
1

High Performance Publish-Subscribe
Matching Using Parallel Hardware

Alessandro Margara and Gianpaolo Cugola

Abstract—Matching incoming event notifications against received subscriptions is a fundamental part of every publish-subscribe
infrastructure. In the case of content-based systems this is a fairly complex and time consuming task, whose performance impacts
that of the entire system. In the past, several algorithms have been proposed for efficient content-based event matching. While
they differ in most aspects, they have in common the fact of being conceived to run on conventional, sequential hardware. On
the other hand, parallel hardware is becoming available off-the-shelf: the number of cores inside CPUs is constantly increasing,
and CUDA makes it possible to access the power of GPU hardware for general purpose computing.
In this paper, we describe a new publish-subscribe content-based matching algorithm designed to run efficiently both on multicore
CPUs and CUDA GPUs. A detailed comparison with two state of the art sequential matching algorithms demonstrates how the
use of parallel hardware can bring impressive speedups in content-based matching. At the same time, our analysis identifies the
characteristic aspects of multicore and CUDA programming that mostly impact performance.

Index Terms—C.1.2 Multiple Data Stream Architectures (Multiprocessors), C.2.4 Distributed Systems, C.4 Performance of Sys-
tems, D.1.3 Concurrent Programming [Parallel Programming], H.3.4 Systems and Software [Distributed Systems, Performance
evaluation (efficiency and effectiveness)]

F

1 INTRODUCTION

Most distributed applications involve some form of
event-based interaction, often implemented using a
publish-subscribe infrastructure that enables distributed
components to subscribe to the event notifications (or
simply “events”) they are interested to receive, and
to publish those they want to spread around.

The core functionality realized by a publish-subscri-
be infrastructure is matching (sometimes also referred
to as “forwarding”), i.e., the action of filtering each
incoming event notification e against the received
subscriptions to decide the components interested in
e. This is a non trivial activity, especially for content-
based systems, whose subscriptions filter events based
on their content [15]. In such cases, the matching
component may easily become the bottleneck of the
system. On the other hand, several scenarios depend
on the performance of the publish-subscribe infras-
tructure. For example, in financial applications for
high-frequency trading [19], a faster processing of in-
coming event notifications may produce a significant
advantage over competitors. Similarly, in intrusion
detection systems [22], the ability to timely process the
huge number of events that results from monitoring
a large network is fundamental to detect possible
attacks before they could compromise the system.

This aspect has been clearly identified in the past
and several algorithms have been proposed for effi-
cient content-based matching [2], [5], [10], [16], [27].

The authors are with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, P.zza L. da Vinci, 32, 20133 Milano, Italy. E-
mail: margara,cugola@elet.polimi.it.

Despite their differences, they have a key aspect in
common: they were all designed to run on conven-
tional, sequential hardware. If this was reasonable
years ago, when parallel hardware was the exception,
today this is no more the case. Modern CPUs integrate
multiple cores and more will be available in the imme-
diate future. Moreover, modern Graphical Processing
Units (GPUs) integrate hundreds of cores, suitable for
general-purpose (not only graphic) processing.

Unfortunately, moving from a sequential to a par-
allel architecture is not easy. Often, algorithms have
to be redesigned from the ground to maximize the
operations that can be performed in parallel, and
consequently to fully leverage the processing power
offered by the platform. This is specially true for
GPUs, whose cores can be used simultaneously only
to perform data parallel computations.

Moving from these premises, we developed Paral-
lel Content Matching (PCM), an algorithm explicitly
designed to leverage off-the-shelf parallel hardware
(i.e., multicore CPUs and GPUs) to perform publish-
subscribe content-based matching. We present two
implementations of this algorithm: one for multicore
CPUs using OpenMP [14], the other for GPUs that
implement the CUDA architecture. We study their
performance comparing them against SFF [10], the
matching component of Siena [7], and BETree [27],
a novel, high-performance matching algorithm. This
analysis demonstrates how the use of parallel hard-
ware can bring impressive speedups in content-based
matching. At the same time, by carefully analyzing
how PCM performs under different workloads, we
also identify the characteristic aspects of multicore

2

DispatcherPublishers Subscribers

Brokers

publish
subscribe

notify

Fig. 1. A typical publish-subscribe infrastructure

CPUs and GPUs that mostly impact performance.
The remainder of the paper is organized as fol-

low: Section 2 introduces the event model we adopt.
Section 3 describes PCM and its implementation in
OpenMP and CUDA. The performance of these im-
plementations in comparison with SFF and BETree
is discussed in Section 4, while Section 5 presents
related work, and Section 6 provides some conclusive
remarks. Two additional appendixes provide the re-
quired background on OpenMP and CUDA together
with additional tests.

2 EVENTS AND PREDICATES
To be as general as possible we assume a data
model which is very common among event-based
systems [10]. We represent an event notification, or
simply event, as a set of attributes, i.e., 〈name, value〉
pairs. Values are typed and we consider both
numbers and strings. As an example, e1 =
[〈area, “area1”〉, 〈temp, 25〉, 〈wind, 15〉] is an event that
an environmental monitoring component could pub-
lish to notify about the current temperature and wind
speed in the area it monitors. The interests of com-
ponents are modeled through predicates, each being
a disjunction of filters, which, in turn, are conjunc-
tions of elementary constraints on the values of single
attributes. As an example, f1 = (area = “area1” ∧
temp > 30) is a filter composed of two constraints,
while p1 = [(area = “area1” ∧ temp > 30) ∨ (area =
“area2”∧wind > 20)] is a predicate composed of two
filters. A filter f matches an event e if all constraints
in f are satisfied by the attributes of e. Similarly, a
predicate matches e if at least one of its filters matches
e. In the examples above p1 matches e1.

The problem of content-based matching we address
here can be stated as follow: given an event e and a
set of interfaces, each one exposing a predicate, find
the interfaces relevant for e, i.e., those that expose a
predicate matching e. In a centralized publish-subscri-
be infrastructure, it is the dispatcher that implements
this function, by collecting predicates that express the
interests of subscribers (each one connected to a differ-
ent “interface”) and forwarding incoming event noti-
fications on the basis of such interests. In a distributed
publish-subscribe infrastructure the dispatcher is real-
ized as a network of brokers, which implement the con-
tent-based matching function above to forward events
to their neighbors (other brokers or subscribers).

3 THE PCM ALGORITHM
This section describes our PCM algorithm and its im-
plementations in OpenMP (OCM) and CUDA (CCM).

Filters

ConstrOpNames ConstrValNames

ConstrBFNames ConstrFilterIdNames Names NumConstr

Nam
eVec

tors

(a) Filters and Constraints Tables

Size

FiltersCount

InterfaceId
Filter0
Filter1
Filter2
...

InterfacesFiltersInfo

Interface0
Interface1
Interface2

...

(b) Filters and Interfaces Tables

Fig. 2. Data structures

The key goal in designing PCM was to maximize
the amount of data parallel computations, minimizing
the interactions among threads. This is obtained by
organizing processing in three phases: a filter selection
phase, a constraint selection phase, and a constraint
evaluation and counting phase.

The first phase partitions the set of filters based on
their attributes’ names: each attribute name is mapped
into a bit of a (small) bit vector, called NameVector.
Filters having the same NameVector become part
of the same partition. When an event e enters the
engine, we compute its NameVector NVe and use
it to retrieve the filter partitions whose NameVector
is included into NVe. The remaining filters have no
chance to match e, as their constraint names are not
part of e’s attribute names.

In the second phase, PCM selects, for each attribute
a in e, the set of constraints (part of the filters selected
by the previous phase) having the same name as a.

The selected constraints are evaluated in the third
phase, using the value of a. In particular, when a con-
straint c is satisfied, we increase the counter associated
to the filter f belongs to. A filter f matches an event
when all its constraints are satisfied and so does the
predicate p it belongs to. When this happens, the event
can be forwarded to the interface exposing p.

3.1 Data Structures
Fig. 2 shows the data structures we create and use
during processing. As shown in Fig. 2(a), PCM ag-
gregates filters having the same NameVector into a
Filters table, with several of such tables indexed by
NameVector values. Each Filters table organizes
the constraints of the included filters into 5 data
structures (in gray in Fig. 2): ConstrOp, ConstrVal,
ConstrFilterId, ConstrBF, and NumConstr. We
collectively refer to them as the Constraints tables.

3

They are organized by constraint names: each row
is implemented as an array, storing information on
constraints having the same name into contiguous
memory regions. Each table is indexed using an STL
map: given a name n, PCM can efficiently get the
pointer to the first element of the array that includes
information on constraints with name n.

