Dealing with Changes in Service Orchestrations

Leandro Sales Pinto
Politenico di Milano
Dipartimento di Elettronica e
Informazione - DEI
Piazza Leonardo Da Vinci, 32
Milano, Italy

pinto@elet.polimi.it

ABSTRACT

Service Oriented Computing (SOC) allows programmers to
build distributed applications by putting together (i.e., or-
chestrating) existing services exported by remote providers.
The main source of complexity in building such kind of or-
chestrations is the need for anticipating and explicitly han-
dling (i.e., programming ad-hoc countermeasures) possible
changes in the external environment that may affect them,
like faults invoking services removed by their providers.

To ease the job of programmers we developed DSOL, an
innovative infrastructure supporting design and execution of
service orchestrations. It combines a declarative approach
to model the orchestration with planning mechanisms to ac-
tually run it. In this paper we focus on the mechanisms
provided by DSOL and its associated execution engine to
deal with changes that may happen at runtime. In partic-
ular, we show how the declarative nature, the modularity,
and the dynamism inherent in the DSOL approach allows
changes to be easily managed, both those that were fore-
casted at design time and those that require the workflow
to be changed while the orchestration is running.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms

Service oriented programming, self-adaptation

Keywords

Service orchestration, changes management, exception han-
dling

1. INTRODUCTION

Service orchestrations live in a very unstable world in
which changes occur continuously and unpredictably. Ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

Gianpaolo Cugola
Politecnico di Milano
Dipartimento di Elettronica e
Informazione - DEI
Piazza Leonardo Da Vinci, 32
Milano, ltaly

cugola@elet.polimi.it

Carlo Ghezzi
Politecnico di Milano
Dipartimento di Elettronica e
Informazione - DEI
Piazza Leonardo Da Vinci, 32
Milano, Italy

ghezzi@elet.polimi.it

ternal services invoked by the orchestration may be discon-
tinued by their providers, they may fail, or they may become
unreachable or incompatible with the original versions. Fur-
thermore, the orchestration requirements may evolve due to
business needs. It is therefore fundamental that orchestra-
tion languages and their run-time systems provide ways to
support dynamic evolution, allowing orchestration models
or even currently running instances to be modified to cope
with unforeseen situations and changes in requirements.

To better illustrate these needs, we introduce a case study,
which we will also use throughout the paper to describe our
approach. It is a web service used by a new bookstore to
perform its sales. Initially, this service composes the follow-
ing operations: an internal service that checks if the desired
book is available in stock, an external service that handles
the payments, and another external service used to contact
the business partner that handles deliveries. In particular,
let us consider the following requirements:

e At service invocation, the client provides the relevant
information about the books she wants to buy, the
delivery address and the details about payment;

e First action to perform is checking the availability of
books. If they are in stock the order is saved with
status open. Otherwise, an exception is thrown;

e After checking availability and saving the order, the
process continues to the payment stage. For payment,
two alternatives are available: PayPal or credit card.
The preferred option is to use PayPal, because in such
way the bookstore does not need to receive or keep any
information about payments, e.g., credit card num-
bers, limiting its responsibilities. PayPal itself also of-
fers much more alternatives of payments to the client.
If, for any reason, the system is not able to invoke the
PayPal services, it enables the use of credit card with
two alternatives. The first is to contact the card oper-
ator directly, using its services API. In case this route
fails, the last alternative is to save the credit card in-
formation so that the payment can be done manually.
In such case, the status of the order becomes payment
pendent, (otherwise it is payment authorized). If the
payment is not authorized, an exception is thrown;

e The delivery can only be scheduled after the payment.
Depending on the payment status, the delivery is sched-
uled as immediate or wait for confirmation.

As a new bookstore that wants to enter the market grad-
ually, due to contractual costs reason, the managers decided

DECLARATIVE
LANGUAGE

Domain Expert

|

|

|

|

|
provides [e

LT {“RonTive svstew invokes g pecies @
Software
Engineer

\
2. !

