
High-Throughput Subset Matching
on Commodity GPU-Based Systems

Daniele Rogora
USI, Switzerland

daniele.rogora@usi.ch

Michele Papalini
Cisco Systems, France

michele.papalini@cisco.com

Koorosh Khazaei
USI, Switzerland

koorosh.khazaei@usi.ch

Alessandro Margara
Politecnico di Milano, Italy

alessandro.margara@polimi.it

Antonio Carzaniga
USI, Switzerland

antonio.carzaniga@usi.ch

Gianpaolo Cugola
Politecnico di Milano, Italy
gianpaolo.cugola@polimi.it

Abstract
Large-scale information processing often relies on subset
matching for data classification and routing. Examples are
publish/subscribe and stream processing systems, database
systems, social media, and information-centric networking.
For instance, an advanced Twitter-like messaging service
where users might follow specific publishers as well as spe-
cific topics encoded as tag sets must join a stream of pub-
lished messages with the users and their preferred tag sets so
that the user tag set is a subset of the message tags.

Subset matching is an old but also notoriously difficult
problem. We present TagMatch, a system that solves this
problem by taking advantage of a hybrid CPU/GPU stream
processing architecture. TagMatch targets large-scale appli-
cations with thousands of matching operations per seconds
against hundreds of millions of tag sets. We evaluate Tag-
Match on an advanced message streaming application, with
very positive results both in absolute terms and in compar-
ison with existing systems. As a notable example, our ex-
periments demonstrate that TagMatch running on a single,
commodity machine with two GPUs can easily sustain the
traffic throughput of Twitter even augmented with expres-
sive tag-based selection.

CCS Concepts • Information systems → Stream man-
agement; Data stream mining

Keywords Subset matching, GPU-based processing, mes-
sage selection and dissemination

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23–26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064190

1. Introduction
Subset matching is essential to global web applications. For
example, within the Twitter messaging system, the first stage
in ad selection for user queries finds a “match between user
attributes and targeting criteria across the corpus of ads,”1

which at a minimum amounts to checking that the attributes
of the user query contain the targeting criteria of the ads.
Even more important for Twitter is the selection of the mes-
sages themselves. Twitter allows users to “follow” a pub-
lisher for immediate delivery of published messages. In ad-
dition, Twitter provides a keyword or tag-based search over
past and current messages. Combining these two features, a
user might want to follow a publisher but only on a specific
set of keywords or tags, or even just that set of tags with-
out a specific publisher. This data selection based on sub-
set matching is also essential in database [2, 9, 12] and data
mining applications [3, 13, 18] where it is used as a selec-
tion or join operator, and in some publish-subscribe systems
and some information-centric networking architectures [14]
where it is used for message brokering and routing.

Perspective on an old problem. Basically, given a large
corpus of sets D = s1, . . . , sn (the database) and a set q (a
query) from a high-intensity input stream, subset matching
means finding the sets si such that si ⊆ q. This is a basic
combinatorial problem that is also notoriously difficult.

Roughly speaking, there are two kinds of solutions for
subset matching. One checks sets si one by one against the
query q. Typically, solutions of this kind use “signatures”
sig(s) that are compact representations of sets that admit
to a fast comparison sig(si) ⊆ sig(q) more or less exactly
indicative of the relation si ⊆ q between the sets [5, 12].
Another solution is to iterate over the elements of the query,
x ∈ q, and to use an inverted index to find the list of sets si
that contain x, and then to combine those lists to find which

1 https://blog.twitter.com/2016/resilient-ad-serving-at-twitter-scale

sets are fully covered by q [7, 10]. This combination of lists
can be seen as an exploration of the subsets of the query. In
fact, a variant of this second solution looks for the subsets
qj ⊆ q directly in the database (e.g., using a hash table).

Thus both types of algorithms reduce to an iteration over
sets and neither one is ideal in all cases: one is a linear scan
of the database; the other one iterates over the subsets qj ⊆ q
and therefore is exponential in the size of the query q.

Approach and contribution. Given the long history of
subset matching, we have little hope to achieve a high
throughput with a purely algorithmic solution. We there-
fore take a multi-pronged approach whereby we leverage a
hybrid stream processing system of CPUs and GPUs, com-
bining techniques from state-of-the-art subset matching with
novel algorithmic and technical improvements on both the
CPU and GPU sides. We implement this approach in a sub-
set matching engine called TagMatch.

database size
system 20M 40M 212M
GPU-only, plain 0.40 0.20 0.04
GPU-only, plain with batching 11.50 6.30 1.20
CPU-only, fast prefix tree 21.10 14.00 4.30
CPU-only, state-of-the-art ICN 27.60 17.40 —
CPU-only, TagMatch 3.90 3.40 0.68
TagMatch 268.80 144.40 35.30

(throughput: thousands queries per second)

Table 1: Summary evaluation: throughput of TagMatch vs.
CPU-only and GPU-only systems.

Before introducing TagMatch, we emphasize that the syn-
ergistic use of CPUs and GPUs in TagMatch is essential, as
demonstrated by the summary results of Table 1. Notice first
that GPU parallelism alone is insufficient, and in fact it is
inferior to state-of-the-art CPU-only solutions, over which
TagMatch achieves an almost 10× speedup. Notice further
that TagMatch is also significantly faster than the best com-
bination of CPU-only and GPU-only solutions, and that Tag-
Match itself achieves a 50× speedup when running on a
hybrid system. This is because TagMatch exploits the more
versatile processing capability of CPUs in combination with
the massively parallel processing capabilities of GPUs. Tag-
Match does that with an appropriate division of labor, spe-
cific algorithmic solutions, and an effective coordination be-
tween CPUs and GPUs. We further discuss an alternative,
GPU-only architecture in Section 4.5.

To introduce TagMatch, we note that both types of exist-
ing algorithms—iterations over si ∈ D or over qj ⊆ q—can
benefit from an index to take shortcuts. In the first case, if
si is not a subset of q, then the iteration can skip all the su-
persets of si. Similarly, in the second case, if qj is not in the
database, then the iteration can skip all the subsets of qj . So,
both solutions can use an index in which sets are arranged
according to their subset relations, and one such effective

index is a prefix trie (or tree) like the one proposed origi-
nally by Rivest [19], which is in fact used in many subset-
matching algorithms [7, 9, 15].

TagMatch takes a similar approach, although it indexes
signatures rather than sets. In addition, TagMatch organizes
the data and processing in a platform-specific way, with a
coarse-grained index on the CPU side and a fine-grained se-
lection on the GPU side. Specifically, TagMatch uses Bloom
filters as set signatures, and partitions the database to di-
vide and coordinate the work between CPUs and GPUs.
Appropriately selected bit masks define the partitions and
make up the CPU index, which is designed as a compact
data structure to support a sequential but memory-efficient
matching on CPUs. Correspondingly, signatures are grouped
and sorted within partitions on GPUs to enable parallel pro-
cessing and additional shortcuts. TagMatch then processes
queries through a pipeline that alternates CPU and GPU
stages. We design and engineer this pipeline so as to max-
imize the parallelism both between and within each stage.