In particular, for each constraint c belonging to a
filter f , ConstrOp and ConstrVal store the operator
and value of c; ConstrFilterId stores the id of f ;
ConstrBF contains a Bloom filter that encodes in a 64
bit integer the set of constraint names appearing in f .
Finally, NumConstr stores the number of constraints
having name n. In this organization, if different filters
share a common constraint c we duplicate c. This
simplifies memory layout and minimizes the size of
each element of table ConstrFilterId, two key
aspects for hardware meant to perform data parallel
computations, which compensate the additional work
required to evaluate duplicate constraints.

Similar considerations motivate the choice of sepa-
rately storing information about each constraint c (i.e.,
operand, value, Bloom filter, and filter id). Indeed, this
layout maximizes the throughput of memory accesses
performed by the group of threads that evaluate
constraints in parallel. This is specially true for GPUs,
which may leverage their large data-path toward
memory, but it is also true for multi-core CPUs.

Fig. 2(b) shows the additional data structures con-
taining global information about filters and inter-
faces. Array FiltersCount stores the number of
constraints currently satisfied by each filter f , while
FiltersInfo contains static information: the num-
ber of constraints part of f (Size) and the id of
the interface f belongs to (InterfaceId). Finally,
Interfaces is an array of bytes, one for each in-
terface, which, at the end of processing, contains a
1 at position x if the processed event must be for-
warded through interface x. Both FiltersCount and
Interfaces are cleared before processing each event
and they are updated (in parallel) during processing.

In the OpenMP version of PCM, all data structures
are stored in the main (CPU) memory. In the CUDA
version, they are permanently stored into the GPU
memory; a choice that minimizes the need for CPU-to-
GPU communication during event processing. Only
the maps that associate a name (or a NameVector)
to the corresponding structures, as shown in Fig. 2(a),
are stored on the main memory and accessed by the
CPU during processing.

3.2 Implementing PCM in OpenMP (OCM)
Using OpenMP to parallelize the PCM algorithm
is rather easy. When an event e enters the engine,
OCM computes its NameVector NVe and uses it to
determine the Filters tables whose NameVector
matches NVe (discarding the others). These tables are
evaluated in parallel using a parallel for loop.

OpPtr ValPtr BFPtr
Input0

Input1

Input2

...

FilterIdPtrValue Type NumConstr

InputId

Input

Fig. 3. Input data

For each attribute a in e, OCM uses the name of
a to determine the row of each table that includes
the constraints relevant for a. These constraints are
evaluated sequentially. For each constraint c, OCM
first compares the 64 bit Bloom filter that encodes the
names in e with the Bloom filter associated to c. This is
an additional, quick check (a bit-wise and) that allows
to discard a lot of constraints, i.e., those belonging
to filters that have no chance to be satisfied as they
include at least one constraint that does not find a
corresponding attribute in e. Notice that this check, as
the preliminary filtering based on the NameVector
values, may generate false positives, which means
that in some cases we evaluate constraints that are
part of filters that actually have no chance to be
satisfied. Fortunately, this happens rarely (less then
1% of the times using 64 bit integers as Bloom filters)
and it does not impact the correctness of results.

When a constraint c is satisfied, OCM has to up-
date the FiltersCount for the filter c belongs to
(retrieved using the ConstrFilterId table). Since
a filter f cannot be part of two different Filters ta-
bles, OCM may update the FiltersCount structure
without synchronizing, being sure that each thread
processing a different Filters table will access a
different element of such structure.

After updating FiltersCount, each thread checks
whether it became equal to the Size of the filter, as
stored in Table FiltersInfo. In that case, it sets to
one the corresponding element in Array Interfaces
(retrieved using the InterfaceId field). This array
represents the result of our algorithm: the set of
interfaces that match e. It is transferred to the caller
at the end of processing and reset, together with the
FiltersCount structure, before processing the next
event.

3.3 Implementing PCM in CUDA (CCM)

The implementation of PCM on CUDA GPUs de-
serves more discussion. As for OpenMP, when an
event e enters the engine, it is the CPU that computes
the NameVector (NVe) and the Bloom filter (called
InputBF) of e. It then uses NVe to isolate the relevant
Filters tables (see Fig. 2(a)), and the names of
attributes in e to determine the rows of such tables
(i.e., the constraints) relevant for e.

As a result of this first phase, the CPU builds table
Input shown in Fig. 3. It includes one line for each
Filters table t identified through NVe and for each
attribute a in e. Each line stores the Value of a,

4

Thread Block

ConstraintId = blockId.x*blockDim.x+threadId

InputId
=

blockId.y

Fig. 4. Organization of blocks and threads

its Type, the number of constraints in t having the
same name as a (NumConstr), and the pointers (in
the GPU memory) to the rows of tables in t that are
relevant for a. This information is transferred to the
GPU together with the Bloom filter InputBF. Notice
that this information is not modified by CCM during
processing. Accordingly, both InputBF and the entire
Input structure are stored into a specific region of the
GPU’s global memory called constant memory, which
is cached for fast read-only access.

After building these structures and transferring
them on the GPU, CCM launches a kernel (i.e., the
CUDA function executed on the GPU), which uses
thousands of GPU threads to evaluate constraints in
parallel. Each thread evaluates a single attribute a
of e against a single constraint c. After that, the re-
sults of the computation (i.e., the Interfaces array)
has to be copied back to the CPU memory and the
FiltersCount and Interfaces structures have to
be reset for the next event. We will come back to these
steps later in this section, while here we focus on the
main CCM kernel.

In CUDA, threads are organized into blocks. At ker-
nel launch time the developer must specify the num-
ber of blocks executing the kernel and the number
of threads composing each block. Both numbers can
be in one, two, or three dimensions (see Appendix A
for further details on CUDA). CCM organizes threads
inside a block over a single dimension (x axis) while
blocks have two dimensions. The y axis is mapped
to event attributes, i.e., to rows of table Input in
Fig. 3, while the x axis is mapped to set of constraints.
Indeed, the number of constraints with the same name
may exceed the maximum number of threads per
block, so CCM must allocate multiple blocks along the
x axis. Fig. 4 shows an example of such organization
in which each block is composed of 4 threads (in real
cases we have 256 or 512 threads per block).

The pseudo-code of the CCM kernel is presented
in Algorithm 1. At the first two lines, each thread de-
termines its x and y coordinates in the bi-dimensional
space presented above, using the values of the blockId
and threadId variables, initialized by the CUDA run-
time. Since different rows of the tables encoding con-
straints may have different lengths, we instantiate the
number of blocks (and consequently the number of
threads) to cover the longest among them. Accord-
ingly, in most cases we have too many threads. We
check this possibility at line 3, immediately stopping

Algorithm 1 Constraint Evaluation Kernel
1: x = blockId.x·blockDim.x+threadId
2: y = blockId.y
3: if x ≥ Input[y].NumConstr then
4: return
5: end if
6: if ! covers(InputBF, Input[y].BFPtr[x]) then
7: return
8: end if
9: constrOp = Input[y].OpPtr[x]

10: constrVal = Input[y].ValPtr[x]
11: attrVal = Input[y].Value
12: constrType = Input[y].Type
13: if ! sat(constrOp, constrType, constrVal, attrVal) then
14: return
15: end if
16: filterId = Input[y].FilterIdPtr[x]
17: count = atomicInc(FiltersCount[filterId])
18: if count+1==FiltersInfo[filterId].Size then
19: interfaceId = FiltersInfo[filterId].InterfaceId
20: Interfaces[interfaceId] = 1
21: end if

unrequired threads. This is a common practice in
GPU programming, e.g., see [28]. We will analyze its
implication on performance in Section 4.

At line 6, each thread compares the InputBF with
the Bloom filter associated with the constraint it has
to evaluate. As for OCM, it immediately stops the
evaluation if the former does not cover the latter.

At lines 9 – 10 each thread reads the operator and
value of the constraint it has to process from the
ConstrOp and ConstrVal tables (which are stored
in the global memory) to the thread’s local memory
(i.e., hardware registers, if they are large enough), thus
making subsequent accesses faster. Also notice that
our organization of memory allows threads having
contiguous identifiers to access contiguous regions of
the tables above, and consequently contiguous regions
of the global memory. This is particularly important
when designing an algorithm for CUDA, since it
allows the hardware to combine different read/write
operations into a reduced number of memory-wide
accesses, thus increasing performance.

At line 11 – 12 each thread reads the value and
type of the attribute it has to process and evaluates
the constraint it is responsible for (at line 13). We omit
for simplicity the pseudo code of the sat function that
checks whether a constraint is satisfied by an attribute.

If the constraint is not satisfied the thread imme-
diately returns, otherwise it extracts the identifier
of the filter the constraint belongs to (line 16) and
updates the value of the corresponding field in ta-
ble FiltersCount (line 17). Differently from OCM,
CCM evaluates all constraints in parallel, including
constraints having different names. Accordingly, it is
possible that two or more threads try to access and
modify the same element of FiltersCount. To avoid
clashes, CCM exploits the atomicInc operation offered
by CUDA, which atomically reads the value of a 32
bit integer from the global memory, increases it, and
returns the old value.