Deers Endpoint | @ | | Actions |
A NErLs
| ensas ovides | |
YN B
} Plan &%s Factsj present
}gpn ~N A j
\ < L1108
| |

" J

Figure 1: The DSOL approach

to initially sell only to national destinations. However, dur-
ing this initial period the bookstore receives a huge, inter-
national order request from a foreign university. Although
it is still not worth to start selling worldwide, the manager
sees this situation as an interesting business opportunity and
wants to fulfill this request. The problem is that neither the
current system is able to handle it, because international
orders require an extra insurance in case of miscarriage,
nor the current deliver company is able to handle interna-
tional deliveries. In order to complete this order, the system
needs to deviate [11] from the current process, including the
mandatory insurance, and also contacting a delivery com-
pany able to deliver at the required destination.

Another natural evolution would be to accept interna-
tional orders and ship worldwide. The main difference of
this case w.r.t. the previous one is that the former is a devi-
ation that applies only to a specific running instance of the
process, while the latter is an evolution of the whole process,
which will affect all further executions.

To support dynamic evolution of service orchestrations,
we developed DEng — DSOL Ezecution Engine', an engine
based on the declarative language DSOL — Declarative Ser-
vice Orchestration Language. In [12] we provided a general
description of DSOL and its declarative nature, here we fo-
cus on changes and how they are supported by our system.

In particular, the next section describes how the declar-
ative and dynamic approach to orchestration modeling and
execution offered by our system greatly simplify the job of
developing flexible orchestrations that could efficiently man-
age various types of foreseen deviations from the standard
course of actions. In Section 3 we instead focus on the set of
mechanisms we recently added to DEng in order to cope with
unforeseen changes, by allowing the orchestration model/in-
stances to evolve at runtime. Finally, a comparison with
related works is given in Section 4, while Section 5 draws
some conclusion and discusses future work.

2. BUILDING FLEXIBLE ORCHESTRATI-
ONS WITH DSOL

Using traditional languages, like BPEL [3] and BPMN [29],
a service orchestration is modeled as a monolithic program,
which captures the entire flow of execution, from the start
of the orchestration to the invocation of the elementary ser-

! A prototype implementation of DEng is available for down-
load at http://www.dsol-lang.net

vices in charge of executing each step. Changes in the ex-
ternal environment that force to deviate from the expected
course of actions are usually dealt with by heavily using ex-
ception handling and compensation mechanisms intertwined
with the process code; an approach that makes orchestra-
tions hard to write, understand, and modify.

DEng adopts a radically different approach. A service
orchestration is modeled in terms of its goals and the ac-
tions to reach them, using the declarative language DSOL.
The DEng runtime system then uses planning techniques to
determine the actual flow of execution to achieve the orches-
tration’s goals (i.e., which actions to execute and in which
order). The same planning techniques are also used in case
of faults, to build alternative paths of execution without the
need for explicitly programming them.

This eases the job of building flexible orchestrations ca-
pable of coping with faults and changes in the external en-
vironment, while the modularity and dynamism inherent in
such approach also simplifies the steps required to change
the orchestration model at runtime (which is the main focus
of the new features added to DEng, presented in Section 3).

The DSOL model of a service orchestration includes differ-
ent aspects, which are defined separately using different id-
ioms, possibly by different stakeholders, each bringing their
own competences. In particular, as shown in Figure 1, a
DSOL model includes the elements described hereafter.

Orchestration Interface

The orchestration interface formalizes how the orchestration
is exposed as a web service and is defined as a Java inter-
face compliant with the JAX-WS [2] specification. Listing 1
shows the orchestration interface of our reference case study.

@WebService

public interface Bookstore {
@WebReturn(name="order ')

public Orderlnfo order(
@WebParam(name="'books_list ')
List <Book> books,

@WebParam (name="'deliveryAddress ')
Address deliveryAddress ,
@WebParam(name="'paymentDetails ')
PaymentDetails pd);

Listing 1: The bookstore orchestration interface

Orchestration Goal and Initial State

The goal of the orchestration, which is usually expressed by
a domain expert not necessarily competent in software de-
velopment, is a set of facts that represent the expected state
of the world after executing the orchestration. Similarly, the
initial state models the set of facts that one can assume to
be true at orchestration’s invocation time.

