have to me copied to columns whose size limit has been reached. In any

case, the CUDA implementation of CDP has to check whether the GPU memory

is sufficient to store all deployed rules. If it is not, information about rules is

kept in the main memory and copied to the GPU only when a terminator is

detected, before starting sequence detection and aggregates computation. While

this solution removes the limitation on the maximum number of rules that the

engine can manage, it introduces some extra overhead due to the additional

copies from the CPU to the GPU memory. In Section 6 we analyze how this

impacts performance.

5.6. Use of Multi-Core CPUs

In principle, both AIP and CDP could leverage the availability of multiple

CPU cores to process each rule using multiple threads (e.g., as the GPU does).

On the other hand, most CEP scenarios involve multiple rules: the easiest (and

most efficient) way to leverage multiple cores in this scenarios is to process each

rule sequentially by paralleling the work among different rules. This is the ap-

proach we took in implementing our multi-threaded version of both AIP and

CDP, in which each thread (from a thread pool of fixed size) processes a subset

of the deployed rules. During our analysis, we also tried to use the same ap-

proach with CUDA, by letting different CPU threads to invoke different CUDA

kernels for different rules, but we did not achieve any relevant improvement in

performance. Indeed, each kernel uses a number of blocks that is large enough
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Number of rules 1

Adopted rule Rule R5

Length of sequences 3

Number of aggregates 1

Number of event types 3

Number of attribute values 50000

Size of Windows 100000

Table 1: Parameters in the Base Scenario

to fully exploit the GPU hardware resources. Different kernels launched by dif-

ferent CPU threads in parallel tend to execute sequentially. On the other hand,

this multi-threaded solution could be used to exploit multi-GPU configurations,

by processing rules concurrently on different GPUs.

6. Evaluation

Evaluating the performance of a CEP engine is not easy as it is strongly

influenced by the workload: the type and number of rules and the events to

process. Unfortunately, to the best of our knowledge, there are no publicly

available workloads coming from real deployments. This issue is well recognized

within the community, as demonstrated by the survey recently promoted by

the Event Processing Technical Society [22], with the aim of understanding how

event processing technologies are used.

To address this issue, we decided to use a large number of synthetic work-

loads, exploring the parameter space as broadly as possible. The paper presents

the most notable results. Our analysis starts from a base scenario whose param-

eters are shown in Table 1 and examines how changing these parameters one

by one (while the others remain fixed) impacts performance. To better analyse

how the form and complexity of rules impacts performance, our base scenario

includes a single rule:

Rule R5

define CE(att1: int, att2: int)

from C(att=$x) and last B(att=$x) within 100000 from C

and last A(att=$x) within 100000 from B
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where att1=$x and att2=Sum(A(att=$x).value within 100000 from B)

After analyzing how the characteristics of such rule impact performance, we will

test the impact of multiple rules. We will show that GPUs scales nicely in the

complexity of rules, but they have problems when the number of rules grows.

During our tests we submit only primitive events whose types are relevant

for the deployed rule (i.e., A, B, and C). We assume that (i.) primitive events

are uniformly distributed among these types; (ii.) each primitive event includes

three integer attributes; (iii.) the values of attributes are uniformly distributed

in the interval [1, 50000]; (iv.) primitive events enter the engine one at each

clock tick and they are timestamped by the engine with such clock tick.

Analysis of the workload. Rule R5 considers a sequence of three states, one

for each event type, joined by a constraint on the value of attribute att, which

requires an aggregate to be computed. This is in line with several real world

cases. As an example, stock monitoring applications usually: (i) detect trends

(by looking at sequences of events); (ii) filter events that refer to the same

company (using parameter constraints); (iii) combine values together (using

aggregates). Similarly, a monitoring application like the one we presented in

Section 2 uses rules very similar to R5 to detect relevant situations.