At line 18 each thread checks whether the filter

5

is satisfied, i.e., if the current number of satisfied
constraints (old count plus one) equals the number
of constraints in the filter. If this happens, the thread
extracts the identifier of the interface the filter be-
longs to (line 19) and sets the corresponding position
in Interfaces to 1 (line 20). Again, it is possible
that multiple threads access the same position of
Interfaces concurrently, but in this case, since they
are all writing the same value, no conflict arises.

CUDA provides best performance when threads in
the same warp (see Appendix A) follow the same
execution path. After all unrequired threads have
been stopped (lines 3 and 6), there are two condi-
tional branches where the execution paths of differ-
ent threads may diverge. The first one, at line 13,
evaluates a single attribute against a constraint, while
the second one, at line 18, checks whether all the
constraints in a filter have been satisfied before setting
the relevant interface to 1. The threads that follow
the positive branch at line 18 are those that process
the last matching constraint of a filter. Unfortunately,
we cannot control the warps these threads belong to,
since this depends from the content of the event under
evaluation and from the scheduling of threads. Ac-
cordingly, there is nothing we can do to force threads
on the same warp to follow the same branch. On the
contrary, we can increase the probability of following
the same execution path within function sat at line
13 by grouping constraints according to their type,
operator, and value. This way we increase the chance
that threads in the same warp, having contiguous
identifiers, process similar constraints, thus following
the same execution path into sat. Preliminary experi-
ments, however, showed that this approach provides
a negligible improvement in performance, while it
makes creation of data structures (i.e., the tables in
Fig. 2(a) that needs to be properly ordered) much
slower. Accordingly we did not included it into the
final version of CCM.

Reducing Latency. As we have seen, during event
processing there are a number of tasks to be per-
formed. First the CPU has to compute the InputBF
Bloom filter and the Input data structure, which are
subsequently copied to the GPU constant memory.
Then the CPU has to launch the CCM main kernel,
waiting for the GPU to finish its job. At the end the
CPU has to copy the content of the Interfaces array
back to the main memory, and it has to reset both the
FiltersCount and Interfaces structures.

Since copies between CPU and GPU memories and
kernel launch are asynchronous operations started by
the CPU, a straightforward implementation of the
workflow above could force the CPU to wait for an
operation involving the GPU to finish before issuing
the following one. However, this suffers from two
limitations: i. it does not exploit the possibility to
run tasks in parallel on the CPU and on the GPU

(e.g., the CPU cannot prepare the input data for the
next event while the GPU resets the FiltersCount
and Interfaces structures); ii. for every instruction
sent to the GPU (e.g., a kernel launch) it pays the
communication latency introduced by the PCI-Ex bus.

To solve these issues, the current implementation
of CCM uses a CUDA Stream, which is a queue
where the CPU can put operations to be executed
sequentially and in order on the GPU. This allows us
to explicitly synchronize the CPU and the GPU only
once for each event processed, when we have to be
sure that the GPU has finished its processing and all
the results (i.e., the whole Interfaces array) have
been copied back into the main memory before the
CPU can access them. This approach maximizes the
overlapping of execution between the CPU and the
GPU, and let the runtime issuing all the instructions
it finds on the Stream sequentially, thus paying the
communication latency only once. We will come back
to this choice in Section 4, where we measure its
impact on performance.
Reducing Memory Accesses. In real applications,
the number of constraints in each filter is usually
limited. For this reason, using a 32 bit integer for each
element of the FiltersCount array wastes hardware
resources. On the other hand, the elements of the
FiltersCount array need to be accessed and up-
dated atomically and CUDA offers atomic operations
(like the atomicInc used by CCM) only for 32 bit data.

To work around this situation, CCM operates in
eight stages, starting from stage 1, moving to the next
stage at each event, and going back to stage 1 after
processing the event at stage 8. While in stage s, CCM
only considers the value stored in the sth half-byte of
each element of the FiltersCount array. In practice
the atomicInc operation at line 17 of Algorithm 1
increments FiltersCount[filterId] by 16s−1, not 1. This
way CCM may reset FiltersCount only before
entering stage 1, using it 8 times before resetting it
again. This optimization proves to significantly reduce
the accesses to the GPU memory (the FiltersCount
structure can be quite big), providing an average
improvement in processing time of about 30%.

Finally, our tests have demonstrated that using
an ad-hoc kernel for resetting the FiltersCount
and Interfaces data structures may bring some
improvement over the use of two separate memset
operations. This is what CCM uses.

4 EVALUATION

Our evaluation has several goals. First, we want to
compare our work with state of the art algorithms
to understand the real benefits in parallelizing the
matching process. Second, we want to analyze our
prototypes to better understand the implementation
choices that mostly impact on performance. Finally,
we want to test the behavior of our solutions when

6

Engine

Input Connections Manager Output Connections Manager

Input Queue Output Queue

Fig. 5. Architecture of a publish-subscribe system

deployed on a complete system. To this extent, we
considered a generic publish-subscribe infrastructure
as shown in Fig. 5. It includes three components: the
Input Connections Manager handles links with
publishers. It receives events from the network, as
streams of bytes, decodes them, and stores them into
the Input Queue. The Engine executes the match-
ing algorithm: it picks up events from the Input
Queue, computes the set of destinations they have
to be delivered to, and stores the results in the
Output Queue. Finally, the Output Connections
Manager handles links with subscribers, by reading
events from the Output Queue, serializing them,
and delivering them. The rest of the section is orga-
nized in two parts. In the first, we concentrate on the
Engine and analyze its latency in processing a single
event, under various workloads. In the second part we
study the maximum throughput of the whole system.
For space reasons, additional experiments are moved
to Appendix B.

Existing matching algorithms (see Section 5) can be
divided into two main classes: counting algorithms
and tree-based algorithms. In our analysis, we se-
lected one sequential algorithm for each class.

As a counting algorithm we chose SFF [10] (v.1.9.4),
the matching algorithm used inside the Siena event
notification middleware, which is known in the com-
munity for its performance. Similarly to PCM, SFF
runs over the attributes of the event under considera-
tion, counting the constraints they satisfy until one or
more filters have been entirely matched. Differently
from PCM, it combines identical constraints belong-
ing to different filters. Moreover, when a filter f is
matched, SFF marks the related interface, purges all
the constraints and filters exposed by that interface,
and continues until all interfaces are marked or all
attributes have been processed. The set of marked
interfaces represents the output of SFF. To maximize
performance under a sequential hardware, SFF builds
a complex, strongly indexed data structure, which
puts together the predicates (decomposed into their
constituent constraints) received by subscribers.

As a tree-based algorithm, we chose BETree, which
in a recent publication [27] has demonstrated signifi-
cant performance benefits when compared to several
existing algorithms under a large number of work-
loads. It organizes constraints into a tree structure; in-
termediate nodes contain expressions to be evaluated
against the content of events to determine the path to
follow. Leaf nodes store the subscriptions satisfied by
an event that reaches them. Differently from SFF and
PCM, BETree only supports constraints on numeric

TABLE 1
Parameters in the Default Scenario

Number of events 1000
Attr. per event, min-max 3-5
Number of interf. 10
Constr. per filt., min-max 3-5
Filt. per interf., min-max 22500-27500
Number of names 100
Distribution of names Uniform
Numerical/string constr. 100% / 0%
Operators =(25%), 6=(25%),>(25%),<(25%)
Number of values 100

values, and not on strings. While the source code of
SFF is available for download, we could only obtain
an executable of BETree explicitly compiled for our
hardware by contacting the authors.

All tests of this section were executed on a AMD
Phenom II PC, with 6 cores running at 2.8GHz, and
8GB of DDR3 Ram. The GPU was a Nvidia GTX 460
with 1GB of GDDR5 Ram. We used the GCC compiler,
version 4.7, and the CUDA runtime 5.0 for 64 bit
Linux. Nowadays both the CPU and the GPU we
adopted are considered mid-low level hardware. On
the other hand, they were top level one year ago, and
they have a similar price, so the comparison is fair.

