
PeerWare: A Peer-to-Peer Middleware for Mobile TeamWork

Carlo Ghezzi, Gianpaolo Cugola, and Gian Pietro Picco

Dipartimento di Elettronica e Informazione—Politecnico di Milano

Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.

Tel.: +39-2-23993493 Fax: +39-2-23993411

{ghezzi, cugola, picco}@elet.polimi.it

May 19, 2003

Abstract

The advantages of a peer-to-peer architecture
reach well beyond the realm of Internet file shar-
ing, becoming key in supporting enterprise pro-
cesses and especially collaborative work involv-
ing mobile users. To support this view, we de-
signed and experimented with PeerWare, a core
communication middleware for TeamWork appli-
cations.

1 Peer-to-peer for collabora-

tive applications

Collaborative work is intrinsically peer-to-peer in
nature. Members of a team typically interact di-
rectly with each other, each of them is responsible
of a given set of documents and carries along the
subset of them relevant for discussion. On the
other hand, most of currently available tools sup-
porting collaboration exploit a rigid client-server
architecture.

This results in an “architectural mismatch” be-
tween the external view provided by the applica-
tion and its internal software architecture. The
effect of such a mismatch is a lack of flexibility in
carrying out the interactions, which must all be
funneled through the server. This limitation be-
comes even more evident when mobility becomes
part of the picture. People need to communicate
and collaborate even while in movement, and in-
dependently from the place where they are. Nev-
ertheless, in similar situations server access is of-
ten prevented by technical or administrative bar-
riers.

As a consequence of the above considerations,
we argue that a peer-to-peer approach holds sig-
nificant advantages over traditional client-server
architectures. When a peer-to-peer architecture
is adopted, data and services are no longer gath-
ered in a single point of accumulation. Instead,
they are spread across all the nodes of the dis-
tributed system. Users may directly host the re-
sources they want to share with others, with no
need to publish them on some server.

Interestingly, these features are relevant not
only in mobile scenarios but also in fixed ones,
where the decentralized nature of a peer-to-peer
architecture encompasses naturally the case of
multisite or multicompany projects, whose coop-
eration infrastructure must span administrative
boundaries, and is subject to security concerns.

Unfortunately, however, most of the peer-to-
peer applications developed in the last years start
from premises that are rather different from those
outlined thus far. They target the Internet and
aim at providing peer-to-peer computing over
millions of nodes, with file sharing as their main
application concern. The difference in perspective
from the domain of collaborative work is made ev-
ident by their search capabilities, that typically
do not guarantee to capture information about
all matching files. Moreover, in most cases they
do not take into consideration characteristics like
security or the ability to support reactive inter-
actions, which are crucial in cooperative applica-
tions for the enterprise.

Moreover, they bring peer-to-peer to an ex-
treme, where the logical network of peers is to-
tally fluid: none of them can be assumed to be
fixed and contributing to the definition of a per-

1

N1

N3

N4

N6

N2

N7

N9N8 N10

N5

Legend

Node

Document

D6

D2

D3

D5

D4

D1

D8 D7

Figure 1: The data structure provided by PeerWare.

manent infrastructure. This radical view pre-
vents access to the resources exported by non-
connected peers, which is not acceptable in the
enterprise domain we consider, where critical data
is often required to be always available, indepen-
dently of its owner.

2 PeerWare

Based on the above considerations, we developed
PeerWare [1]: a peer-to-peer middleware for
teamwork support specifically geared towards the
enterprise domain.

PeerWare is both a model and an incarna-
tion of this model into a middleware. In develop-
ing both, our first concerns were minimality and
flexibility.

The model. The PeerWare coordination
model exploits the notion of a global virtual data
structure (gvds) [2], which is a generalization of
the Lime [3, 4] coordination model. Coordination
among units is enabled through a data space that
is transiently shared and dynamically built out of
the data spaces provided by each accessible unit.

The data structure managed by PeerWare is
a hierarchy of nodes containing documents, where
a document may actually be accessible from mul-
tiple nodes, as shown in Figure 1. This structure
resembles a standard file system, where directo-
ries play the role of nodes, files are the documents,
and Unix-like hard links are allowed only on doc-
uments.