Our base scenario includes a window size of 100000 timestamps (i.e., clock

ticks). Again, this is in line with several real world cases where the detection

of a relevant situation potentially demands to analyze a large number of events

occurred in the past. Stock monitoring applications work on large volumes

of data, including information from different companies. All this data remains

relevant for relatively long amount of time (for example to detect trends) and has

to be processed to detect which stocks (i.e. companies) satisfy the constraints

expressed by rules. Similarly, to detect fire (see Definition D1 in Section 2) the

engine has to process events coming from the entire network (potentially a huge

number of events) to find the area where smoke and high temperature occur.

Starting from the base scenario above we measured the performance of our

algorithms when changing the following parameters: (i.) the number of primi-
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tive events in rules (i.e., the length of sequences), (ii.) the size of windows, (iii.)

the number of values allowed for each attribute, (iv.) the number of aggregates

defined in each rule, and (v.) the number of rules deployed in the engine. Our

base scenario uses the aggregate to define a value inside the generated complex

event CE, but it does not use it to filter out sequences. We also explored the

latter case by changing the rule and varying the percentage of sequences filtered

out by the aggregate after detection. Finally, since the selection policy may

significantly influence processing time, all tests have been repeated twice, once

using the last-within operator and once using the each-within operator.

Experiment setup. During our tests, we initialize the system by submitting

a number of events equal to the window size. At this point the engine starts

discarding events that violate timing constraints and we start our measures,

submitting 100000 primitive events and calculating the average time required

by the different algorithms to process each of them. Since all events entering the

engine are captured by the deployed rule, we are measuring the average time

needed by a rule r to process an event e that is relevant for r. We are ignoring

the time needed to select the set of rules interested in e since we found it to be

negligible, even with a large number of deployed rules [19].

Tests were executed on a AMD Phenom II machine, with 6 cores running at

2.8GHz, and 8GB of DDR3 RAM. The GPU was a Nvidia GTX 460 with 1GB

of GDDR5 RAM. We used the CUDA runtime 3.2 for 64-bit Linux platforms.

Nowadays the GTX 460 is considered a low level, cheap graphic card (less than

160$ in March 2011). Nvidia offers better graphic cards and also cards explicitly

conceived for high performance computing, with more cores and memory [23].

Base scenario. Figure 8 shows the processing time measured in the base

scenario. If we consider the two algorithms running on the CPU, we observe

that CDP performs slightly better than AIP, independently from the selection

policy. More interesting is the comparison of the CPU vs. the GPU running the

same CDP algorithm. In such scenario the use of the GPU provides impressive

speedups: more than 30x with a multiple selection policy and more than 25x
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Figure 8: Base Scenario (Avg. Proc. Time for One Event)

with a single selection one. In all cases, we measure a relatively small difference

between the results obtained with a multiple selection policy and with a single

selection policy. Indeed, the base scenario makes use of a large number of values

for each attribute, making the constraints on parameters difficult to be satisfied,

and thus limiting the number of valid sequences detected even in presence of a

multiple selection policy.

Length of sequences. Figure 9 shows how the performance changes with the

number of states in each sequence. During this test we keep all parameters

fixed, as defined in Table 1, and we only change the length of sequences, and

the number of event types accordingly, so that each event entering the engine

is always captured by one and only one state of the rule. Figure 9(a) shows the

processing time of our algorithms taken separately, while Figure 9(b) shows the

speedup of each algorithm w.r.t. AIP (our reference for comparison) under the

same selection policy. Since we do not change the size of windows, increasing

the length of the sequence results in lowering the number of events to process for

each state. This explains why the average time to process an event decreases

when the length of sequences grows. Looking at Figure 9(a) and comparing

lines with the same pattern (i.e., same algorithm), we notice that, as in the base

scenario, the difference when moving from the single to the multiple selection

policy is limited. Figure 9(b) confirms the results of the base scenario: CDP

performs better than AIP but it is the usage of the GPU which provides the

biggest advantages. The figure also shows that the speedup of CDP w.r.t. AIP
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Figure 9: Length of Sequences

does not change significantly with the length of sequences.