We validate this design with an extensive experimental
evaluation. We measure the performance of TagMatch in
several relevant application scenarios both comparatively
and in absolute terms. TagMatch outperforms all comparable
systems we tested, namely a widely used database system
(MongoDB), an existing message forwarding system, and a
tightly optimized matcher based on a prefix tree that itself
outperforms all subset matching algorithms we know of as
reported in the literature. In absolute terms, as a highlight
of our results, under a realistic Twitter workload with more
than 212 million unique sets representing user preferences,
TagMatch can process over 30,000 subset queries per second
on a single, commodity machine with two GPUs.

In summary, we make the following contributions: (1) we
develop a subset matching engine specifically designed for
CPU/GPU systems, and (2) we demonstrate that a relatively
inexpensive CPU/GPU system can support a messaging ser-
vice capable of processing the entire traffic of Twitter2 while
providing a content-based filtering service that is signifi-
cantly more expressive than that offered by Twitter today.

2. System Model
We design TagMatch as a general-purpose subset matching
engine. To make this notion a bit more concrete, we consider
sets of string tags, which is the most common use in appli-
cations and in any case provides a very general model. In
essence, TagMatch implements a database of tag sets with a
subset-match operation and the interface shown in Table 2.

The add-set and remove-set functions add and remove
a set with an associated key, where the key is simply a
link to application data. These changes are not immediately
effective and instead are staged in a temporary index and
become effective only after a call to the consolidate function.

2 In 2015, Twitter registered an average rate of 6000 tweets per second.

{@POTUS,energy,policy}
{@Chomsky,education}
{@ggreenwald,NSA}⋆

...

input queries (stream)

q1= 010101 · · · 11
q2= 011111 · · · 01
q⋆3= 001110 · · · 11

...

Bloom-filter
encoding

⋆ “unique” query

pr
e-

pr
oc

es
s

CPU

0 none
1 010001 · · · 01 → P1

2
001100 · · · 00 → P2
001010 · · · 11 → P3
001011 · · · 01 → P4

3 000101 · · · 10 → P5
. . .

· · · · · ·
191 . . .

partition table

su
bs

et
m

at
ch

GPU

P1

011011 · · ·01 ↔ 1
010101 · · ·11 ↔ 2
010101 · · ·01 ↔ 3

. . .

P2

001101 · · ·10 ↔ 62
001101 · · ·01 ↔ 63
001100 · · ·11 ↔ 64

. . .
...

...

tagset table

. . . ,q2

batch1 P1

. . . ,q2,q3

batch2 P2

. . . ,q1,q3

batch3 P3

...

ke
y

lo
ok

up
/r

ed
uc

e

CPU

1 → k1,k2
3 → k2,k6,k8

...
63 → k5,k8,k13

...

key table

(q2,1),(q2,3), . . .
results1

(q2,63),(q3,71), . . .
results2

(q1,324),(q3,99), . . .
results3

...

q1 →k3,k13, . . .

q2 →k1,k2,k2,
k6,k8,k5,
k8,k13, . . .

q⋆3 →k9,k3,k37,
k3,k7, . . .

...

results (stream)

m
er

ge

CPU

Figure 1: The architecture of TagMatch.

add-set(set , key) : void
remove-set(set , key) : void
consolidate() : void
match(query-set) : multiset of keys
match-unique(query-set) : set of keys

Table 2: TagMatch interface.

The match and match-unique find subsets of a given
query set in the table. match(q) returns all the keys k as-
sociated with the indexed sets s such that s ⊆ q, possibly
with multiple instances of the same key k if k is associated
with multiple subsets of q. match-unique returns a set of
keys k, such that at least one indexed set s ⊆ q is associated
with k (i.e., it avoids duplicate keys).

The match-unique(q) function is useful to implement the
Twitter-like application discussed in Section 1. The appli-
cation could store the preferences of users in a table Users
with two fields: Users.prefs and Users.id . For each tweet
in a stream Tweets , the application must find the ids of all
the users interested in that tweet, effectively computing an
inner join on Users.prefs ⊆ Tweets.keywords . Thus the
application would use TagMatch to add each user preference
u with add-set(u.prefs, u.id), and then to find the matching
users for each tweet t with match-unique(t.keywords).

3. System Implementation
This section presents the general design of TagMatch, as
well as the implementation details of its components. Fig-
ure 1 shows the high-level architecture of TagMatch, where
the gray boxes represent the main computational steps of the

match and match-unique functions while the white boxes
represent the main data structures. TagMatch is built on a
hybrid CPU/GPU system with one or more CPUs and one
or more GPUs. Therefore, some computational steps run on
CPUs while others run on GPUs.

At a high-level, TagMatch indexes partitions of related
tag sets, and therefore finds the subset of an input query set
in two steps: The first step finds the relevant partitions for a
query set, and the second step matches the query against the
individual sets within those relevant partitions.

Specifically, the matching algorithm consists of a four-
stage pipeline: (i) The pre-process stage selects the relevant
partitions for a query. (ii) The subset match stage finds the
tag sets that match a query within each partition using a
GPU. To maximize throughput and better use the process-
ing capabilities of GPUs, this stage operates on batches of
queries, evaluating them in parallel. (iii) The key lookup/re-
duce stage extracts the keys associated with each set of tags,
and groups the results by query. (iv) Finally, the merge stage
combines the results from multiple partitions into a single
set of keys (for match-unique) or a multiset (for match).

TagMatch represents sets (database and query) as Bloom
filters. Bloom filters are an ideal basis for subset matching,
since they are compact, fixed-width bit vectors that admit to
very simple membership and subset checks. However, those
checks are only probabilistically correct and may result in
false positives. For sets S1 and S2 represented with Bloom
filters (bit vectors) B1 and B2, S1 ⊆ S2 implies B1 ⊆ B2

(bitwise), and B1 ⊆ B2 (bitwise) implies S1 ⊆ S2 with high
probability, although S1 6⊆ S2 is possible (false positive).
The width and the number of hash functions that define the
Bloom-filter representation also determine its false-positive

probability, and therefore are high-level design parameters
that can be optimized for various application domains. The
specific implementation of TagMatch that we describe in
this paper uses 192-bit Bloom filters with 7 hash functions,
which provide very conservative bounds for false positives in
all the application domains we considered.3 In cases where
false positives are absolutely unacceptable, the system or the
application can perform an additional exact subset check. In
the following, whenever we mention query or database sets,
we refer to their representations as Bloom filters, and we
implicitly refer to their bitwise inclusion relations.

TagMatch stores its index in three main tables in CPU
or GPU memory (see Figure 1): the partition table (CPU)
associates each partition with its defining bit mask; the tagset
table (GPU) associates each tag set s in each partition with a
unique id that points to an entry in the key table (CPU) that
therefore associates tag sets with keys.

TagMatch is designed to exploit parallelism on both
CPUs and GPUs. Thus TagMatch can assign any number
of threads to the various stages in the processing pipeline.
TagMatch may also replicate the tagset table on all available
GPUs o match queries in parallel on multiple GPUs. Al-
ternatively, TagMatch can also partially replicate or simply
partition an extremely large tagset table on multiple GPUs.