Note that to add flexibility the goal may actually include
a set of states, which reflect the various alternatives to ac-
complish the goal of the orchestration, listed in order of
preference. This is the first mechanism provided by DEng
to manage possible changes in the external environment; a
mechanism that does not require to explicitly handle excep-
tions or to code different paths of executions. Indeed, by
listing different goals in order of preference, the domain ex-
pert may easily distinguish between the preferred course of
actions and the available alternatives in case something goes
wrong and the preferred goal cannot be reached.

start true

goal
(booksAvailablelnStock and orderSaved and
paymentDoneByPayPal and deliveryScheduled)
or
(booksAvailablelnStock and orderSaved and
paymentDoneByCreditCard and deliveryScheduled)

Listing 2: Initial state and goal

As an example, Listing 2 shows the initial state and the
goal for the bookstore scenario. In particular, two alter-
native goals are listed, the preferred one that describes the
situation when payment has been done through PayPal, and
the alternative to follow if paying through PayPal is impos-
sible. As for the initial state, to model the bookstore sce-
nario we do not need to assert any special fact, so the initial
state becomes true. Notice however that the DEng runtime
system automatically populates the initial state with facts
that reflect the orchestration arguments: books_list(books),
address(deliveryAddress), and paymentDetails(pd).

Abstract Actions

Abstract actions are high-level descriptions of the primitive
actions available in a given domain, which DEng uses as the
building blocks of orchestration plans. They are modeled in
an easy-to-use, logic-like language, in terms of their signa-
ture, precondition, and postcondition. We expect that such
language can be mastered by non-technical domain experts.

action checkStock (Books)
pre: books_list(Books)
post: booksAvailablelnStock

action saveOrder(Books)
pre: books_list(Books), booksAvailablelnStock
post: orderSaved, order_info(order)

action payByPayPal(Order ,PD)
pre: order_info(Order), paymentDetails(PD)
post: paymentDoneByPayPal

action payByCreditCard (Order ,PD)
pre: order_info(Order),paymentDetails(PD)
post: paymentDoneByCreditCard

action scheduleDelivery (Order, Address)
pre: order_info(Order), deliveryAddress (Address)
post: deliveryScheduled

Listing 3: Abstract actions

Note that while writing the abstract actions, the domain
expert may focus on the general aspects of the domain, leav-
ing out all the implementation details including the expected
sequence of execution. As an example, Listing 3 illustrates
the abstract actions that model the bookstore scenario. On
one hand, we notice that the fact that the payment by credit
card can be implemented in two different ways (automati-
cally or manually) is not visible at this level. Similarly, we
notice that there is no reference to the order of execution,
which will be automatically chosen by the Interpreter (see
Figure 2) at runtime in order to satisfy the goal.

This approach of focusing on the general actions available
in a domain, leaving the actual workflow to be automatically
decided at runtime, is the second mechanism provided by
DEng to help modelers in defining a flexible orchestration
that may easily cope with changes.

Concrete Actions

Concrete actions are the executable counterpart of abstract
actions and represent the concrete steps required to imple-
ment the operations modeled by the abstract action, e.g., by
invoking an external service or executing some code. They
are meant to be specified by a different stakeholder, i.e.,
a software engineer with programming skills, once the ab-
stract actions have been identified and specified by the do-
main expert. Concrete actions are implemented through
Java methods using an ad-hoc annotation @Action to refer
to the abstract actions they implement.

Q@Action (name="payByPayPal” ,service="paypal”)

public abstract void payByPayPal(Orderlnfo order,
PaymentDetails pd);

Q@Action (name="payByCreditCard” ,service="visa")

public abstract void payByCreditCard(Orderlnfo order,

PaymentDetails pd);

Q@Action (name="payByCreditCard”)
public void savePaymentInfo(Orderlnfo order,
PaymentDetails pd){
order.setStatus (PAYMENT_PENDENT);
order.setPaymentDetails(pd);
order.save ();

Listing 4: Example of concrete actions

Among concrete actions, we distinguish between service
actions and generic actions. Service actions are abstract
Java methods directly mapped to external services. As an
example see the method payByPayPal in Listing 4. Service
actions have a special attribute service of the @Action an-
notation that specifies the external service to invoke, while
a hot-pluggable module of the DEng runtime system is re-
sponsible for taking this information and finding the spec-
ified service to be invoked. This way, service actions may
represent different kinds of services, e.g., SOAP or REST-
ful. DEng can be easily extended to support other SOA
technologies. Generic actions are simple Java methods that
can perform any operation. As an example, see the method
savePaymentInfo in Listing 4. It changes the state of the
order and saves the payment information into the database.