Size of Windows. The size of windows is probably the most significant pa-

rameter when considering the use of GPUs. Indeed, this parameter affects the

number of events to be considered at each state. While the CPU processes those

events sequentially, the GPU uses different threads running in parallel. On the

other hand, there is a fixed cost to pay in using the GPU, i.e., to transfer data

from the main to the GPU memory and to activate a CUDA kernel. As a result,

using the GPU is convenient only when there is a significant number of events to

process at each state. Figure 10(a) summarizes this behavior: on the one hand,

the cost of the algorithms running on the CPU grows with the size of windows,

as expected. On the other hand, the cost of the CDP algorithm running on the

GPU is initially constant at 0.017ms (it is dominated by the fixed cost associated

with the use of CUDA) and it starts growing only when the number of available

cores is not enough to compute events entirely in parallel. This trend is faster

under a multiple selection policy, which uses more threads and produces more

composite events to be transferred back to the main memory. With our base

scenario, the smallest size of windows that determines an advantage in using

the GPU is 4000. With a sequence of 3 states this results in considering 1333

events in each state, on average. This is an important result, since it isolates

one dimension to consider when deciding the hardware architecture to adopt. If

the CEP engine is used for applications whose rules need to store and process a

small number of events for each state then it is better to use a CPU, otherwise
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Figure 10: Size of Windows

a GPU is the best choice. Looking at Figure 10(b) we observe that the speedup

of CDP running on the CPU w.r.t. AIP remains constant with the size of win-

dows, while, as already noticed, the GPU performs better and better as the size

of windows grows. With a window of 250000 events and a multiple selection

policy the speedup offered by the GPU is close to 100x against AIP and close

to 35x against CDP. Similar values hold for the single selection policy.

Number of values. Another factor that significantly influences the perfor-

mance of our algorithms is the number of primitive events filtered out by con-

straints on parameters, which, in our workload, is determined by the number

of values allowed for each attribute. Figure 11(a) shows that, under a multiple

selection policy, a higher number of values results in lower processing times.

Indeed, when the number of values grows, less primitive events satisfy the con-

straint on parameter $x of Rule R5, which results in detecting less composite

events. The GPU implementation is the one that mostly benefits from this as-

pect, since it has to transfer fewer composite events back to the main memory,

through the (relatively) slow PCI-e bus. On the GPU, the same behavior is

registered under a single selection policy. The same is not true for AIP and

CDP running on the CPU, which exhibit constant processing times under a

single selection policy. Indeed, when there is no need to perform (slow) memory

transfers, the advantage of reducing the number of composite events detected is

balanced by the greater complexity in detecting them: with a few events match-

ing the rule constraints, more and more events have to be processed before find-
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Figure 11: Number of values

ing the one that fires the single detection. The speedup graph (Figure 11(b))

confirms the considerations above. The GPU is more influenced than the CPU

by a change in the number of attribute values.

Number of aggregates. Figure 12 shows how the number of aggregates that

must be computed for a rule influences the processing time. During our analysis

we kept fixed (to the value of 0.33, as in the base scenario) the probability for

a primitive event of being relevant for each aggregate, independently from the

number of aggregates defined in a rule. Figure 12(a) shows that, both under

single and multiple selection policies, increasing the number of aggregates only

marginally impacts performance. Indeed, in our scenario few composite events

are captured at each interval, and the computation of aggregates is started

only when a valid sequence is detected. The greater cost of computing 0 vs.

3 aggregates in this few cases explains why performance (marginally) degrade

when the number of aggregates to calculate grows. Figure 12(b) shows that the

GPU implementation is more affected by an increased number of aggregates:

indeed, even if the GPU computes the aggregates faster than the CPU, copying

the primitive events to the columns storing data for aggregates increases the

number of memory transfers from the main to the GPU memory, which we

already noticed being a bottleneck for CUDA.