TagMatch batches queries and results between some pro-
cessing stages to amortize the cost of transferring informa-
tion and control between CPUs and GPUs. However, batch-
ing may also introduce excessive latency when, depending
on the application, some partitions would see a few matching
queries over a significant period of time. In those cases, some
batches would not fill up and therefore would hold back the
queries contained in them. To limit this holding time, Tag-
Match uses a configurable timeout period after which it au-
tomatically processes batches even if they are not full.

We now detail the off-line partitioning of the database and
then the on-line processing stages of the TagMatch pipeline.

3.1 Off-Line Partitioning
TagMatch indexes the database D in a number of partitions
so that all tag sets in a partition share a chosen bit mask
(in their bit-vector representation). Given a configuration
parameter MAX P , TagMatch computes a set of masks that
define a set of partitions, each containing up to MAX P tag
sets. More specifically, to make the matching process more
efficient, TagMatch computes balanced partitions using a
recursive partitioning scheme implemented in Algorithm 1.
This is done off-line within the consolidate() function.

3 Given two sets S1 6⊆ S2, an m-bit Bloom-filter encoding with k hash
functions would result in B1 ⊆ B2 (a false positive) with probability
P (B1 ⊆ B2) = (1 − e−k|S2|/m)k|S1\S2|, where |S1 \ S2| > 0 is the
number of elements of S1 that are not in S2. In our case (m = 192, k = 7),
with a set S2 of |S2| = 10 tags and another set S1 that differs by
|S1\S2| = 3 tags, the Bloom-filter encoding would indicate a false positive
with probability 10−11. Roughly the same 10−11 false-positive probability
exists for a set S2 of 5 tags and a set S1 that differs by |S1 \ S2| = 2 tags.

Algorithm 1 Balanced Partitioning
Input: database sets D , max size MAX P

Output: partition table PT : Mask → Partition

PT ← ∅
Q← {((mask = ∅)→ (P = D), (used bits = ∅))}
while Q is not empty do

extract (mask → P, used bits) from Q
if |P | ≤ MAX P and mask 6= ∅ then

PT ← PT ∪ (mask → P)
else

compute frequencies of one-bits in all sets B ∈ P
pivot ← bit 6∈ used bits with freq. closest to 50%

pivot is a previously unused mask bit that splits P
as evenly as possible into two parts P0 and P1

P0 ← {B ∈ P |B[pivot] = 0}
P1 ← {B ∈ P |B[pivot] = 1}
used bits ← used bits ∪ {pivot}
add (mask → P0, used bits) to Q
add ((mask ∪ {pivot})→ P1, used bits) to Q

end if
end while

Notice that the MAX P parameter (maximum partition
size) can be used to balance the workload between the main
processing stages in the TagMatch pipeline. Having a few
large partitions would simplify the pre-processing on the
CPU side but might overload the subset match on the GPU
side. Conversely, small and therefore numerous partitions
would reduce the cost of the subset match, but would also
increase the cost of the pre-processing. We further discuss
and evaluate this trade-off in Section 4.

3.2 Pre-Process
Given a query set q, the task of the pre-process stage is to
forward q for further processing within all the partitions Pi

that may contain matching tag sets for q (i.e., subsets of q).
Since each partition Pi contains tag sets that share the same
bits in mask i, then the task of the pre-process stage is to find
all mask i such that mask i is itself a subset of q (bitwise).

The pre-process stage uses a simple index for masks that
is a kind of inverted index of bit positions (partition table
in Figure 1). Concretely, the partition table is an array PT
of 192 vectors of bit masks and the corresponding partition
identifiers, where vector PT [j] contains all the bit masks
whose leftmost one-bit (bit set to 1) is at position j.

The pre-processing (Algorithm 2) then scans the one-bits
of the query set q to classify q. The algorithm is not very so-
phisticated and yet it is quite efficient in practice because the
partition table is very compact and therefore cache-efficient.
Also, the concrete implementation of TagMatch uses bit vec-
tors made of 64-bit blocks, so the subset checks in Algo-
rithm 2 (mask i ⊆ q) amount to three simple block opera-

tions.4 It can also be shown that the efficiency of Algorithm 2
does not depend on the distribution of masks over the 192
bits in the partition table.

Algorithm 2 Pre-Process Stage
Input: partition table PT , query q
Output: forward q for processing within relevant partitions

for j ∈ all one-bit positions of q do
for (mask i → Pi) ∈ PT [j] do

if mask i ⊆ q then
enqueue q for processing within partition Pi

end if
end for

end for

Whenever the pre-process stage fills up a batch for a
given partition Pi, TagMatch extracts all the queries from
the queue, copies them to the GPU memory, and invokes the
subset match kernel for that batch of queries on partition Pi.

3.3 Subset Match
The subset match stage takes a batch of queries and a single
partition of the tagset table, and returns the identifiers of the
tag sets that match each query q in the batch.

We develop the subset match on a GPU following the Sin-
gle Program Multiple Data (SPMD) model using the CUDA
framework. With SPMD, one writes a “kernel” function de-
signed to run on a single data item, then invokes that kernel
on a set of data items, and the GPU schedules the execution
of the kernel on all data items with as many parallel threads
as its hardware resources allow.

Algorithm 3 High-level Subset Match Kernel
Input: batch of queries Q, table of tag sets P (partition)
Output: vector of pairs (query,set-id) results

kernel code invoked on each individual entry of
partition P = (s1, id1), (s2, id2), . . . , (sn, idn);
automatic variable thread id identifies the entry
assigned to this thread.

s← P [thread id].set
id ← P [thread id].id
for q ∈ Q do

if s ⊆ q then
atomically append (q , id) to results

end if
end for

At a high-level, the subset match kernel processes a single
indexed tag set against a batch of queries (see Algorithm 3).
The specific tag set is identified by an automatic thread id
variable.5 Notice that, here too, the subset check amounts to

4 In C, ((q[k] & ~maski[k]) == 0), for block k.
5 The CUDA framework defines multiple variables to identify each thread
and to control its behavior. For ease of exposition, we abstract from these
implementation details and simply refer to a single thread id variable.

a simple operation on each Bloom-filter block. Notice also
that the output vector (results) is shared by all the threads of
a kernel invocation, therefore the append operation uses an
atomic increment on the size of the output vector.

3.3.1 Subset Match Optimizations
On the basis of the high-level design of Algorithm 3, we de-
velop and implement several optimizations and performance
improvements.

The first and most significant optimization is a pre-
filtering step that takes place before the actual subset check.
In CUDA, the threads in a kernel invocation are organized
in blocks, such that all threads within a block run with con-
secutive thread ids on the same processor and can access a
fast (but limited) block-level shared memory.

Algorithm 4 Pre-Filtering in Subset Match Kernel
Input: original queries Q′, table of tag sets P (partition)
Output: batch of queries Q in shared memory

if thread id = thread block first id then
first ← P [thread id].set
last ← P [thread id + thread block size].set
len ← leftmost nonzero bit(first ⊕ last)
shared prefix ← first with all bit pos. ≥ len cleared
shared Q ← ∅

end if
i← thread id − thread block first id
while i ≤ |Q′| do

if prefix ⊆ Q′[i] then
atomically append Q′[i] to Q

end if
i← i+ thread block size

end while

The pre-filtering exploits the thread-block shared mem-
ory as shown in Algorithm 4. The first thread in the block
computes the longest common prefix for all the tag sets as-
signed to the threads in the block, which requires only a sim-
ple bit-wise operation between the first and last tag sets in the
block thanks to the fact that we store the sets in the tagset ta-
ble in lexicographical order. Then, all threads in the block
iterate through the original batch of queries (in parallel) to
exclude the queries that do not match the common prefix.