It is important to note that, in general, several concrete
actions may be bound to the same abstract action. This way
if the currently bound concrete action fails, i.e., it returns an
exception, the Interpreter has other options to accomplish
the orchestration step specified by the failed abstract action.
As an example, Listing 4 illustrates two different alternatives
to accomplish the abstract action payByCreditCard. This
ability to associate several concrete actions to the same ab-
stract action (the choice of which one to use being left to
the runtime system) is the third mechanism implemented in
DEng to easily build flexible orchestrations, capable of han-
dling changes in the external environment without the need
of explicitly programming how to manage them.

2.1 Execution

At orchestration invocation time (see Figure 2) the Inter-
preter translates the goal, the initial state, and the abstract
actions into a set of rules and facts used by the Planner to
build an abstract plan of execution, which lists the logical
steps through which the desired goal may be reached. List-
ing 5 illustrates a plan for our example. It includes a list
of abstract actions that can lead from the initial state to a

state that satisfies the first orchestration goal.

checkStock (books)

saveOrder(books)

payByPayPal(order , pd)
scheduleDelivery (order ,deliveryAddress)

Listing 5: A possible plan for the bookstore example

This plan is taken back by the Interpreter, which enacts
it by associating each step (i.e., each abstract action) with
a concrete action that is executed, possibly invoking exter-
nal services. It is important to note that while the plan is
described as a sequence of actions, the Interpreter is free to
execute them in parallel, by invoking each of them as soon
as their precondition is satisfied.

If something goes wrong during execution (e.g., an exter-
nal service is unable to accomplish the expected task or it
returns an exception), the Interpreter first tries a different
concrete action for the abstract action that failed. If this
is not enough, the Interpreter invokes the Planner again to
find a different course of actions that could skip the step
that failed. For example, if the action payByPayPal fails
the Planner is invoked and it computes another plan that
uses the action payByCreditCard instead of the faulty one.
Furthermore, by comparing the old and the new plan, con-
sidering the current state of execution, the Interpreter is able
to calculate the set of actions that need to be compensated
(i.e., undone) as they have already been executed but are
not part of the new plan. Compensation actions are defined
following the same idea of concrete actions. In such case,
the attribute compensate is added to annotation @Action.
An example of compensating action is shown in Listing 6,
which shows the steps that are executed if the action save-
Order need to be undone. Note that we do not expect that
all action could be undone. We just provide mechanisms to
accomplish this step when possible.

Q@Action (name="saveOrder”, compensation=true)
public void cancelOrder(@ObjectName("order”)
Orderlnfo order){
order.setStatus (CANCELED);
order.save ();

Listing 6: Save order compensation action

This plan-execute-replan process is repeated until one plan
is found that successfully reaches one of the orchestration
goals or a plan cannot be built. In the first case, a success-
ful message is sent to the client. Otherwise, the last tried
plan is compensated and an exception is thrown.

As mentioned at the beginning of this section, the DEng
approach to orchestration modeling and execution supports
workflow management that can handle quite nicely adverse
behaviors in the external environments, which may other-
wise lead to failures, or whose treatment in a traditional
orchestration language (like BPEL) would lead to difficult
to write and understand code.

Taking our case study as an example, the mechanisms
described so far allow DEng to handle the case where the
PayPal service cannot be accessed (by anticipating this sit-
uation and including two abstract actions for payment) and
the case where the credit card cannot be charged on-line (by
defining two different concrete actions for the same abstract
action payByCreditCard). The aspect that is yet uncovered
is support to handling unforeseen changes, i.e., those that

COMPARE PLANS AND
COMPENSATE IF NECESSARY

REPLAN AVOIDING
FAILED STEP

fail /COMPENSATE EXECUTED
ACTIONS

[new plan found]

[plan NOT found]

Figure 2: Process followed by the Interpreter to ex-
ecute a service orchestration

need the orchestration model to be modified at runtime, like
handling an unexpected international order request. This is
the topic of the next section.

3. CHANGES AT RUNTIME

While the declarative nature of DSOL allows easily model-
ing of flexible orchestrations, the modularity and dynamism
inherent in the DEng approach provide a perfect substrate
where ad-hoc mechanisms can be added to change the or-
chestration at runtime. Indeed, as the plan of execution, i.e.,
the actual sequence of activities to perform, is built at run-
time, changing the orchestration is much simpler in DEng
compared to the complex mechanisms that other, more tra-
ditional systems must put in place to obtain the same result.