When a peer is isolated, it is given access only
to its own tree (stored locally) of items(i.e., nodes
and documents). However, when connectivity

N1

N3N2

N7

N9N8 N10

D6

D3

D1

D8 D7

N1

N3

N4

N6

N2

N5

D2

D5

D4

N1

N3

N4

N6

N2

N7

N9N8 N10

N5

D6

D2

D3

D5

D4

D1

D8 D7

Peer A
(DS1)

Peer B
(DS2)

GVDS

Figure 2: Building the gvds in PeerWare.

with other peers is established, the peer has ac-
cess to the virtual tree constructed by superim-
posing the trees contributed by all the peers in
the system, as illustrated by Figure 2.

In search of minimality, PeerWare provides
only three main operations to operate on the
gvds:

• the execute operation allows peers to execute
an arbitrary piece of code on a selected set of
items held by connected peers. The results
produced by this execution are collected and
given back to the caller;

• the subscribe operation allows peers to sub-
scribe to events occurring on a selected set
of items, while;

• the publish operation allows peers to notify
the occurrence of events.

By exploiting these primitives peers can query
the gvds, as well as subscribe for events and re-
ceive the corresponding notifications. The hier-
archical structure of the gvds provides a natural
scoping mechanism, thus leading to an efficient
implementation of searches.

The middleware. Currently, the PeerWare

model has been implemented in two middleware:
one [1], developed in Java, has been used as the

2

Figure 3: The PeerWare run-time architecture.

core of the motion platform [5, 6, 7], the other,
developed in C# under the Microsoft .Net infras-
tructure, is the core of the PeerVerSy [8] config-
uration management tool.

Both implementation are tailored to the enter-
prise domain and distinguish between a set of per-
manently available backbone peers, and a fringe
of mobile peers, which are allowed to connect and
disconnect as required. To optimize routing, all
these peers are connected to form an acyclic graph
in which the mobile peers represent the leaves, as
shown in Figure 3.

Access control and security are critical issues in
the domain we target and they are addressed by
two separate modules. One provides mechanisms
to establish encrypted channels among peers and
to manage the security information necessary to
authenticate a peer. The other embeds the actual
security policy that determines the capabilities of
a given peer.

To increase flexibility, the functionality pro-
vided by the security modules and also by the
repository holding local documents are sharply
decoupled from the specific implementation pro-
vided for these functionalities. Thus, the secu-
rity protocols, as well as the format of the secu-
rity information used to perform authentication,
and the repository effectively used can be changed
easily, e.g., to adapt them to the common practice
of a specific business environment.

3 Conclusions

Collaboration defines a scenario where interac-
tion is intrinsically peer-to-peer. We exploited
this idea by developing PeerWare, a peer-to-
peer middleware explicitly tailored for collabo-

ration. The model of collaboration adopted by
PeerWare is minimal but expressive enough to
support complex collaboration schemes, including
both reactive and proactive interactions. Current
incarnations of this model in a middleware have
been tailored to the domain of enterprise-wide
collaboration. We are working on a different im-
plementation oriented toward more dynamic sce-
narios, including ad-hoc networks.

References

[1] “Peerware web site.” http://peerware.

sourceforge.net.

[2] A. Murphy, Enabling the Rapid Development
of Dependable Applications in the Mobile En-
vironment. PhD thesis, Washington Univer-
sity in St. Louis, MO, USA, August 2000.

[3] G.P. Picco, A. Murphy, and G.-C. Roman,
“Lime: Linda Meets Mobility,” in Proc. of
the 21st Int. Conf. on Software Engineering
(ICSE’99) (D. Garlan, ed.), (Los Angeles,
CA, USA), pp. 368–377, ACM Press, May
1999.

[4] A. Murphy, G.P. Picco, and G.-C. Roman,
“Lime: A Middleware for Physical and Logi-
cal Mobility,” in Proc. of the 21st Int. Conf.
on Distributed Computing Systems (ICDCS-
21), May 2001. To appear.

[5] “The web site of the motion project.” http:

//www.motion.softeco.it/pages/.

[6] G. Cugola and G. Picco, “Peer-to-peer for col-
laborative applications,” in Proc. of the In-
ternational Workshop on Mobile Teamwork
Support, (Vienna, Austria), IEEE press, July
2002.

[7] G. Reif, E. Kirda, H. Gall, G. Picco, G. Cu-
gola, and P. Fenkam, “A web-based peer-to-
peer architecture for collaborative nomadic
working,” in Proc. of the 10th IEEE Work-
shops on Enabling Technologies: Infrastruc-
tures for Collaborative Enterprises (WET-
ICE), (Boston, MA, USA), IEEE Computer
Society Press, June 2001.

[8] “Peerversy web site.” http://sourceforge.

net/projects/peerversy/.

3