A second optimization affects the format of the output of
the GPU kernel that needs to be copied to the CPU memory.
Copying data from a GPU to the host memory is expensive
because the bandwidth of the PCI-Express bus is limited and
also because each call to the CUDA API has a fixed, non
negligible cost. Therefore, one way to improve performance
is to reduce the size of the output of the GPU kernel and
to store that output in a single memory region, so as to
minimize the number of copy operations.

The output consists of pairs (q, s) for a query q and a
matching set s. In practice, we use 8-bit integers to identify

a query within its batch, and a 32-bit integer to identify a
tag set in the tagset table. However, because of alignment
requirements, a simple structure to represent the (q, s) pair
would require 64 bits, so a vector of pairs would result in a
significant waste (38%) of memory and bus bandwidth. One
way to avoid this waste is to store the query and set identi-
fiers in two separate arrays. However, that would require two
copy operations. We solve this problem by storing the output
vector in groups of four (q, s) pairs, with four packed query
identifiers preceding four packed set identifiers:

q1 q2 q3 q4 s1 s2 s3 s4 . . .

This layout yields a 100% or near-100% memory utiliza-
tion, with a worst-case total loss of only three bytes.

Finally, we apply various fine-grained optimizations to
the kernel code. For instance, we manually unroll simple
loops and we reduce the number of loop iterations required
to read the queries in a batch by accessing two queries within
each iteration.

3.3.2 Workflow Optimizations
While the subset match kernel exploits multiple GPU cores,
running one kernel at a time still can not fully utilize a GPU.
This inefficiency is due to the round-trip time incurred in the
processing of a batch of queries. When a CPU thread fills
a batch of queries within the pre-process stage, that thread
then must invoke the subset match kernel on that batch.
In particular, the CPU thread must (1) copy the batch of
queries from CPU to GPU memory, (2) invoke the subset
match kernel on that batch of queries and the corresponding
partition, and (3) copy the results back from GPU to CPU
memory. And running one such sequence at a time leaves a
GPU unused during the copy operations.

To overcome this limitation, and also to parallelize indi-
vidual kernel executions whenever possible, TagMatch uses
CUDA streams to enable multiple CPU threads to submit
tasks to a GPU concurrently. A stream is an abstraction
of a queue of GPU operations. Operations within the same
stream execute sequentially in FIFO order, while operations
in different streams are executed in parallel as much as possi-
ble, depending on the available hardware resources. In Tag-
Match, each CPU thread that needs to invoke a kernel on a
batch of queries acquires an available stream and then issues
the sequence of commands for parameter copy, kernel invo-
cation, and result copy, through that stream.

Notice, however, that streams alone do not solve all syn-
chronization problems. Consider the two copy operations.
It is immediately possible for an invoking thread to issue a
command to copy the minimal amount of data to transfer
the batch of queries from CPU to a GPU, because the size
of the batch is known at the time of the invocation. How-
ever, the same thread can not know at that same time the
size of the result. A straightforward solution would be to is-
sue a command to transfer the size of the result, and then
only later, when that information becomes available, issue

the command to retrieve the results with a minimal transfer.
However, this would introduce an additional round-trip time
and an additional synchronization point.

In TagMatch we avoid this inefficiency by associating
each GPU stream with two buffers for the results (call them
even and odd), each containing a length and a set of results.
We then alternate between the two buffers as follows. In
an odd transfer cycle, we use the odd buffer to transfer the
length of the next (even) set of results, as well as the set
of results for the current (odd) cycle. And for this copy
operation we can issue a command with minimal transfer
size because the exact size of this (odd) set was transferred
in the previous (even) cycle and is readable from the even
buffer. Then, similarly in the following even cycle, we find
the length of the current (even) set of results in the odd
buffer, which we use to issue the copy command for the
current (even) set of results, and so on.

In summary, TagMatch takes full advantage of streams,
with the following key benefits for the pipeline architecture.
First, GPUs can process multiple batches on multiple par-
titions in parallel. Second, communication between CPUs
and GPUs achieves an optimal utilization of the bus in both
directions. Third, CPU threads can invoke entire sequences
of GPU operations asynchronously, which means that CPU
threads are no longer responsible for the synchronization
between copy and processing operations, which in turn al-
lows them to continue with pre-processing, key lookup/re-
duce, and merge tasks. Finally, TagMatch splits the workload
across all available GPUs, with maximal inter-GPU paral-
lelism in the case of full replication of the tagset table.

3.4 Key Lookup/Reduce and Merge
As shown in the previous section, the subset match stage
outputs results in the form of (q, s) pairs, where q is a query
id and s is a unique identifier of a tag set in the tagset table.

When new results become available for a partition, a
CPU thread picks up these results and performs the key
lookup/reduce stage, which accesses the key table to retrieve
the set of keys associated with each set-id s. The thread then
groups these keys by query in a results table (see Figure 1),
associating each query with a list of sets of keys. Additions
to the results table also use the proper atomic operations to
allow access from multiple threads.

For each query q going through the matching pipeline,
TagMatch maintains a counter of all the batches (partitions)
within which q is forwarded for processing. When q’s pre-
processing terminates, and the counter goes back to zero,
signaling that all the results for all the batches returning
from the GPUs have been accounted for, then TagMatch
runs q through the last merge stage. In the case of a match
query, that requires no additional processing. In the case of a
match-unique query, the merge stage merges all sets of keys
associated with q into a single set.

4. Evaluation
We now present the results of an experimental evaluation
of TagMatch. The general objective of this evaluation is to
assess the performance of TagMatch in terms of through-
put. Most importantly, we are interested in (1) the effective
throughput measured in queries processed per time unit un-
der realistic workloads, (2) the scalability of TagMatch with
respect to the size of the database and queries as well as to
the capabilities of the platform (e.g., available CPU threads),
and (3) the performance of TagMatch relative to other com-
parable state-of-the-art systems.

4.1 Subjects and Experimental Setup
The main subject of our experimental analysis is a C++
implementation of TagMatch as described in Section 3. In
addition, we use the following subjects:

• prefix tree: a main-memory implementation of a subset
matching algorithm that indexes database sets into a pre-
fix tree. Specifically, this system uses a Patricia tree and
solves the subset matching problem by navigating such
tree. This implementation is representative of most state-
of-the-art approaches based on trees (see Section 5).

• ICN matcher: an implementation of a state-of-the-art al-
gorithm specifically designed to perform packet forward-
ing in Information Centric Networks (ICN) [15]. In this
context, the database encodes forwarding information
represented as sets of tags, and the queries are the pack-
ets to dispatch. This algorithm is also based on a prefix
tree and, similar to TagMatch, it is designed for high
throughput.

• MongoDB: the MongoDB Database Management System
(version 3.2.10), which offers an explicit subset operator.