In particular, as we explain in detail in the remainder of
this section, changing the orchestration at runtime requires
the plan of a running orchestration to be re-built from the
current state of execution: something very similar to what
the Interpreter already does to bypass a faulty situation that
blocks the current plan.

In general we support full changes to the orchestration
model. The service architect may add new abstract or con-
crete actions, remove or modify them, change the goal of
the orchestration, and even change its interface. Moreover,
we allow changes that impact the orchestration at various
levels. Indeed, when the architect submits a new model for
an existing orchestration it has to specify if it has to affect
future executions, current ones, or both. This way, we cover
different levels of updates: from small changes, applied to
single running instances, to changes to be applied to future
calls only, to major changes that have to affect current and
future executions.

To better characterize this aspect, we define the concept
of orchestration instance as the running orchestration that is
created each time a request is made to the interface service
of the orchestration. Such instance is represented internally
by an instance descriptor, which we extended to include a
copy of the orchestration model as it was defined at the time
when the orchestration was invoked.

Given this premise, we notice that the case of a change
that must affect only new instances does not creates special
problems. What we do is to let current instances proceed

[no]

[yes] @LAN >

|

EXECUTE
/F (COMPARE PLANS AND
COl \TE IF NECESSARY

[new plan found]
REPLAN AVOIDING
FAILED STEP

[new model available]

[error]

[success]

[plan NOT found]
COMPENSATE EXECUTED
ACTIONS

Figure 3: Process followed by Interpreter to execute
an orchestration supporting changes at runtime

using their own copy of the model, while the main copy, used
for future calls, is overwritten with the new one.

The situation is more complex when the new model has
to be applied to running instances. Indeed, this requires
modifying the way the Interpreter operates. In particular
(see Figure 3), as soon as the new model is submitted, the
Interpreter stops executing the current plan and invokes the
Planner to build a new plan in line with the new model. At
this point, as it happens for standard re-planning, the new
plan is compared with the old one to decide where to start
executing it and which action to undo, if any.

Notice that in applying a new model to a running in-
stance we do not consider changes to the orchestration in-
terface, which are taken into consideration only for future
calls. Also notice that the declarative nature of DSOL and
the modularity and dynamism inherent in DEng eliminate
most of the typical problems about possible mismatches be-
tween the state of current executions and the changed model.
In particular, during the re-planning phase that follows the
submission of a new model, the Planner does not start from
a generic “true” state, but it takes into consideration the
current state of execution, i.e., the facts already asserted
during the execution of the old plan. This guarantees that
the new plan, if found, is coherent with the current state.

To put in evidence the potential of these mechanisms, con-
sider our case study. When the order request from the for-
eign university arrives we may decide to accept it by adding
to the original model the abstract actions described in List-
ing 7 with the related concrete actions (omitted for brevity).
As we do not want this new behavior to be shared by the
whole system, those changes will be applied only to the run-
ning instance that received the request. This instance, in-
stead of failing because the scheduleDelivery action could
not be performed toward an international delivery, would
detect those changes and trigger the re-plan phase. The new
plan would include the schedulelnternationalDelivery action,
that replace the scheduleDelivery actions to accomplish part
of the goal, and the buyOrderInsurance that satisfies one
of the pre-conditions of scheduleInternationalDelivery. The
new plan executes successfully and allows to manage this
exceptional situation.

action buyOrderlnsurance(Order)
pre: order_info(order)
post: orderlnsuranceDone

action schedulelnternationalDelivery(Order, Address)

pre: orderlnsuranceDone, order_info(Order),
deliveryAddress (Address)

post: deliveryScheduled

Listing 7: New abstract actions for small deviation

On the other hand, imagine that at some time the man-
agers of our bookstore had the chance to find two good part-
ners to handle the international deliveries. The first and
preferred one provides also the insurance of the order. The
second one, although it deliveries to a broaden number of
destinations, does not include the insurance.

To include the first partner into the job and open the
bookstore to international clients, changing the concrete ac-
tions that implement the scheduleDelivery is enough. This
is shown by Listing 8, which shows the concrete actions to
include the first partner. Notice that we used the @When
annotation to guide the Interpreter in choosing between the
two methods. This change could be submitted as a global
one, affecting current and future instances of the orches-
tration when the manager decides to extend their business
worldwide. Similarly, the second partner could be included
by changing the model as made to manage the special order
from the international university, but this time applying the
change globally.