4.1 Latency of Matching
To evaluate the latency of pure matching we defined
a default scenario whose parameters are listed in
Table 1, and used it as a starting point to build a
number of different experiments, by changing the
various parameters one by one and measuring how
this impacts the performance of CCM, OCM, SFF, and
BETree. In our tests we let each algorithm process
1000 events, one by one, and we compute the aver-
age processing time. To avoid any bias, we repeated
all tests (including those reported in Section 4.2) 10
times, using different seeds to randomly generate
subscriptions and events, and we plot the average
value measured. The 95% confidence interval of this
average was always below 1% of the measured value,
so we omitted it from all the plots.
Default Scenario. Table 2 shows the processing times
measured by the algorithms under analysis in the
default scenario. This is a relatively easy-to-manage
scenario. It includes one million constraints on av-
erage, which is not a huge number for large scale
applications. Under this load, SFF requires 1.353ms to
process a single event, while BETree requires 0.326ms.
If we consider our algorithms, CCM requires 0.0205ms
and OCM 0.0091ms, providing respectively a speedup
of 66× and 148.7× w.r.t. SFF and 15.9× and 35.8×
w.r.t. BETree. Finally, we included in our evaluation a
new, unpublished, version 1.3 of BETree. It borrows
some of the ideas of PCM (e.g., the use of Bloom
filters to reduce the number of constraints to eval-
uate), providing a significant improvement over the
original release. Despite these advancements, PCM

7

TABLE 2
Processing time in the default scenario

CCM OCM SFF BETree BETree 1.3
0.0205ms 0.0091ms 1.353ms 0.326ms 0.031ms

still provides better results, while offering a more
expressive subscription language (e.g., it also includes
constraints on strings).

Number of Attributes. Fig. 6 shows how performance
changes with the average number of attributes in-
side events. All the algorithms under analysis ex-
hibit higher matching times with a higher number
of attributes. This is especially true for the counting
algorithms (i.e., SFF and PCM) that need to explicitly
evaluate all the event attributes. The impact is more
evident on the CPU (SFF and OCM) then on the GPU
(CCM). Indeed, as described in Section 3, OCM pro-
cesses the different attributes sequentially, while CCM
processes all of them in parallel, exploiting the large
number of cores available on the GPU. As a result, the
speedup of CCM over SFF increases with the number
of attributes, moving from 24.9× to 58.4×. Similarly,
the performance of OCM w.r.t. CCM decreases from
2.4× to 0.46× (i.e., CCM becomes twice as fast as
OCM). Differently from counting algorithms, BETree
uses a tree-based structure for matching events as a
whole and not attribute by attribute. For this reason,
we do not observe any significant change in the
performance of the algorithm. The speedup of PCM
over BETree decreases with the number of attributes,
moving from 20.7× to 8.2× for CCM, and from 48.8×
to 3.7× for OCM. Finally, BETree 1.3 shows a level
of performance that is comparable (albeit slower) to
CCM: in the extreme case of 9 attributes per event, it
also outperforms OCM.

Number of Constraints per Filter. Fig. 7 shows how
performance changes with the average number of
constraints in each filter. During this test, we fixed the
overall number of constraints to 1M, while changing
the overall number of filters.

When increasing the number of constraints per
filter, the optimization derived from the filter selec-
tion phase becomes more effective, thus reducing the
processing times of PCM. BETree and SFF suffer this
situation, showing an increased matching time as the
number of constraints per filter grows. The only case
in which PCM is outperformed by SFF is when we
consider only one or two constraints per filter. This is
a very special (and quite unrealistic) case in which the
chance to find a matching filter for a given interface is
very high, such that at the end all events are relevant
for all interfaces. The pruning techniques of SFF work
at their best in this case, while OCM and CCM always
process all constraints, albeit in parallel. The BETree
algorithm, which does not include any optimization
of the matched interfaces, performs much worse in
this region. BETree 1.3 has better performance in this

area, being comparable to CCM, then it looses when
the scenario becomes more complex. This proves the
benefits of using parallel hardware (both multi-core
CPUs and GPUs) when a large number of complex
subscriptions are deployed on the system.
Number of Filters per Interface. Fig. 8 shows how
performance changes with the number of filters per
interface. Increasing such number also increases the
overall number of constraints, and thus the complex-
ity of matching. Accordingly, all the algorithms show
growing processing times. This scenario emphasizes
the advantages of parallel processing: CCM registers
a 60.4× speedup w.r.t. BETree, a 697.7× speedup
w.r.t. SFF, and a 4.16× speedup w.r.t. BETree 1.3 with
250k filters. The advantage is visible also for OCM:
with 250k filters it registers a speedup of 102.3×
w.r.t. BETree, a speedup of 1180.7× w.r.t. SFF, and a
speedup of 7.1× w.r.t. BETree 1.3. These results are
particularly interesting if we consider that increasing
the number of filters also increases the number of
shared constraints, which are considered only once in
SFF and BETree, but multiple times in PCM. Finally,
observe how a very small number of filters favors
SFF and BETree: they perform better than PCM with
less than 1000 filters. Under such circumstances the
matching is very fast, with all algorithms (including
the slowest SFF) registering an average processing
time below 0.02ms, and the (almost fixed) overhead
of the parallel architectures becomes relevant.
Number of Interfaces. Another important aspect that
significantly influences the behavior of a matching
algorithm is the number of interfaces. In Fig. 9 we
analyze its impact on SFF, BETree, and PCM, moving
from 10 to 100 interfaces. Notice that 100 interfaces
may represent a realistic scenario, in which several
clients are served by a common event dispatcher that
performs the matching process for all of them. As in
the previous experiments, increasing the number of
interfaces also increases the number of constraints,
and thus the complexity of matching. Accordingly,
all algorithms show growing processing times as the
number of interfaces grows. Also in this case the
speedups of PCM constantly increases, both for CCM
(up to 658.7× w.r.t. SFF, 60.7× w.r.t. BETree, 4.1× w.r.t.
BETree 1.3), and for OCM (up to 1193.3× w.r.t. SFF,
109.9× w.r.t. BETree, 7.4× w.r.t. BETree 1.3).

4.2 Throughput
Consider the reference architecture shown in Fig. 5.
With a low input rate events do not accumulate in the
Input Queue: as soon as the Input Connections
Manager enqueues an event, it is immediately de-
queued and processed by the Engine. However, in
case of bursts, the rate at which events are put in the
Input Queue may temporarily become higher than
the processing rate of the Engine. In this case, many
events may be waiting in the Input Queue, ready

8

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Attributes

CCM
OCM
SFF

BETree
BETree 1.3

Fig. 6. Number of Attri-
butes

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Constraints per Filter

CCM
OCM
SFF

BETree
BETree 1.3

Fig. 7. Number of Cons-
traints per Filter

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Filters per Interface (Thousands)

CCM
OCM
SFF

BETree
BETree 1.3

Fig. 8. Number of Filters
per Interface

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Interfaces

CCM
OCM
SFF

BETree
BETree 1.3

Fig. 9. Number of Inter-
faces

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

Pr
oc

es
si

ng
 R

at
e

(k
 e

ve
nt

s/
s)

Input Rate (k events/s)

CCM
OCM
SFF

SFF ME

Fig. 10. Overall System Performance

to be processed. Processing them in parallel does not
impact the average latency for matching each of them,
but it may reduce the total time needed to evaluate all
of them, thus improving the throughput of the system.
We now investigate this aspect in details.

We implemented the system architecture shown
in Fig. 5, using one thread inside the Input
Connections Manager and one inside the Output
Connections Manager, while a single remote client
was used as a source and sink of events. The Input
Queue had a finite size of 100 events. The remote
client was used to generate events at increasing in-
put rate and we measured the processing rate, i.e.,
the rate at which events were processed by the
Engine. This two rates initially coincide. However,
when the input rate begins overcoming the capa-
bilities of the Engine, incoming events accumulate
on the Input Queue. When it is completely filled,
the Input Connections Manager have to drop
incoming events, and the two rates start diverging.
Notice that, since we are adopting an unbounded
Output Queue, the processing rate measured is pro-
portional to the throughput of the system. During this
experiment, we modified CCM to process multiple
events in parallel when they are available in the
Input Queue. In particular, we use a different copy
of the FiltersCount and Interfaces structures
for each event to be processed in parallel. This way
we could use a single kernel for multiple events, thus
avoiding the overhead of launching multiple kernels.

Fig. 10 shows the results we measured. We could
not include BETree in this test, since we had only
access to the binary of the algorithm and it was
not designed to process multiple events in parallel.
For SFF we considered two version, one processing
one event at a time, and one (SFF ME) processing
multiple events in parallel. Ideally, the processing rate
should be the inverse of the matching latency of the

Engine. However, some CPU resources are used by
the two Connections Managers to perform mar-
shalling/unmarshalling of events and to handle the
communication with sources and sinks, thus reducing
the processing resources available to the Engine.
This is confirmed by the results we measured for
OCM. Indeed, it requires all 6 CPU cores of our test
system to reach the peak performance measured in the
previous sections. When less cores are available (some
of them being allocated to other tasks) the overall
performance drops. More precisely, OCM exhibits a
processing time of 0.0091ms per event in our reference
scenario, meaning that it should be able to process
more than 109k events/s. However, when used within
a complete system its processing rate hardly reaches
60k events/s. On the other hand, CCM does not suffer
this problem. With a processing time of 0.0205ms, it
could enable a maximum throughput of about 48k
events/s. However, by processing multiple events
in parallel, it reaches and overcomes a maximum
throughput of 100k events/s. This highlights a key,
very positive aspect of CCM: since it is entirely exe-
cuted on the GPU, it only requires one CPU thread to
start memory copies and to launch kernels inside the
Engine, while most of the processing resources on
the CPU are free for other system tasks, in particular
marshalling/unmarshalling and communication. The
same holds for SFF but this cannot be considered as a
positive aspect. Indeed, SFF, with its purely sequential
approach, is under-utilizing available resources (i.e.,
CPU cores).