Our testbed is a general-purpose machine equipped with
two Intel Xeon E5-2670 v3 processors, each with 12 cores
running at a clock frequency of 2.30GHz, and 64GB of
RAM. The machine also has two NVidia TITAN X graphic
cards each with 12GB of GDDR5 RAM.

To make the comparison as fair as possible, we configure
the prefix tree and the ICN matcher to use Bloom filters with
the same size as TagMatch (192-bit), and we try to feed the
same input and allocate the same system resources to all
subject systems. Thus for all the comparative experiments,
with give each system the same number of threads.

Still, we could not perform exactly the same experiments
with all systems. In particular, since the ICN matcher uses a
significant amount of memory to build its index, we could
only test the ICN matcher with a reduced portion of the
largest workloads. We discuss this case in Section 4.3.2. We
encounter analogous and even more extreme difficulties with
MongoDB. In fact, the performance of MongoDB is lim-
ited to the point of making larger experiments impossible or
pointless. We therefore test MongoDB with specially crafted

and relatively small workloads. We discuss the case of Mon-
goDB in Section 4.4.

4.2 Workloads
We evaluate the absolute performance of TagMatch using a
workload representing a Twitter-like messaging system. In
this workload, the database entries are tag sets that represent
the interests of users, the keys associated with each tag set
are the identifiers of the users interested in that tag set, the
queries are the tweets published by the users, and the tags in
the queries are the hash-tags (keywords) of the tweets.

4.2.1 Database Sets
The workload includes 300 million users (keys), which is
roughly the number of users that are active on Twitter every
month,6 and contains over 212 million unique sets represent-
ing user interests.

We generate the set of interests based on a real dataset
of tweets provided by the TREC conference (2011-2012),
containing 16 million tweets recorded during two weeks in
2011.7 To derive realistic relations between users, we use a
graph of 41.7 million Twitter users and 1.47 billion follower
relations [8]. To amplify the data set and to prevent a bias
toward the English language in the workload generation, we
artificially create multiple languages in our data set: given a
tag, we “translate” it by adding a prefix that indicates the new
language. For example, the original tag cat becomes fr cat
in French or it cat in Italian. In our workload we assume
that 40% of the users speak only one language while the
remaining 60% speak two languages8. To select the language
spoken by each user we use two different distributions: the
first one is the language distribution on Twitter [6], while the
second one is the distribution of the most frequent second
languages used in the world9.

For each user in our workload we generate a set of inter-
ests as follows. First we select the languages spoken by the
user according to the distributions mentioned above. Then
we pick the number of followed publishers according to the
follower distribution that we derive from the Twitter graph.
Then we randomly select the publishers from the list of users
available in our data set and collect their tweets. We generate
one interest for each publisher by randomly selecting one of
their tweets and using the hash-tags in that tweet. In addition,
we “translate” the hash-tags using one of the two languages
assigned to the user, since we assume that a user follows only
publishers that write in one of the user’s languages.

If the publisher of the tweet is a frequent writer, we
also add the id of the publisher as a tag in the interest. We
consider a publisher to be a frequent writer if he or she is
ranked in the top 30% based on the number of published

6 Twitter stats: https://about.twitter.com/company
7 https://github.com/lintool/twitter-tools/wiki/Tweets2011-Collection
8 http://ilanguages.org/bilingual.php
9 https://www.ethnologue.com/statistics/size

tweets. An interest with only hash-tags describes the set of
information that the user wants to collect, while an interest
that includes a user id selects only the information of interest
that are generated by the user with that id. This procedure
results in interests containing an average of five tags.

4.2.2 Queries
One method to generate queries is to select the tags in each
query (that is, the hash-tags in each tweet) more or less uni-
formly at random. However, that would most often result in
queries that are immediately and very efficiently discarded
in the initial pre-filtering stage. So, to be conservative, we
instead create a workload in which each query matches at
least one tag set in the database. To do that, we generate each
query by selecting a tag set from the database to which we
then add between two and four extra tags selected at random.
(We also experiment with a broader range of additional tags;
see Section 4.3.1.) The rationale for this generation algo-
rithm is that the selected set from the database would perhaps
represent a generic topic while the additional tags would
characterize the specificity of the tweet. Beyond that, as we
said, the intended effect of this method is to obtain conser-
vative results for the matching throughput, since the method
essentially forces every query to go through the subset match
phase on the GPU stage and then the key lookup/reduce and
merge phase on the CPU (in the case of match-unique).

4.3 Performance and Scalability
We now present three series of experiments intended to test
the performance and scalability of TagMatch under a vari-
ety of workloads and configurations. Thus in these experi-
ments we first measure the throughput in terms of number
of processed queries per seconds, and later we measure the
matching latency. We analyze the performance of TagMatch
in absolute terms and also in comparison with the state-of-
the-art prefix tree.

4.3.1 Size of the Query Set
In the first series of experiments we test the performance
of TagMatch and the prefix tree with queries of increasing
sizes. Figure 2 shows the results of these experiments. As
explained in Section 4.2.2, the primary workload we use
consists of queries with between two and four additional
tags, which corresponds to the histograms at positions 2–4
in Figure 2.

It is clear from the figure that the number of tags in
each query has a very significant impact on performance
(notice the log scale). This is intuitive from an algorithmic
perspective, since query sets of higher cardinality are likely
to lead to more one-bits in the Bloom filters, which are
likely to match more prefixes and therefore require more
data transfer between CPUs and GPUs, and also more work
on both sides.

However, notice that for the same intuitive reasons, the
decline in input throughput, which is what we measure in

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Number of additional tags per query

TagMatch
prefix tree

Figure 2: Average throughput for match-unique with queries
of different sizes.

Figure 2, does not result in a corresponding decrease in out-
put throughput. In fact, as it turns out, and as we demonstrate
with the measurements of Figure 3, the output throughput for
the same experiments increases significantly with the query
size. We argue, intuitively, that for selective queries, mean-
ing queries that have a few matching sets and that repre-
sent tweets in the long tail of popularity, the most important
performance metric is the input throughput. Conversely, for
queries with a high fan-out, which represent highly popular
Twitter traffic, the limiting factor and therefore the most in-
teresting performance metric is the output throughput. And
in this respect, the experiments show that TagMatch per-
forms quite well.

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8 9

O
ut

pu
t t

hr
ou

gh
pu

t
(th

ou
sa

nd
 k

ey
s/

s)

Number of additional tags per query

TagMatch
prefix tree

Figure 3: Average output rate for match-unique with queries
of different sizes.

In comparative terms, TagMatch is consistently faster
than the prefix tree system by almost one order or magni-
tude for both the input and output throughput. In all these
experiments, the results for match (not shown in the graphs)
are very close to the results for match-unique.

4.3.2 Size of the Database
In a second series of experiments, we test the scalability
of TagMatch with respect to the size of the database. We

report the results of this analysis in Figure 4. Once again we
measure the throughput (input) as we vary the size of the
database from 20% to 100% of the entire Twitter database
of 212 million tag sets.

 1

 10

 100

 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Database size (% of the full Twitter database)

TagMatch, match
TagMatch, match-unique
prefix tree, match
prefix tree, match-unique

Figure 4: Average throughput for match (left) and match-
unique (right) with different database sizes.