Q@Action(name="scheduleDelivery")
@When("deliveryAddress.isNational ()")
public void
scheduleNationalDelivery (Orderlinfo order,

Address deliveryAddress)
(.

Q@Action (name="scheduleDelivery")

@When("deliveryAddress.islnternational ()")

public void

schedulelnternationalDelivery (Orderlnfo order,
Address deliveryAddress)

{1

Listing 8: New concrete actions for process evolu-
tion

4. RELATED WORK

The idea of handling exceptions and dealing with devia-
tions is not new to the service age era. Indeed, the problems
we have described in this paper share plenty of commonali-
ties to what the research areas on software processes [4], and
workflow management systems [9, 14, 18] have discovered.
Both processes and service compositions are long-running,
complex and dynamic entities that need to evolve and re-
act to changes during the course of execution. Having rec-
ognized this feature, a lot of research has been conducted
in order to find ways to model flexible processes and how
to manage deviations originated during process enactment.
This past work can be classified in three main directions:

Process programming with exceptions. A number
of approaches investigated how to adapt the exception han-
dling constructs that are supported by standard program-
ming languages for inclusion in languages intended for pro-
cess definition and automation. This direction could be illus-
trated by languages like APPL/A [28] and Little-JIL [20],
several Workflow Management Systems [27], and by most
of business process languages like BPEL and BPMN. The
main drawback of this approach is that it requires all pos-
sible exceptional conditions to be identified before writing

the process code. This can be quite restrictive in highly dy-
namic contexts in which new and unanticipated cases may
arise. This limitation is exacerbated by the fact that lan-
guages which follow this approach usually adopts a norma-
tive paradigm of modeling and a rigid runtime system, which
do not allow to deviate from the model at process execution
time, if something unexpected happen.

Reflective Mechanisms. Some software process exe-
cution environments—such as SPADE [5], OASIS [16], En-
deavors [7], EPOS [15], and IPSE 2.5 [8]—adopted reflective
languages, through which process models and even their run-
ning instances may be accessed as data items to be inspected
and modified at process enactment time. As an example, the
SPADE environment provides a fully reflective process mod-
eling language (SLANG) based on Petri nets, which allows
meta-programming. In SLANG one can develop a process
whose objective is to modify an existing process or even an
existing process instance. The potential advantage of such
an approach over the previous one is clear: the process model
does not need to anticipate all possible exceptional situa-
tions, since it can include the (formal) description of how
the process model itself can be modified at execution-time
to cope with unexpected situations. The main drawback of
this approach is that it may bring further rigidity into the
approach: not only the process must be modeled (or “pro-
grammed”) in all detail, but so also must the meta-process,
i.e., the process of modifying the model itself. For this rea-
son, reflection is considered an effective approach to manage
major exceptional situations, which require a radical depar-
ture from the originally modeled process, and particularly
those situations that are expected to occur again.

Flexible Approaches. Both previous cases are based
on the assumption that a precise and enforceable process
model is available and there is no way to violate the pre-
scribed process. In other terms, there is no way to treat a
deviation from the process within the formal system. Re-
flective languages support changes to the process, but all
possible changes must follow a predefined change process,
i.e., again there is no way to “escape” from a fully defined,
prescriptive model. The key idea to overcome this limita-
tion was to abandon the ambitious but unrealistic goal of
modeling every aspect of the process in advance, following a
prescriptive style, to focus on certain constraints that should
be preserved by the process, without explicitly forcing a
pre-defined course of actions. This brings a great flexibility
in process enactment, avoiding micro-management of every
specific issue while focusing on the important properties that
should be maintained. Usually, these approaches are cou-
pled with advanced runtime systems that support the users
in finding their way through the actual situations toward the
process goals, while remaining within the boundaries deter-
mined by the process model. Examples of approaches that
fall under this category are PROSYT [10] and ConDec [24].

This last category is also the one we mainly took as inspi-
ration to develop DSOL, in which we abandon the impera-
tive style followed used by most of the service composition
languages to adopt a strongly declarative and flexible ap-
proach. Such flexibility was leveraged by the runtime sys-
tem, as described in this paper, to simplify the definition of
exception-safe service orchestrations and to allow deviations
and changes during process execution.