4.3 Final Considerations
The results presented so far allow us to draw some
general conclusions about publish-subscribe content-
based matching on parallel hardware. First of all we
may observe that the matching problem is relatively
easy to parallelize. Indeed, using an appropriate algo-
rithm, only a few operations (updates of filter coun-
ters) need to be performed atomically. On the other
hand, a sequential algorithm like SFF or BETree can
add a number of optimization that, albeit introducing
much more synchronization points, may reduce the
gap with OCM under particular scenarios.

Our experience in developing CCM let us draw
some conclusions about CUDA. First of all, program-
ming CUDA is (relatively) easy, while attaining good

9

performance is (very) hard. Memory accesses and
transfers tend to dominate over processing (at least
for the matching problem) and must be carefully
managed, while having thousands of threads, even
if they are created to be immediately destroyed, has
a minimal impact. Also, the fixed cost to pay to
launch a kernel makes (relatively) simple problems
not worth being demanded to the GPU (see the case
of less than 1000 filters). Fortunately, it is easy to
determine whether the set of subscriptions installed
in the system is large enough to take advantage of
CCM. In practical terms, we implemented a translator
that allows us to switch dynamically between the CPU
(running SFF or OCM) and the GPU (running CCM)
to always get the best performance. Focusing on pure
performance, we notice how using a GPU may pro-
vide large speedups w.r.t. using sequential algorithms
on the CPU. More importantly, these speedups grow
with the scale of the problem to solve. However, when
considering latency, running a parallel algorithm on
the CPU (OCM) provides similar and sometime better
results than running on the GPU. This is mainly due
to the fixed overhead required for moving information
between the CPU and the GPU memory.

Finally, using the GPU has the additional, funda-
mental advantage of leaving the CPU free to focus
on those jobs (like I/O) that do not fit GPU pro-
gramming, as demonstrated by our analysis on the
maximum throughput in Section 4.2. In this context
CCM outperforms OCM thanks to the number of
parallel resources available on the GPU, which allow
multiple events to be processed in parallel.

For additional experiments, please refer to Ap-
pendix B, where we study the impact of further pa-
rameters on the latency of matching, we consider the
time for deploying new subscriptions, we decompose
and analyze in great details the processing times of
CCM, and we evaluate the benefits of processing
multiple events in parallel.

5 RELATED WORK

The last decade saw the development of a large num-
ber of content-based publish-subscribe systems [25],
[4], [15], [24], [13] first exploiting a centralized dis-
patcher, then moving to distributed solutions for im-
proved scalability. Despite their differences, they all
share the need of matching events against subscrip-
tions. Two main categories of matching algorithms can
be found in the literature: counting algorithms [16],
[10], [30] and tree-based algorithms [2], [5], [27]. SFF
and PCM are counting algorithms: they maintain a
counter for each filter that records the number of
constraints satisfied. Tree-based algorithms, like BE-
Tree, organize subscriptions into a rooted search tree.
Inner nodes represent an evaluation test, while leaves
represent the received predicates. Given an event, the
search tree is traversed from the root to the leaves. At

every node, the value of an attribute is tested, and the
satisfied branches are followed until the fully satisfied
predicates (and corresponding interfaces) are reached
at the leaves. To the best of our knowledge, no existing
work has demonstrated the superiority of one of the
two approaches. However, in a recent publication,
BETree has been compared agains many state of the
art matching algorithms, showing its performance
advantages in a wide range of scenarios.

Despite these efforts, content-based matching is still
considered a complex and time consuming task [9]. To
overcome this limitation, researchers have explored
two directions: on the one hand they proposed to dis-
tribute matching among multiple brokers, exploiting
covering relationships between subscriptions to re-
duce the amount of work performed at each node [8].
On the other hand, they moved to probabilistic match-
ing algorithms, trying to increase the performance
of the matching process, while possibly introducing
evaluation errors in the form of false positives [6],
[20]. The use of a distributed dispatcher is orthogonal
w.r.t. our work. Indeed, the brokers that build a
distributed dispatcher have to perform the same kind
of matching analyzed in this paper. Accordingly, PCM
can be used in distributed scenarios, contributing to
further improve performance. At the same time, some
of the ideas behind PCM can be leveraged to speedup
probabilistic algorithms through parallel hardware.
Indeed, probabilistic matching usually involves en-
coding events and subscriptions as Bloom filters re-
ducing the matching process to a comparison of bit
vectors. This is a strongly data parallel computation,
which would perfectly fit OpenMP and CUDA. We
plan to explore this topic in the future.

The idea of parallel matching has been recently
addressed in a few works. In [18], the authors exploit
multi-core CPUs both to speedup the processing of
a single event and to parallelize the processing of
different events. Unfortunatly, the code is not avail-
able for a comparison; however, the processing delays
appearing in the paper seem to be much worse than
those obtained by PCM. Other works investigated
how to parallelize matching using ad-hoc (FPGA)
hardware [29], while we focus on off-the-shelf hard-
ware. To the best of our knowledge, PCM is the first
matching algorithm to be implemented on GPUs. A
preliminary version of the algorithm, with an anal-
ysis of its performance (in terms of latency, only)
when implemented on GPUs, has been published
in [23], and later extended to location-aware publish-
subscribe systems [11]. Along the same line, in [12]
we explored the possibility to use GPUs to detect
complex events as a combination of primitive ones
in a temporal pattern.

The adoption of GPUs for general purpose pro-
gramming is relatively recent and was first enabled
in late 2006 when Nvidia released CUDA. Since then,
commodity graphics hardware has become a cost-

10

effective parallel platform to solve many general prob-
lems, including image processing, computer vision,
signal processing, and graphs algorithms. See [26] for
an extensive survey on the application of GPUs.

6 CONCLUSIONS

In this paper, we presented a parallel publish-
subscribe content-based matching algorithm and its
implementation both on a multi-core CPU, using
OpenMP, and on CUDA GPUs. We compared it with
SFF and BETree, two state of the art sequential algo-
rithms. Results demonstrate the benefits of parallelism
in a wide spectrum of scenarios. Moreover, delegating
to the GPU the effort required for the matching pro-
cess brings additional advantages when considering
the whole system, by leaving the main CPU free
to perform other tasks. Although our presentation
focuses on the case of content-based publish-subscribe
systems, the problem of matching is more general.
Indeed, as observed by others [10], [15], several ap-
plications can directly benefit from a content-based
matching service. They include intrusion detection
systems and firewalls, which need to classify packets
as they flow on the network; intentional naming
systems [1], which realize a form of content-based
routing; distributed data sharing systems, which need
to forward queries to the appropriate servers; and ser-
vice discovery systems, which need to match service
descriptions against service queries.

ACKNOWLEDGMENT

We would like to thank Prof. Hans-Arno Jacobsen
and Dr. Mohammad Sadoghi for giving us access to
their BETree prototype and for helping us in using it
during our tests. This work was partially supported
by the European Commission, Programme IDEAS-
ERC, Project 227977-SMScom.

REFERENCES

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley.
The design and implementation of an intentional naming
system. In SOSP, pages 186–201. ACM Press, 1999.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching events in a content-based subscrip-
tion system. In PODC, pages 53–61, New York, NY, USA, 1999.
ACM.

[3] T. S. Axelrod. Effects of synchronization barriers on multipro-
cessor performance. Parallel Comput., 3:129–140, 1986.

[4] R. Baldoni and A. Virgillito. Distributed event routing in pub-
lish/subscribe communication systems: a survey. Technical
report, DIS, La Sapienza, 2005.

[5] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient
filtering in publish-subscribe systems using binary decision
diagrams. In ICSE, pages 443–452, Washington, DC, USA,
2001. IEEE Computer Society.

[6] A. Carzaniga and C. P. Hall. Content-based communication:
a research agenda. In SEM, Portland, Oregon, USA, 2006.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving
scalability and expressiveness in an internet-scale event noti-
fication service. In PODC, pages 219–227, Portland, Oregon,
2000.

[8] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing
scheme for content-based networking. In INFOCOM, Hong
Kong, China, 2004.

[9] A. Carzaniga and A. L. Wolf. Content-based networking: A
new communication infrastructure. In NSF Workshop on an
Infrastructure for Mobile and Wireless Systems, number 2538 in
Lecture Notes in Computer Science, pages 59–68, Scottsdale,
Arizona, 2001. Springer-Verlag.