The salient result of this analysis is that TagMatch can
process more than 30 thousand queries per second in the
case of match-unique, and more than 35 thousand queries
per second in the case of match, with the full database of
212 million unique sets. This is well above the entire traf-
fic of Twitter, which was on average 6000 tweets per sec-
ond as of 2015—on a single commodity machine, with the
added capability of filtering tweets based on their content. In
contrast, the state-of-the art CPU implementation based on
a prefix tree can process about 4400 queries per second both
in the case of match and in the case of match-unique.

As Figure 4 shows, and as one would also expect in-
tuitively, the size of the database significantly affects per-
formance: with a database with 20% of the entries of the
full Twitter workload, TagMatch can achieve a through-
put of over 130K queries per second in the case of match-
unique and more than 140K queries per second in the case of
match, compared to the CPU implementation that achieves
a throughput of less than 14K queries both in the case of
match-unique and in the case of match.

database size
10% 20% 10% 20%

system match match-unique
TagMatch 268.8 144.4 249.3 133.0
Prefix tree 21.1 14.0 21.0 13.8
ICN matcher 27.6 17.4 27.5 16.8

(thousand queries per second)

Table 3: Comparison with the CPU prefix tree, CPU algo-
rithm for ICN. Average throughput for match and match-
unique with 10% and 20% of the full Twitter database.

Table 3 compares the throughput of TagMatch with the
ICN matcher [15]. In this case we could only consider up

to 20% of the full Twitter database because the implementa-
tion of the ICN matcher requires a lot of memory during the
construction phase to generate the final index that is actu-
ally used for the matching. Creating the index for databases
larger than 20% of the full workload would require more
than the 64GB of main memory available on our machine.
The ICN algorithm reaches a higher throughput than the
CPU prefix tree algorithm, but remains about an order of
magnitude slower than TagMatch.

4.3.3 Number of Threads
We now test the ability of TagMatch to distribute its work
load over multiple threads. In particular, we measure the
throughput as we allocate an increasing number of threads
to the CPU stages.

 0

 10

 20

 30

 40

 50

 8 16 24 32 40 48

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Number of threads

TagMatch, match
TagMatch, match-unique

prefix tree, match
prefix tree, match-unique

Figure 5: Average throughput for TagMatch and the CPU
prefix tree with different numbers of CPU threads.

As shown in Figure 5, for both match and match-unique
queries, TagMatch achieves an almost linear scalability in
the number of threads, with a speedup of more than 1.8×
from 4 to 8 threads, and 3.3× from 4 to 16 threads. With
more than 24 threads, the throughput for match decreases,
while the throughput for match-unique keeps growing up
to more than 40 threads. The difference between the two
algorithms is simply due to the higher CPU load of the merge
stage for match-unique.

The decrease in parallelism speedup over a certain num-
ber of threads is instead due to a limitation of the GPU archi-
tecture. Basically, beyond a certain number of threads, the
GPU stages become the bottleneck for the whole pipeline.
However, there are also other factors that limit the pipeline
to an overall throughput that is lower than the maximal
throughput of the GPU. In particular, CPU threads and the
GPUs interact through a set of GPU “streams” (see Sec-
tion 3.3.2), and on our platform we can allocate a maximum
of 20 streams (10 per GPU), primarily due to memory lim-
itations. Having more streams would allow for more paral-
lelism. Furthermore, our test machine has 24 real cores, so
when we allocate 32, 40, and 48 threads, those run using
Intel’s Hyper-Threading technology.

4.3.4 Latency
The batching of queries in the TagMatch pipeline is essen-
tial to achieving high throughput but also induces a latency
overhead. To limit latency, an application can set a timeout
after which a batch of queries will be pushed through the
GPU (see Section 3). In Figure 6 we characterize the distri-
bution of the matching latency for different timeout settings,
including the case with no timeout.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

200 400 600 800 no limit

La
te

nc
y

(s
)

Timeout (ms)

1%, 25%, median, 75%, 99%
maximum

Figure 6: Distribution of the end-to-end latency for match-
unique with the full Twitter database.

These experiments show that the timeout mechanism is
indeed effective in reducing latency. Even without a timeout
limit, the vast majority of queries (99%) incur a latency
of less than 2 seconds, with a median latency of under
400ms. However, the maximal latency values, also shown
in Figure 6, can be significantly higher.

The case in which the timeout is set to 100ms is partic-
ularly interesting. Excluding the case with no timeout limit,
the 100ms setting is the one with the highest maximal la-
tency at nearly 4 seconds. This is due to the fact that a
very short timeout leads to inefficiencies in the use of the
CPU/GPU pipeline. In particular, a short timeout triggers too
many invocations of the GPU matching kernels with batches
of only a few queries, and since the matching kernel requires
the same amount of GPU resources even for small batches,
this increases the load on the GPU without a correspond-
ing increase in throughput. In fact, with a timeout setting
of 100ms, TagMatch suffers a loss of overall throughput of
about 20% (24 thousand match-unique queries per second).

However, this inefficiency disappears very quickly with a
slightly higher timeout setting. A timeout as short as 200ms
already enables TagMatch to process more than 28 thousand
queries per second, and a timeout of 300ms further increases
the throughput to 30 thousand queries per second, which is
close to the maximum achievable with no timeout limit at
all.

4.3.5 Balance Between CPU and GPU Load
We now study another algorithmic aspect of the TagMatch
pipeline that balances the load between CPUs and GPUs.

As discussed in Section 3.1, TagMatch uses a configuration
parameter MAX P to define the maximum number of tag
sets in each partition. Therefore, for a given set of database
sets, MAX P controls the balance between the number and
size of the partitions, which in turn can balance the load
between the pre-processing phase (on CPUs) and the sub-
set match phase (on GPUs). Large partitions simplify the
pre-processing phase, but might overload the subset match,
while several small partitions reduce the complexity of the
subset match but increase the cost of pre-processing, as well
as the duplication of queries into multiple batches.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500 600 700 800 900
Th

ro
ug

hp
ut

(th
ou

sa
nd

 q
ue

rie
s/

s)
MAXP: Maximum size of partitions (thousands)

match
match-unique

Figure 7: Average throughput of TagMatch for match and
match-unique with different size of partitions.

Figure 7 shows the results of an experiment intended to
analyze this trade-off. The chart shows how the throughput
of TagMatch changes with different values of MAX P for
the same database. We observe that TagMatch achieves the
best performance with around 200K tag sets per partition,
and that the throughput remains stable after this threshold.
The results do not differ significantly in the cases of match-
unique and match.

4.3.6 Off-Line Partitioning Costs and Memory Usage
TagMatch provides two functions, add-set and remove-set,
to add or remove sets from the database. However, these
changes become effective only after a call to the consolidate
function, in which TagMatch builds its partition and tagset
tables using the balanced partitioning of Algorithm 1. We
now evaluate the performance of the partitioning algorithm
as well as the memory usage on both the CPU and GPU side.

Figure 8 shows the running time of the partitioning algo-
rithm as a function of the size of the database. The exper-
iments confirm that the algorithm has a linear complexity,
and they also demonstrate that the actual performance is rea-
sonable in absolute terms, with a maximum off-line running
time of about 50 seconds for the full workload of 200 million
tag sets. As a rough comparison, consider that MongoDB re-
quires about 33 seconds for a table of only 5 million sets, for
which our partitioning algorithm runs in about 2 seconds.