The complexity of implementing exception-safe service or-
chestrations has also been recognized by part of the research

community, which is proposing Automated Service Compo-
sition (ASC) as an alternative approach. A subset of the
approaches classified under the ASC umbrella promises fully
automatic construction of the orchestration from a large (po-
tentially universal) set of semantically-rich service descrip-
tions, to be interpreted, selected, combined, and executed by
the orchestration engine, based on pre-defined initial states
and goals [26]. This should happen without the intervention
of a service architect, whose role is fully subsidized by the
engine itself. Examples of such approaches are [22], [6] and
[25]. With the workflow being generated at runtime, and us-
ing services dynamically selected, the probability of excep-
tion is minimized. In the case they happen, a re-plan mecha-
nism, as in our approach could also be used. We believe that
such approach is too ambitious, as it requires all services to
be semantically described with enough details to allow the
engine to choose and combine them in the right way to sat-
isfy the users goals. Furthermore, compensation mechanism
are usually ignored. We prefer to follow the mainstream
path that suggests human intervention to model the service
orchestration through an ad-hoc language.

Some approaches, like [13], [23] and [17], which refer to
BPEL as the de-facto language for service orchestrations,
have tried to extend it in order to support dynamic adap-
tation. Even some BPEL engines, like Apache ODE [1],
have some features to allow process instances management.
The problem of these approaches is that architects would
still have to use BPEL as the specification language, whose
adoption we have deprecated previously in Section 2.

A similar (and more general) problem has also been tack-
led in the research area of Dynamic Change Management [19,
21], i.e., systems that are able to evolve without stopping or
affecting parts that are not influenced by changes. Such sys-
tems must guarantee the consistency between the old version
and the new version to be deployed and also the correct com-
pletion of running instances. Our approach provides an ad-
hoc solution to the problem in the specific context of DEng,
as the Interpreter is able to replan as soon as a model update
is detected. The re-planning phase guarantees that the new
plan found is coherent with the plan that was being executed
and to the current state of the orchestration. The compen-
sation mechanisms help guarantee consistency between the
current state and the state the new plan should start.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the approach provided by
DSOL and its execution engine DEng to deal with changes
(forecasted or not) during service orchestration execution.
First, we have shown that the concepts behind DSOL’s mod-
ular declarative approach simplify the specification of alter-
native, or exceptional paths, anticipated at design time. The
same foundation was also leveraged to simplified the imple-
mentation of changes during runtime, allowing changes to be
also applied immediately to running instances, guaranteeing
the consistency of on-going executions and model versions.

As future work, we plan to extend our current DEng im-
plementation by enabling those changes to be performed
through an API. This can be useful for the implementa-
tion of monitoring mechanisms, in which other programs,
not only the architect, will be able to modify the orches-
tration model, possibly removing or disabling faulty actions
before they actually fail.

Acknowledgment

This work was partially supported by the European Com-
mission under FP7 Programme IDEAS-ERC, Project 227977—
SMScom and under the “Service Architectures, Infrastruc-
tures and Engineering”, Project 215483—S-Cube.

6. REFERENCES

[1] Apache ODE — Orchestration Director Engine.
http://ode.apache.org/
bpel-management-api-specification.html.

[2] Java API for XML-Based Web Services (JAX-WS)
2.0. http://jcp.org/en/jsr/detail?id=224.

[3] Web Services Business Process Execution Language
Version 2.0, 2006. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html.

[4] R. Balzer. Tolerating inconsistency. In Proceedings of
the 13th international conference on Software
engineering, ICSE 91, pages 158-165, Los Alamitos,
CA, USA, 1991. IEEE Computer Society Press.

[5] S. C. Bandinelli, A. Fuggetta, and C. Ghezzi. Software
process model evolution in the spade environment.
IEEE Trans. Softw. Eng., 19:1128-1144, 1993.

[6] P. Bertoli, M. Pistore, and P. Traverso. Automated
composition of web services via planning in
asynchronous domains. Artificial Intelligence,
174(3-4):316 — 361, 2010.

[7] G. Bolcer and R. Taylor. Endeavors: a process system
integration infrastructure. In Software Process, 1996.
Proceedings., Fourth International Conference on the,
pages 76 -89, Dec. 1996.

[8] R. Bruynooghe, J. Parker, and J. Rowles. Pss: A
system for process enactment. In Proceedings of the
1st International Conference on the Software Process,
pages 128-141, Oct. 1991.