Use of multi-threading. All previous tests considered a single rule, and

consequently a single thread of execution on the CPU. Here we study how

performance changes when multiple rules are deployed and a pool of threads
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Figure 12: Number of aggregates

is used to process them in parallel. During this analysis we are interested in

capturing the (common) case when a primitive event entering the engine is

relevant only for a subset of the deployed rules. Accordingly, we consider rules

having the same structure of Rule R5 but using different event types, in such

a way that each primitive event entering the engine is captured by 1/10 of the

rules. We will see how this choice impacts the performance on the GPU in the

next section, here we are interested in preliminarily studying the use of multi-

threading on a multi-core CPU. In particular, Figure 13 shows the speedup of

the multi-threaded CPU algorithms w.r.t. the single-threaded case, when the

number of deployed rules grows. For the multi-threaded case we used a thread

pool whose size was experimentally determined to best match the number of

rules and the number of available cores (6 in our test system). Both AIP and

CDP obtain an advantage from the use of multi-threading when the number of

rules increases: on our 6 cores CPU the maximum speedup we could achieve

is slightly below 2.5x. Notice that with a small number of rules (below 10),

the single-threaded implementation performs slightly better than the multi-

threaded one, due to the overhead in synchronizing multiple threads.

Number of rules. After analyzing the influence of multi-threading we are

ready to test the behavior of our algorithms (running the faster, multi-threaded

version of code on the CPU), when the number of rules grows. Figure 14(a)

shows that the performance of all our algorithms increases linearly when the

number of rules to process grows (a linear function is a curve in a logarithmic
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Figure 13: Use of multi-threading

graph). More interesting is Figure 14(b), which compares the CDP algorithm

running on CPU and GPU w.r.t. the AIP algorithm. First of all we notice that

the speedup gained by using the GPU is lower than that measured in our base

scenario, even with a few rules. This behavior can be explained by remembering

that we moved from a scenario where each primitive event entering the engine

is relevant for the only rule available, to a scenario in which the same events are

relevant for only 1/10 of the rules. With a fixed size of windows and a growing

number of rules, this means that each rule captures much less primitive events

than in the base scenario, i.e., less events have to be stored and processed for

each rule. As we observed while analyzing the influence of the size of windows

on performance, this phenomenon advantages the CPU more than the GPU.

Moreover, the reduced processing complexity also reduces the differences be-

tween the single and the multiple selection policy in all algorithms, as shown

both by Figure 14(a) and 14(b). Figure 14(b) highlights another aspect: the

GPU speedup quickly drops when more than 10 rules are deployed into the en-

gine. This can be explained by remembering what we said in Section 5.5: the

1 GB of RAM available on our GPU is enough to store the events relevant for

at most 10 different rules. More rules force CDP to continuously move data

from the main to the GPU memory, with an evident impact on performance:

the speedup of the GPU significantly drops when moving from 10 to 20 rules,

both under single and multiple selection policies.

To better understand the actual limits of the CUDA architecture, we re-

32



 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  50  100  150  200

Pr
oc

es
si

ng
 T

im
e 

(m
s)

Number of Rules

AIP Multiple Selection
CDP CPU Multiple Selection
CDP GPU Multiple Selection

AIP Single Selection
CDP CPU Single Selection
CDP GPU Single Selection

(a) Avg. Proc. Time for One Event

 1

 10

 100

 0  50  100  150  200

Sp
ee

du
p

Number of Rules

CDP CPU Multiple Selection
CDP GPU Multiple Selection

CDP CPU Single Selection
CDP GPU Single Selection

(b) Speedup w.r.t. AIP
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Figure 15: Number of rules (simple rules)

peated the experiment above by further decreasing the number of rules influ-

enced by each event and hence the number of events to consider when processing

each rule. We considered a scenario where each primitive event is captured by

only 1/100 of the available rules. To balance the effect of this change on the

number of composite events captured, we also reduced the number of possible

attribute values to 1000. We let the number of deployed rules go from 20 (twice

those that may enter the GPU memory) to 250. Intuitively, this scenario is chal-

lenging for CUDA because it uses a large number of “simple rules”, i.e., rules

that require few events to be processed at each terminator. Figure 15 demon-

strates that this is indeed a very tough scenario for CUDA. Independently from

the selection policy adopted, from 50 rules and above, the CDP algorithm runs

faster on the CPU than on the GPU. This is not the first time we see the CPU

outperform the GPU in our tests. The same happened for a single rule when

we decreased the size of windows. Even in that case the rule became “simple”
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as it involved few events. On the other hand, in that scenario there was a

bound: the size of windows cannot become negative. Moreover, the (absolute)

processing times were very small, so the (relative) advantage of the CPU was

not relevant, in practice. This is not the case here. The number of rules may

grow indefinitely, at least in theory, and the more rules we have the better the

CPU performs w.r.t. the GPU, the longer are the (absolute) processing times.