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Database size (% of the full Twitter database)

balanced partitioning

Figure 8: TagMatch partitioning time, MAX P = 200K.

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

M
em

or
y

us
ag

e
(G

B)

Database size (% of the full Twitter database)

GPU, I/O buffers
GPU, tagset table

Host

Figure 9: TagMatch memory usage (GB).

Figure 9 shows the memory usage on the CPU (Host)
and GPU sides. The Host memory is used almost exclusively
for the key table, with only a small portion for the partition
table and the buffers used for communication between the
CPUs and the GPUs. The memory of the GPUs is used
primarily for the tagset table, with a small fraction used for
communication buffers.

4.4 Comparison with MongoDB
This section evaluates the performance of subset query pro-
cessing in MongoDB version 3.2.10. We treat MongoDB
as a special case due to the significant difference in per-
formance with TagMatch. In particular, since we could not
use the full Twitter workload used in Section 4.3 due to the
higher processing time and memory consumption of Mon-
goDB, we construct and experiment with a scaled-down
workload with a similar selectivity and with the same num-
ber of additional tags per query.

We configure MongoDB to store a database of sets of tags
on a RAM disk in main memory. We also force MongoDB to
index the entries of the database to improve the performance
of the query process. We run MongoDB in two configura-
tions, first as single server and then by sharding the database
over multiple instances. In both settings, we use the Java API

to connect and submit queries through a TCP socket (on lo-
calhost). We then use a single thread to submit asynchronous
queries. We also experimented with multiple client connec-
tions. However, even though MongoDB can process queries
from different connections in parallel, we did not observe
any performance improvement.

10-1
100
101
102
103
104
105
106

 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(q

ue
rie

s/
s)

Number of tags per query

TagMatch 1M
TagMatch 3M
TagMatch 5M

MongoDB 1M
MongoDB 3M
MongoDB 5M

Figure 10: Comparison with MongoDB. Average throughput
for match with different number of tags per query.

Figure 10 shows the results of an experiments in which
we compare TagMatch and MongoDB in the single-server
setting with different database sizes, different numbers of
tags per database set, and varying numbers of additional tags
per query. Even with a small database of one million sets,
MongoDB takes more than two seconds to process a single
query, and the performance decreases significantly with the
size of the database (notice the log scale), down to more
than 10 seconds per query in the case of 5 million sets.
Conversely, neither the number of tags in the database sets
nor the number of additional tags in each query influence
the overall performance of MongoDB, despite the fact that
they both have a significant impact on the selectivity of
the workload. In comparison, TagMatch can process more
than 32,000 queries per second even in the most challenging
scenario of 2-tags database-sets and 10-tags queries.

We also test a distributed deployment of MongoDB with a
database sharded over multiple servers. In this setting, Mon-
goDB sends each query to all the instances for processing
on each individual database shard. We perform an experi-
ment in this setting to evaluate the benefits and scalability
of distribution and sharding. To minimize the network over-
head, we run all MongoDB instances on the same physical
machine, and only consider a relatively small deployment of
up to 24 instances (the machine has CPU 24 cores and suffi-
cient memory). We show the results for a database of 3 mil-
lion entries, each containing 3 tags, and for queries of 6 tags.
The results of this experiment, shown in Figure 11, demon-
strate that sharding and distribution are clearly beneficial,
and specifically that the throughput of MongoDB increases
linearly up to 8 instances and overall by a factor of 3 with 24
instances. However, even assuming a perfectly linear scala-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

Th
ro

ug
hp

ut
(q

ue
rie

s/
s)

Number of MongoDB instances

Figure 11: Scalability of MongoDB with sharding. The
database contains 3 million entries, with 3 tags each. Queries
contain 6 tags.

bility, MongoDB would require tens of thousands of server
instances to reach the level of performance of TagMatch.

4.5 Experience with an Alternative Design
In the early stages of the development of TagMatch, we
experimented with a design in which both the pre-process
and subset-match phases would run entirely on GPUs. This
architecture is technically feasible thanks to the “dynamic
parallelism” of the newer NVidia GPUs.

With dynamic parallelism, it is possible to launch a new
kernel from within a running kernel on the GPU. Thus, one
can launch a kernel that performs the pre-process algorithm
on a batch of input queries and that uses partition queues in
the global memory of the GPU. When one of those queues
fills up, the pre-process kernel can then invoke a new subset-
match kernel on that queue directly from within the GPU.

This architecture is potentially advantageous, since it al-
lows for numerous parallel subset-match kernels for differ-
ent partitions. This approach also overcomes one of the fac-
tors that in part limits the performance of TagMatch, namely
the need to transfer a single packet to the GPU potentially
many times (one for each matching partition). Furthermore,
the pre-process algorithm is also inherently parallelizable,
and should therefore work well on a GPU.

And yet, the prototype we built was not that efficient. As
it turns out, the GPU-only design works well when the vast
majority of packets are filtered out in the pre-process phase,
but not when many packets reach the subset-match phase. In
this latter case, the pre-process algorithm must copy many
queries into potentially many partition queues, which in-
duces many atomic operations and an almost random access
pattern into the global (slow) memory of the GPU. Also, the
GPU-only design still requires synchronization, as well as
the transfer of some partial results between CPUs and GPUs,
which further limits parallelism.

5. Related Work
Determining subset relations on large collections of sets is a
fundamental problem in data management and retrieval. We
review the main results developed in the past, in particular
emphasizing the ideas that influenced our TagMatch archi-
tecture the most. We start with general solutions for the sub-
set matching problem and then focus on subset matching in
data management, streaming, and networking.

Recall that, given a database D of sets s1, s2, . . . , sn and
a query set q, subset matching amounts to finding all sets
si ∈ D such that si ⊆ q. When the universe of elements
(tags) from which we draw the database sets and the query is
finite, then the problem is also known as the partial matching
problem. Notice that in most applications it is possible to
compress a finite or even an infinite universe (such as the
set of string tags) into a finite and often small one. This
compression is particularly effective when the database sets
are small, as is the case in our target application domain, in
which case Bloom filters are an ideal form of compression.

It is easy to see that the subset matching problem has two
trivial solutions: (1) scan the entire database for each query,
which requires O(n) space and O(nm) total time, or (2) pre-
compute and store all answers to all queries, which requires
O(2m) space and O(m) query time; where n is the size of
the database and m is the total number of unique tags (or bits
in their Bloom-filter representation).

Rivest proposes the first non-trivial results [19]. Rivest
develops a solution based on a hash table that amounts to a
partitioning for sets, and a solution that organizes the sets in
the database as a prefix tree and that requires linear storage
and, on average, sublinear query time. Rivest also reviews
other methods based on inverted lists. For each element x, an
inverted index stores the list list(x) of all sets si that contain
element x. Using inverted indexes, superset matching (find-
ing all si such that si ⊇ q) amounts to computing the inter-
section between the lists list(xj) for every element xj ∈ q,
while subset matching amounts to counting how many times
each set appears in all the lists [23].