[10] A. Carzaniga and A. L. Wolf. Forwarding in a content-based
network. In SIGCOMM, pages 163–174, Karlsruhe, Germany,
2003.

[11] G. Cugola and A. Margara. High-performance location-aware
publish-subscribe on gpus. In Middleware, pages 312–331, 2012.

[12] G. Cugola and A. Margara. Low latency complex event pro-
cessing on parallel hardware. Journal of Parallel and Distributed
Computing, 72(2):205 – 218, 2012.

[13] G. Cugola and G. Picco. REDS: A Reconfigurable Dispatching
System. In SEM, pages 9—16, Portland, 2006. ACM Press.

[14] L. Dagum and R. Menon. Openmp: An industry-standard
api for shared-memory programming. IEEE Comput. Sci. Eng.,
5:46–55, 1998.

[15] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec.
The many faces of publish/subscribe. ACM Comput. Surv.,
35:114–131, 2003.

[16] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha. Filtering algorithms and implementation for very
fast publish/subscribe systems. In SIGMOD, pages 115–126,
New York, NY, USA, 2001. ACM.

[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. SIGCOMM, 29:251–262,
1999.

[18] A. Farroukh, E. Ferzli, N. Tajuddin, and H.-A. Jacobsen.
Parallel event processing for content-based publish/subscribe
systems. In DEBS, pages 8:1–8:4, New York, NY, USA, 2009.
ACM.

[19] L. Fiege, G. Mühl, and A. P. Buchmann. An architec-
tural framework for electronic commerce applications. In GI
Jahrestagung (2), pages 928–938, 2001.

[20] Z. Jerzak and C. Fetzer. Bloom filter based routing for content-
based publish/subscribe. In DEBS, pages 71–81, New York,
NY, USA, 2008. ACM.

[21] K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A. Sanders.
A design pattern language for engineering (parallel) software:
merging the plpp and opl projects. In ParaPLoP, pages 9:1–9:8,
New York, NY, USA, 2010. ACM.

[22] C. Krgel, T. Toth, and C. Kerer. Decentralized event correlation
for intrusion detection. In K. Kim, editor, Information Security
and Cryptology, ICISC, volume 2288, pages 59–95. Springer
Berlin / Heidelberg, 2002.

[23] A. Margara and G. Cugola. High performance content-based
matching using gpus. In DEBS, pages 183–194, New York, NY,
USA, 2011. ACM.

[24] G. Mühl, L. Fiege, F. Gartner, and A. Buchmann. Evalu-
ating advanced routing algorithms for content-based pub-
lish/subscribe systems. In MASCOTS, 2002.

[25] G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based
Systems. Springer, 2006.

[26] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. Lefohn, and T. Purcell. A Survey of General–Purpose
Computations on Graphics Hardware. Computer Graphics,
Volume 26, 2007.

[27] M. Sadoghi and H.-A. Jacobsen. Be-tree: an index structure to
efficiently match boolean expressions over high-dimensional
discrete space. In SIGMOD, pages 637–648, New York, NY,
USA, 2011. ACM.

[28] S. Schneidert, H. Andrade, B. Gedik, K.-L. Wu, and D. S.
Nikolopoulos. Evaluation of streaming aggregation on parallel
hardware architectures. In DEBS, pages 248–257, New York,
NY, USA, 2010. ACM.

[29] K. H. Tsoi, I. Papagiannis, M. Migliavacca, W. Luk, and
P. Pietzuch. Accelerating publish/subscribe matching on
reconfigurable supercomputing platforms. In MRSC, Rome,
Italy, 2010.

[30] T. W. Yan and H. Garcı́a-Molina. Index structures for selective
dissemination of information under the boolean model. ACM
Trans. Database Syst., 19(2):332–364, June 1994.

11

APPENDIX A
PARALLEL PROGRAMMING MODELS

Attaining good performance with parallel architec-
tures is a complex task. A naive parallelizing of a
sequential algorithm is usually not sufficient to ef-
ficiently exploit the presence of multiple processing
elements, and a complete re-design of the algorithm
may be necessary, taking into account the peculiarities
of the underlying architecture and its programming
model. In this section we present the architectures
and programming models considered in this paper,
focusing on the abstractions offered and on the aspects
that mostly affect performance.

A.1 Multicore CPU Programming with OpenMP
OpenMP (Open Multi-Processing) is an API for
shared memory multiprocessing programming in
C/C++ and Fortran, consisting of a set of compiler
directives and library routines. OpenMP provides
thread programming at a high level: the programmer
specifies which portions of code should execute in
parallel, while the compiler decides low-level details,
including the creation of threads and the assignment
of tasks to threads. In particular, to develop data
parallel algorithms like PCM, OpenMP supports the
SPMD (Single Program Multiple Data) implementa-
tion strategy [21], through the following primitives:
Parallel regions. The programmer defines regions of
code that have to be executed in parallel by different
threads, and explicitly specifies the number of threads
to be used. Inside a parallel region, each thread
is uniquely identified by its ThreadNum, which the
programmer may access and use to differentiate the
execution flows of threads.
Shared memory. Threads in a parallel region can
declare private, thread-local variables, but they can
also access variables from a common shared memory.
Limiting data dependencies among threads is a key
aspect to obtain good performance.
Synchronization. To control the access to shared
memory, OpenMP provides two different kinds of
synchronization primitives: critical sections and barri-
ers. Critical sections specify portions of parallel re-
gions that must be executed in mutual exclusion
by the different threads. Barriers are synchronization
points at which all threads must wait before any is
allowed to proceed [3].

On top of them, OpenMP also offers some higher
level primitives. The most remarkable example (also
used in the remainder of this paper) is the parallel
for, which executes for loops in parallel splitting them
among the different cores available.

A.2 GPU Programming with CUDA
Introduced by Nvidia in Nov. 2006, the CUDA archi-
tecture offers a new programming model and instruc-

tion set for general purpose programming on GPUs.
Different languages can be used to interact with a
CUDA device: we adopted CUDA C, a dialect of C
explicitly devoted to program GPUs. The CUDA pro-
gramming model is founded on five key abstractions:
Hierarchical organization of thread groups. The pro-
grammer is guided in partitioning a problem into
coarse sub-problems to be solved independently in
parallel by blocks of threads, while each sub-problem
must be decomposed into finer pieces to be solved
cooperatively in parallel by all threads within a block.
This decomposition allows the algorithm to easily
scale with the number of available processor cores,
since each block of threads can be scheduled on any
of them, in any order, concurrently or sequentially.
Shared memories. As in OpenMP, CUDA threads
may access data from multiple memory spaces during
their execution: each thread has a private local memory
for automatic variables; each block has a shared mem-
ory visible to all threads in the same block; finally, all
threads have access to the same global memory.
Barrier synchronization. Since thread blocks are re-
quired to execute independently from each other, no
primitive is offered to synchronize threads of different
blocks. On the other hand, threads within a single
block work in cooperation, and thus need to synchro-
nize their execution to coordinate memory access. In
CUDA this is achieved exclusively through barriers.
Separation of host and device. The CUDA program-
ming model assumes that CUDA threads execute on
a physically separate device (the GPU), which oper-
ates as a coprocessor of a host (the CPU) running a
C/C++ program. The host and the device maintain
their own separate memory spaces. Therefore, before
starting a computation, it is necessary to explicitly
allocate memory on the device and to copy there the
information needed during execution. Similarly, at the
end results have to be copied back to the host memory
and the device memory have to be deallocated.
Kernels. Like parallel regions in OpenMP, kernels are
special functions that define a single flow of execution
for multiple threads. When calling a kernel k, the
programmer specifies the number of threads per block
and the number of blocks that must execute it. Inside
the kernel it is possible to access two special variables
provided by the CUDA runtime: the threadId and
the blockId, which together allow to uniquely identify
each thread among those executing the kernel. As
for the ThreadNum in OpenMP, conditional statement
involving these variables can be used to differentiate
the execution flows of different threads.

A.2.1 Architectural Issues
If compared to OpenMP, the CUDA model provides
thread programming at a lower level, i.e., there are
details about the hardware that a programmer cannot
ignore while designing an algorithm for CUDA.

12

The CUDA architecture is built around a scalable ar-
ray of multi-threaded Streaming Multiprocessors (SMs).
When a CUDA program on the host CPU invokes
a kernel k, the blocks executing k are enumerated
and distributed to the available SMs. All threads
belonging to the same block execute on the same SM,
thus exploiting fast SRAM to implement the shared
memory. Multiple blocks may execute concurrently on
the same SM as well. As blocks terminate new blocks
are launched on freed SMs. Each SM creates, manages,
schedules, and executes threads in groups of parallel
threads called warps. Individual threads composing a
warp start together but they have their own instruc-
tion pointer and local state and are therefore free to
branch and execute independently. On the other hand,
full efficiency is realized only when all threads in
a warp agree on their execution path, since CUDA
parallelizes them executing one common instruction
at a time. If threads in the same warp diverge via a
data-dependent conditional branch, the warp serially
executes each branch path taken, disabling threads
that are not on that path, and when all paths complete,
the threads converge back to the same execution path.