This means that the (relative) advantage of the CPU grows and becomes rele-

vant also in practical, absolute terms. We may conclude that handling a large

number of rules represents a real issue for CUDA.

Selectivity of aggregates. In all the tests so far, we used aggregates as val-

ues for the generated complex events, but we did not use them to filter out

sequences. We analyze this case here, by changing the form of rules. In particu-

lar, we relaxed the constraints on parameters and the size of windows to detect

a large number of valid sequences (we adopted a multiple selection policy), while

we used an aggregate to filter out part of them. This workload is challenging

for the CDP algorithm running on the GPU. Indeed, detecting valid sequences

and evaluating aggregates for each of them are operations performed separately

and in order by the GPU. As a consequence, increasing the number of detected

sequences also increases the amount of (sequential) work to be performed. More-

over, each composite event generated must be copied from the GPU to the CPU

memory, introducing additional delay. To highlight this aspect, we changed the

number of sequences filtered out by the aggregate, thus changing the number

of events generated at the end of the process. Figure 16 shows the results we

obtained. First of all we observe how the increased complexity of the workload

significantly increases the processing time of all algorithms w.r.t. the base sce-

nario. Secondly, as we expected, this scenario is challenging for the GPU, which

is still performing better than the CPU (both AIP and CDP algorithms) but

with a smaller speedup w.r.t. the base scenario. On the other hand, the fact

that the GPU still performs better than the CPU is a sign that the advantages

it provides in reducing the processing time dominates the cost of transferring
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data around. Finally, we notice that the more composite events are accepted

(i.e., pass the filter of the aggregate) the lower is the advantage in using the

GPU as the cost of memory transfers increases.

7. Related Work

In the last few years a number of CEP systems [1, 7] and accompanying

rule languages have been proposed in the literature. For an extensive survey

on CEP systems, and data stream processing in general, the reader may refer

to [4], where we analyze in great details more than 35 systems. In general, it

is possible to roughly divide existing works into two main groups: on one hand

there are systems explicitly designed to detect occurrences of complex event

patterns, often including temporal relationships [24]; on the other hand there

are systems that more generically perform on-line analysis of streaming data to

extract new knowledge. In recent proposals, especially those coming from the

industry [5, 6], the boundaries between the two classes are fading.

In this paper we considered a set of operations that are provided by almost

all existing systems. Since the research area is relatively new, no standard or ref-

erence rule language has been proposed. For our analysis, we decided to adopt

TESLA [18], which allowed us to test our algorithms using a highly expressive

language. Indeed, most of the languages proposed for event processing are ex-

tremely simple, enabling only patterns derived from regular expressions, without

explicit constructs to define timing constraints on sequence, programmable selec-
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tion policies, or aggregates [25, 26, 27]. Moreover, to the best of our knowledge,

other expressive rule specification languages proposed in the literature [28, 27]

present a general structure and a set of operators that are very close to those

defined in TESLA. Accordingly, the work presented in this paper can be easily

applied to them.

As for the various algorithms for event processing presented in the literature,

those using automata are the majority [25, 26, 27, 5]. Despite the differences in

the languages they consider, they all share many similarities with the AIP algo-

rithm adopted in this work. This aspect is explored in details in [19], where we

compare AIP with a mature commercial product, showing how its performance

is in line (and event better) with a state of the art. Some systems [11, 25] focus

on large scale scenarios and try to reduce latency and bandwidth usage by dis-

tributing the processing load and moving the computation as near as possible

to the sources of events. This is orthogonal with respect to the considerations

examined in this paper, which may apply to those systems, also. In particular,

we plan to complement the work presented in this paper with our own protocol

for distributed processing [29].