[9] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow
evolution. Data and Knowledge Engineering, 24(3):211
— 238, 1998. ER ’96.

[10] G. Cugola. Tolerating deviations in process support
systems via flexible enactment of process models.
IEEE Trans. Software Eng., 24(11):982-1001, 1998.

[11] G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi. A
framework for formalizing inconsistencies and
deviations in human-centered systems. ACM Trans.
Softw. Eng. Methodol., 5:191-230, 1996.

[12] G. Cugola, C. Ghezzi, and L. S. Pinto. Process
programming in the service age: Old problems and
new challenges. In Engineering of Software, pages
163—-177. Springer Berlin Heidelberg, 2011.

[13] R. Fang, Z. L. Zou, C. Stratan, L. Fong, D. Marston,
L. Lam, and D. Frank. Dynamic Support for BPEL
Process Instance Adaptation. In Proceedings of the
2008 IEEFE International Conference on Services
Computing - Volume 1, pages 327-334, 2008.

[14] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and
M. Teschke. A comprehensive approach to flexibility
in workflow management systems. SIGSOFT Softw.
Eng. Notes, 24:79-88, March 1999.

[15] L. Jaccheri, J. Larsen, and R. Conradi. Software
process modeling and evolution in epos. In Proceedings
of the 4th International Conference on Software
Engineering and Knowledge Engineering, pages 574

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

24]

[25]

(26]

27]

28]

29]

—581, June 1992.

P. Jamart and A. van Lamsweerde. A reflective
approach to process model customization, enactment
and evolution. In ’Applying the Software Process’ ,
Proceedings of the 3rd International Conference on the
Software Process, pages 21 —32, Oct. 1994.

X. Jia, S. Ying, Z. Liang, D. Xie, and J. Wen. A
reflective approach for dynamic change of bpel
process. Wuhan University Journal of Natural
Sciences, 13, 2008.

P. J. Kammer, G. A. Bolcer, R. N. Taylor, A. S.
Hitomi, and M. Bergman. Techniques for supporting
dynamic and adaptive workflow. Computer Supported
Cooperative Work (CSCW), 9:269-292, 2000.

J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
Softw. Eng., 16:1293-1306, November 1990.

B. S. Lemer, E. K. McCall, A. Wise, A. G. Cass, L. J.
Osterweil, and J. Stanley M. Sutton. Using Little-JIL
to Coordinate Agents in Software Engineering. 2000.
X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna,
and J. Lu. Version-consistent Dynamic
Reconfiguration of Component-based Distributed
Systems. In Proceedings of the 19th Symposium and
the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE '11. ACM, 2011.

S. A. Mcllraith and T. C. Son. Adapting golog for
composition of semantic web services. In Proceedings
of the 8th International Conference on Principles and
Knowledge Representation and Reasoning (KR-02),
pages 482-496, 2002.

A. Mosincat and W. Binder. Transparent runtime
adaptability for bpel processes. In Proceedings of the
6th International Conference on Service-Oriented
Computing, ICSOC ’08, pages 241-255, Berlin,
Heidelberg, 2008. Springer-Verlag.

M. Pesic and W. van der Aalst. A Declarative
Approach for Flexible Business Processes
Management. In J. Eder and S. Dustdar, editors,
Proceedings of the BPM 2006 Workshops (BPD, BPI,
ENEI, GPWW, DPM, semantics{ws), volume 4103 of
Lecture Notes in Computer Science, pages 169-180.
Springer, Springer, 2006.

S. R. Ponnekanti and A. Fox. SWORD: A developer
toolkit for web service composition. In Proceedings of
the 11th International WWW Conference
(WWW2002), Honolulu, HI, USA, 2002.

J. Rao and X. Su. A Survey of Automated Web
Service Composition Methods. In LNCS, volume
3387,/2005, pages 43-54. Springer, 2005.

N. Russell, W. van der Aalst, and A. ter Hofstede.
Workflow Exception Patterns. Advanced Information
Systems Engineering, pages 288-302, 2006.

S. M. Sutton, Jr., D. Heimbigner, and L. J. Osterweil.
Language constructs for managing change in
process-centered environments. SIGSOFT Softw. Eng.
Notes, 15:206-217, October 1990.

S. A. White. Business Process Modeling Notation,
V1.1. Technical report, OMG, 2008.