Inside a single SM, instructions are pipelined but,
differently from modern CPU cores, they are executed
in order, without branch prediction or speculative
execution. To maximize the utilization of its computa-
tional units, each SM is able to maintain the execution
context of several warps on-chip, so that switching
from one execution context to another has no cost. At
each instruction issue time, a warp scheduler selects a
warp that has threads ready to execute (not waiting on
a synchronization barrier or for data from the global
memory) and issues the next instruction to them.

An additional issue is represented by memory ac-
cesses. If the layout of data structures allows threads
with contiguous ids to access contiguous memory
locations, the hardware can organize the interaction
with memory into several memory-wide operations,
thus maximizing throughput. This aspect significantly
influenced the design of PCM’s data structures, as we
discuss in the next section.

In summary, we can say that, similarly to OpenMP,
the CUDA programming model ease the implemen-
tation of data parallel algorithms using a SPMD im-
plementation strategy. However, while OpenMP runs
on hardware architectures where different threads are
free to execute different instructions without incurring
in additional overhead, the CUDA architecture is
designed to execute efficiently only data parallel code
that operates on contiguous memory regions.

Finally, to give an idea of the capabilities of a
modern GPU supporting CUDA, we provide some
details of the Nvidia GTX 460 card we used for our
tests. It includes 7 SMs, which can handle up to 48
warps of 32 threads each (for a maximum of 1536
threads). Each block may access a maximum amount
of 48KB of shared, on-chip memory within each SM.

TABLE 3
Analysis of Matching Algorithms

CCM OCM SFF BETree BETree
1.3

Processing time - Default scenario 0.0205ms 0.0091ms 1.353ms 0.326ms 0.031ms
Subscriptions deployment time -
Default scenario

527.5ms/
4141ms

483.2ms/
1088ms

992.2ms n.a. n.a.

Data structure size - Default sce-
nario

33.9MB
(GPU)

33.9MB
(CPU)

42.4MB
(CPU)

n.a. n.a.

Processing time - Zipf distribution
of names

0.0270ms 0.0198ms 3.662ms 0.410ms 0.044ms

Furthermore, it includes 1GB of GDDR5 memory as
global memory. This information must be carefully
taken into account when programming: shared mem-
ory must be exploited as much as possible, to hide
the latency of global memory accesses, but its limited
size significantly impacts the design of algorithms.

APPENDIX B
EVALUATION (ADDITIONAL EXPERIMENTS)
We here introduce additional experiments that inte-
grate and complete our evaluation in Section 4. In par-
ticular, this section is organized in three parts. First,
we study the cost for deploying new subscriptions in
PCM. Second, we extend our analysis on the latency
of matching by considering additional parameters and
by decomposing and analyzing the processing times
of CCM in great details. Finally, we investigate the
benefits of processing multiple events in parallel with
PCM.

B.1 Deployment of Subscriptions

Beside measuring processing time, it is also interesting
to study the time required to create the data structures
used during event evaluation. Indeed, they need to
be generated at run-time, when new subscriptions
are deployed on the engine. Even if it is common
to assume that the number of publishing largely
exceeds the number of subscribing/unsubscribing in
any event-based application, this time may become
relevant in some scenarios, and thus deserves to be
analyzed. Table 3 (second row) shows the average
time required by SFF, OCM, and CCM to create their
data structures. Since we did not have access to the
source code of BETree, we could not instrument it to
measure this value.

For CCM and OCM, we consider two separate
scenarios, which enable us to better investigate the
aspects that influence subscriptions deployment time
more. In the first version, we disable the “filters selec-
tion” phase, thus storing all constraints into a single
table. In the second phase, we run the standard PCM
algorithm, including the “filters selection” phase.

In the first case, the data structures adopted by PCM
are significantly simpler than the indexed structures
used by SFF. This enables OCM to be twice as fast in
creating them, with an overall deployment time of less
than 500ms. When using CCM, most data structures
have to be installed on the GPU memory. Moving data

13

from the CPU to the GPU memory may introduce non
negligible delays, caused by the (relatively) limited
PCI-Ex performance. In particular, we observed that
latency is the most limiting factor w.r.t. bandwidth,
accordingly CCM builds all data structures on the
CPU memory, and transfer them to the GPU using a
single copy. With this solution CCM is less than 50ms
slower than OCM.

When introducing the “filters selection” phase, the
complexity of data structures increases. This is visible
in OCM, which doubles its deployment time. When
considering CCM, the impact is much larger: when
considering multiple tables for storing constraints, we
transfer tham to the GPU separately, thus paying the
PCI-Ex latency multiple times. In this settings, the
subscriptions deployment time of CCM increases by
a factor of 8.

The complexity of the data structures used by
SFF also reflects on their size. As shown in Table 3
(third row), OCM and CCM require less memory:
the default scenario occupies 33.9MB vs 42.4MB. It
is worth mentioning that the maximum occupancy of
GPU memory we measured in our tests was below
200MB. Since GPUs nowadays have at least 1GB of
Ram, contrary to what happens in other domains,
GPU memory occupancy is not a problem for content-
based matching.

B.2 Latency of Matching

An Analysis of CCM Processing Times. Table 4 an-
alyzes the cost of the different operations performed
by CCM during the matching process in the default
scenario. In particular, it splits processing time into
five parts: the time required to create the input data
structures, the time to copy them from the CPU to
the GPU memory, the time to execute the kernel, the
time to copy results back to the CPU memory, and
the time to clear the data structures used by the GPU.
To correctly measure these timings, we synchronized
the CPU and the GPU after each of the five steps.
By doing this we eliminate the advantages of using
CUDA Streams, as described in Section 3. Accord-
ingly, this test also allows us to quantify the benefits
of Streams. Interestingly, in the default scenario, the
time required to transfer data from the CPU to the
GPU and back is more than half of the total time,
while the actual executon time is only one third of the
total time. This can be explained by observing that our
default scenario exhibits a relatively high selectivity of
events, allowing most of the threads launched in the
kernel to terminate immediately after the comparison
of bloom filters or after the constraint evaluation. Only
few of them have to access the memory to update
the FiltersCount or the Interfaces arrays. On
the other hand, the processing time grows in other
scenarios, in some cases even considerably, while the
times for data transfer and for data structure reset are

TABLE 4
Analysis of CCM Processing Times

Prepare Input
Data (CPU)

Copy Input Data
(CPU to GPU)

Kernel Execu-
tion (GPU)

Copy Results
(GPU to CPU)

Clear Data
Struct (GPU)

0.003577ms 0.007768ms 0.01154ms 0.007324 0.002238

independent from the complexity of the scenario and
remain almost fixed.

Finally, if we sum the five contributions, we obtain
a total processing time for a single event of 0.03245ms,
as opposed to the 0.0205ms measured with the adop-
tion of CUDA Streams. Since PCM does not need to
transfer large chunks of data to the GPU during pro-
cessing, it suffers from the delay of the PCI-Ex more
than from its limited bandwidth. This justifies the
significant advantages introduced by Streams, which
allow us to enqueue several operations and to pay the
delay on the bus only once for all of them.

Distribution of Names. The distribution of the names
adopted inside constraints is an important aspect for
CCM. Indeed CCM creates and launches a number
of threads that depends from the size of the longest
row in the Constraints tables among those selected
by the names appearing in the incoming event. In
presence of rows with very different sizes, the number
of unrequired threads may be relevant. To investigate
the impact of this aspect, we changed the distribution
of names for both constraints and attributes, moving
from the uniform distribution adopted in the default
scenario to a Zipf distribution, considered realistic
for many application fields [17]. Table 3 (fourth row)
shows the results we obtained. First of all we no-
tice how all algorithms increase their matching time
w.r.t. the default scenario. The counting algorithms
use names to reduce the number of constraints to
process, and this pre-filtering becomes less effective
with a Zipf distribution. SFF suffers from this problem
more than PCM, whose simpler constraint evaluation
process and the use of Bloom filters mitigate the
cost of considering a larger number of constraints.
The speedup w.r.t. SFF increases to 135.6× for CCM
and 184.9× for OCM. BETree employs self-adjustment
policies to dynamically adapt the processing tree
to the specific workload; for this reason, it is the
algorithm that suffers less from the use of a Zipf
distribution for names. The speedups of CCM and
OCM w.r.t. it decrease to 15.2× and 20.7× respectively.

Number of Constraints per Filter. Fig. 11 shows
how performance changes with the average number
of constraints in each filter.