The adoption of GPUs for general purpose programming is relatively re-

cent and was first allowed in late 2006 when Nvidia released the first version

of CUDA [17]. Since then, commodity graphics hardware has become a cost-

effective parallel platform to solve many general problems, including problems

coming from linear algebra [30], image processing, computer vision, signal pro-

cessing [31], and graphs algorithms [32]. For an extensive survey on the appli-

cation of GPU for general purpose computation the reader may refer to [33].

To the best of our knowledge, our work is the first one exploring the use of

GPUs to process event notifications, detecting complex events. The Stream-

base [6] commercial CEP engine claims to include CUDA accelerated modules,

but unfortunately the details of such modules are not publicly available. Fi-

nally, in [34] the authors adopt CUDA to speed up the operation of computing

aggregates. Their work differs from ours, since they focus on periodic, rather

than detection-based, computation: this assumption significantly changes the
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problem and allows different kinds of optimizations. Interestingly, the authors

include the Cell architecture in their analysis. Cell includes both a PowerPC

core and many SIMD cores, all of them sharing the same global memory: porting

our algorithm on it could increase performance, removing the cost of memory

copies through the PCI express bus.

8. Conclusions

In this paper, we studied how a CEP engine may leverage parallel hardware

architectures to improve performance. In particular, we considered the most

common operators for CEP (i.e., sequence detection, parameter evaluation, and

aggregates computation) and two CEP algorithms that take two opposite ap-

proaches: one adopts the today’s standard way of processing events incremen-

tally by using automata, while the other delays processing as much as possible.

We discussed how they can be implemented on multi-core CPUs and CUDA

GPUs, and compared the resulting engines using a large number of workloads,

to identify the aspects that make the use of an architecture more profitable.

Apart from the specific considerations on how CEP may leverage parallel

hardware, the main conclusion we come was that the large number of pro-

cessing cores offered by modern GPUs makes them more suitable to process

complex rules, storing and analyzing a huge number of primitive events: during

our analysis we registered speedup of more than 40x for such rules. However,

the programming model and hardware implementation of CUDA introduce an

overhead that makes the use of GPUs inconvenient when rules are very simple.

Moreover, handling a large number of rules represents a significant issue when

using CUDA due to the limited memory available on the GPU. In conclusion,

we believe that GPUs should be used as coprocessors, processing only a subset

of the rules: the most complex ones. Simple rules can be easily handled by the

CPU, making use of multi-core hardware. We plan to explore this route in our

T-Rex engine, in the future.
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[24] G. Mühl, L. Fiege, P. Pietzuch, Distributed Event-Based Systems,

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[25] G. Li, H.-A. Jacobsen, Composite Subscriptions in Content-Based Pub-

lish/Subscribe Systems, in: Middleware, Springer-Verlag New York, Inc.,

2005, pp. 249–269.

[26] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riede-

wald, M. Thatte, W. White, Cayuga: a high-performance event processing

engine, in: SIGMOD, ACM, New York, NY, USA, 2007, pp. 1100–1102.

[27] J. Agrawal, Y. Diao, D. Gyllstrom, N. Immerman, Efficient pattern match-

ing over event streams, in: SIGMOD, ACM, New York, NY, USA, 2008,

pp. 147–160.

40



[28] D. Gyllstrom, J. Agrawal, Y. Diao, N. Immerman, On Supporting Kleene

Closure over Event Streams, in: Proceedings of the 2008 IEEE 24th Inter-

national Conference on Data Engineering, IEEE Computer Society, Wash-

ington, DC, USA, 2008, pp. 1391–1393.

[29] G. Cugola, A. Margara, RACED: an adaptive middleware for complex event

detection, in: Proceedings of the 8th International Workshop on Adaptive

and Reflective MIddleware, ARM ’09, ACM, New York, NY, USA, 2009,

pp. 5:1–5:6.
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