We performed two kinds of experiments: in the first
one (see Fig. 11(a)), we set the overall number of
filters to 25k; accordingly, increasing the number of
constraints per filter also increases the overall number
of constraints, and consequently the complexity of
matching. In the second one we fixed the overall num-
ber of constraints to 200k (Fig. 11(b)), 1M (Fig. 11(c)),
and 5M (Fig. 11(d)), while changing the overall num-

14

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Constraints per Filter

CCM
OCM
SFF

BETree
BETree 1.3

(a) 25k Filters

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Constraints per Filter

CCM
OCM
SFF

BETree
BETree 1.3

(b) 200k Constraints

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Constraints per Filter

CCM
OCM
SFF

BETree
BETree 1.3

(c) 1M Constraints

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Constraints per Filter

CCM
OCM
SFF

BETree
BETree 1.3

(d) 5M Constraints

Fig. 11. Number of Constraints per Filter

ber of filters.
When increasing the number of constraints per

filter, the optimization derived from the use of a
Bloom filter becomes more effective, thus reducing
the processing times of PCM. Remarkably, this is true
also in Fig. 11(a), where the number of constraints to
be considered increases. BETree and SFF suffer this
situation, showing an increased matching time as the
number of constraints per filter grows (even when the
total number of constraints remains fixed).

The only case in which PCM is outperformed by
SFF or BETree is when we consider only one or
two constraints per filter. This is a very special (and
quite unrealistic) case in which the chance to find
a matching filter for a given interface is very high,
such that at the end all events are relevant for all
interfaces. The pruning techniques of SFF work at
their best in this case, while OCM and CCM always
process all constraints, albeit in parallel. The BETree
algorithm, which does not include any optimization
of the matched interfaces, performs much worse in
this region.

Finally, even when considering BETree 1.3, we
observe how the advantages of PCM significantly
increase with the complexity of the scenario. This
proves the benefits of using parallel hardware (both
multi-core CPUs and GPUs) when a large number of
complex subscriptions are deployed on the system.

Number of Names. As discussed in Section 3, PCM
makes use of the attribute names in the incoming
event to select which constraints have to be evaluated.
The same holds for SFF. Accordingly, the total num-
ber of names used inside constraints and attributes
represent a key performance indicator. Fig. 12 shows
how the processing times change with the number
of names. Increasing this number allows the “filter
selection” and “constraint selection” phases (common
to all the counting algorithms, and always performed
on the CPU), to discard a higher number of filter and
constraints. Accordingly, the cost of the “constraint
evaluation and counting” phase (the more expensive
in terms of computation and also the one that CCM
performs on the GPU) decreases. This is confirmed
by Fig. 12: all the counting algorithms perform better
when the number of names increases, especially when
moving from 10 to 100 names. After this threshold

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9 10

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Names (Hundreds)

CCM
OCM
SFF

BETree
BETree 1.3

Fig. 12. Number of
Different Names

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

Pr
oc

es
si

ng
 T

im
e

(m
s)

Percentage of Numerical Constraints

CCM
OCM
SFF

Fig. 13. Type of
Constraints

times tend to stabilize. This fact can be explained by
observing that over a certain number of names the
“constraint evaluation and counting” phase becomes
so simple that the processing time cannot decrease
anymore.

If we consider BETree, it shows two different re-
gions. First, its processing time decreases, when mov-
ing from 10 to 100 names; after that, it increases again.
Type of Constraints. Fig. 13 shows how performance
changes when changing the type of constraints. In
particular, we measured the processing time when
changing the percentage of constraints involving nu-
merical values (the remaining ones involve strings).
We could not consider BETree in this test, since it only
supports numerical constraints.

When considering the impact of constraint types,
different aspects cooperate in determining the overall
processing times. On the one hand, matching numeri-
cal values is less expensive than matching strings. On
the other hand, the chances of matching a numerical
constraint are higher than those of a string constraint,
which results in a greater matching effort to increase
counters and check if all constraints of a filter have
been matched. The second aspect is less relevant for
CCM and OCM, where all operations are performed
in parallel, while it has a greater impact on SFF. This
explains why the matching time of SFF increases with
the number of numerical constraints, while CCM and
OCM show constant or even decreasing processing
times.

B.3 Processing Events in Parallel
With reference to the architecture in Figure 5, this
section studies whether processing the events waiting
in the Input Queue in parallel may introduce some
benefits for the algorithms we are considering. To

15

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

O
ve

ra
ll

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Events Processed in Parallel

CCM

(a) CCM

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

O
ve

ra
ll

Pr
oc

es
si

ng
 T

im
e

(m
s)

Number of Events Processed in Parallel

SFF

(b) SFF

Fig. 14. Processing Events in Parallel

do so we created 1000 events and deployed them in
the Input Queue. Then we let all algorithms pick
up and process all of them k at a time (in parallel),
while varying k from 1 to 32, measuring the total
time spent. Subscriptions and events were generated
using the parameters of our default scenario. For the
algorithms running on the CPU we used an OpenMP
parallel for to iterate over events. This implementation
is possible also with CUDA, since starting from the
CUDA Toolkit 4.0 different CPU threads can safely
invoke different kernels on the same GPU. How-
ever, this would waste CPU resources that may be
useful for other purposes, as we will show in the
next section. Accordingly, we followed a different
route, modifying CCM to use a different copy of
the FiltersCount and Interfaces structures for
each event to be processed in parallel. This way we
could use a single kernel for multiple events, thus
avoiding the overhead of launching multiple kernels.
Fig. 14 shows the results we measured. When increas-
ing the number of events processed in parallel, SFF
significantly increases its performance, moving from
1350ms to 360ms to process 1000 events. In particular,
this time quickly drops moving from 1 to 6 events
processed in parallel, where 6 is exactly the number
of available cores. The processing time then increases
again with 7 events and slowly decreases, becoming
almost constant.

OCM already uses all the cores available to pro-
cess a single event. Accordingly, processing multiple
events in parallel does not increase its performance.
Conversely, CCM shows a significant benefit: the
time to process 1000 events decreases from 23.9ms
to 11.0ms. This means that the GPU has enough
resources to analyze several events in parallel. Finally,
we could not perform this test (and the following one)
on BETree, since we had only access to the binary
of the algorithm and it was not designed to process
multiple events in parallel.

BIOGRAPHIES

Alessandro Margara. Alessandro Margara is currently
a post-doctoral researcher in the High Performance
Distributed Computing group, at the Vrije Univer-
siteit of Amsterdam. He previously worked as a PhD
student and post-doctoral researcher in the DeepSE

Group at Politecnico di Milano. In 2012, he received
his PhD from Politecnico di Milano, with laude.

His main research interests are in the area of Dis-
tributed Systems and, more in particular, Event-Based
Middleware. During his PhD studies, he focused on
the definition of a Complex Event Processing mid-
dleware, with focus on event definition language
expressiveness and ease of use, processing algorithm
efficiency, and system scalability.

As part of this research project he developed, to-
gether with Gianpaolo Cugola, a complex event defi-
nition language (TESLA), an event processing system
(T-Rex), and a protocol for distributed event detection
(RACED).

During the design of T-Rex, moved by the require-
ment of low-latency processing expressed by appli-
cations, he started concentrating on parallel comput-
ing, by implementing algorithms for event processing
designed to take advantage of the processing power
of multi-core CPUs and modern GPUs. These experi-
ences increased his interest in parallel programming,
and in particular in programming language support
and abstractions for parallelism.

As part of the high performance distributed com-
puting group at the Vrije Universiteit of Amsterdam,
he is currently involved in a new research projects that
aim at extending the technologies for Semantic Web
to capture dynamic, frequently changing information.
Gianpaolo Cugola. Gianpaolo Cugola received his
Dr.Eng. degree in Electronic Engineering from Po-
litecnico di Milano. In 1998 he received the Prize
for Engineering and Technology from the Dimitri N.
Chorafas Foundation for his Ph.D. thesis on Software
Development Environments. He is currently Associate
Professor at Politecnico di Milano where he teaches
several courses in the area of Computer Science.

During his professional life, he has been involved
in several projects financed by the EU commis-
sion (IDEAS-ERC-227977 SMSCom, IST-034963 WASP,
IST-511556 POMPEI, IST-11400 MOTION, ESPRIT-
34840 PIE, ESSI-21244 MIDAS), by Microsoft Research
(”Network Aware Programming” and ”Virtual Cam-
pus”), and by the Italian governor (PRIN D-ASAP,
FIRB Insyeme, CNR IS MANET). He is co-author of
tens of scientific papers published in international
journals and conference proceedings.

His research interests are in the area of Software
Engineering and Distributed Systems. In particular,
his current research focuses on middleware technol-
ogy for largely distributed and highly reconfigurable
distributed applications with a special attention to
the issue of Content Based Routing and Complex
Event Processing as the basic mechanism to develop
advanced middleware services like publish/subscribe
and data sharing.