Data Management Helmer and Moerkotte [5] study sub-
set matching as a join operator for set-valued attributes.
Helmer and Moerkotte introduce signatures to avoid expen-
sive set comparisons. A signature is a hash value over the
content of the set that preserves the partial order on sets in-
duced by the subset relation. In TagMatch we use Bloom
filters as a space-efficient signature.

Ramasamy et al. [17] proposed partitioning as a divide-
and-conquer strategy. This is also the essence of Rivest’s
first solution, and an idea we use in TagMatch. Specifically,
our algorithm partitions the database of tag sets and pre-
processes the query to discard all the tag sets that belong to
partitions that cannot satisfy the query. Melkin and Garcia-
Molina [12] propose two algorithms intended to improve
the effectiveness of partitioning by dynamically adapting the
partitioning criteria to the features of the workload.

More recent proposals from the database community
build on the early development of the ideas of signatures,
partitions, and inverted lists, and also Rivest’s idea of orga-
nizing the database as a trie [7]. Perhaps the most current and
advanced algorithms are the ones developed and analyzed by
Luo et al. [9] and by Bouros et al. [2]. Luo et al. propose two
algorithms. The first one, called PATRICIA trie-based signa-
ture join (PTSJ), uses hash-based signatures to encode a set
as a shorter bit string, and builds a trie out of all signatures.
The second algorithm works on the actual elements of the
sets and builds what amounts to an inverted index. Bouros
et al. propose an adaptive methodology to reduce the space
requirements and the cost of traversing the trie.

The trie-based algorithm we developed and used in our
comparative evaluation is a representative of these state-of-
the-art algorithms. Our algorithm is in fact conceptually very
similar to the PTSJ algorithm by Luo et al., which seems to
be the best-performing algorithm in most cases according to
the evaluation of Luo et al. Furthermore, based on the results
Luo et al., our trie-based algorithm seems to outperform
PTSJ on all comparable scenarios.

Streaming and Networking While in this paper we con-
sider subset matching as a data selection problem, a concep-
tually similar problem is at the root of a new category of for-
warding algorithms for packet-switching and similar mes-
saging systems. In particular, the forwarding information
base (or FIB) in routers corresponds to our database entries,
and incoming packets corresponds to our stream of queries.
For IP forwarding, a router must find the longest prefix in
its FIB that matches the destination address of each incom-
ing packet. This is a fundamentally easier problem than sub-
set matching, also because of the fixed and small size of IP
addresses. However, a recently developed notion of Infor-
mation Centric Networking (ICN) [1] extends the idea of IP
networks by considering richer forms of addressing.

One of the first algorithms for high-throughput ICN for-
warding was developed by Wang et al. [21] for hierarchi-
cal name-based addressing. Thus in this context, forwarding
amounts to a longest name-prefix matching over path names,
which is still fundamentally different from subset matching.
However, the work of Wang et al. is particularly relevant to
this work because it also exploits the parallelism of GPUs.
Wang et al. implement longest-prefix matching on a charac-
ter trie compressed in a data structure called multi-aligned
transition array, and report a throughput of 63.52 million
packets per second with a database of 10 million entries.

Most ICN forwarding systems implement longest name
prefix matching with a hash-table: the algorithm stores the
database in a hash table and, for an input name of n compo-
nents, proceeds by first looking up the whole name, then the
prefix of length n− 1, and so on. On this basis, authors have
built a number of variants [16, 22, 24].

These systems report throughput values that are orders
of magnitude higher than what we report for TagMatch.

However, once again, notice that these systems solve prefix
matching, a problem that is significantly simpler than subset
matching. A more relevant work in the context of ICN is the
algorithm developed by Papalini et al. for an ICN addressing
scheme based on subset matching [15]. Papalini et al. also
build a prefix trie, but then use a number of heuristics to
rearrange and compress the trie. We use the algorithm by
Papalini et al. in our comparative evaluation. However, since
the heuristics require additional space to restructure the trie,
we could apply the algorithm only to a few reduced-size
scenarios. In these scenarios the algorithm by Papalini et al.
is competitive with the basic trie-based matching algorithm
but also significantly slower than TagMatch.

Some studies on content-based publish-subscribe sys-
tems explore the idea of exploiting parallel architectures for
matching. Farroukh et al. [4] exploit multi-core CPUs both
to reduce the latency for individual messages and to increase
the overall throughput of the system. Similarly, Margara
and Cugola [11] implement a counting-based algorithm on
GPUs that exploits the parallelism to both decrease the la-
tency and increase the throughput. Finally, Tsoi et al. [20]
focused on ad-hoc (FPGA) hardware. While the problem of
content-based forwarding prove to be amenable to a paral-
lel implementation, the usage of richer matching semantics
than in our work penalizes the performance, which are order
of magnitude lower than those we achieve.

6. Conclusion
We presented the design and implementation of TagMatch,
an efficient subset matching engine that exploits a hybrid
system of CPUs and GPUs. TagMatch targets applications
that perform subset matching between a high-rate stream of
queries, each consisting of a relatively small set of tags, with
a large database of hundreds of millions of tag sets.

We presented an extensive evaluation of TagMatch in
which we test its absolute performance with various work-
loads and we compare it with the MongoDB database sys-
tem, with a message forwarding system, and with a system
based on a prefix tree that is representative of the most effi-
cient solutions for subset matching we know of. TagMatch
outperforms these systems, in most cases with at least an or-
der of magnitude higher throughput. Remarkably, TagMatch
can process about five times the average message traffic of
Twitter on a single commodity machine, while offering a re-
fined service that dispatches tweets based on the interests of
the users rather than only on the publisher of the tweets.

Our plans for future work include the integration of Tag-
Match within a full fledged data processing or messaging
systems, to measure the benefits that it can bring to such ap-
plication domains.

Acknowledgments
This work was supported in part by the Swiss National Foun-
dation under grant number 200021-157164 (“TagMatch”).

References
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and

B. Ohlman. A survey of information-centric networking. IEEE
Communications Magazine, 50(7):26–36, 2012.

[2] P. Bouros, N. Mamoulis, S. Ge, and M. Terrovitis. Set
containment join revisited. Knowledge and Information Systems,
pages 1–28, 2015.

[3] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and
evaluation. In Proceedings of the International Conference on
Management of Data, SIGMOD ’98, pages 355–366, 1998.

[4] A. Farroukh, E. Ferzli, N. Tajuddin, and H.-A. Jacobsen.
Parallel event processing for content-based publish/subscribe
systems. In Proceedings of the International Conference on
Distributed Event-Based Systems, DEBS ’09, pages 8:1–8:4,
2009.

[5] S. Helmer and G. Moerkotte. Evaluation of main memory
join algorithms for joins with set comparison join predicates.
In Proceedings of the International Conference on Very Large
Data Bases, VLDB ’97, pages 386–395, 1997.

[6] L. Hong, G. Convertino, and E. H. Chi. Language matters in
twitter: A large scale study. In ICWSM, 2011.

[7] R. Jampani and V. Pudi. Using prefix-trees for efficiently
computing set joins. In Proceedings of theInternational
Conference on Database Systems for Advanced Applications,
DASFAA ’05, pages 761–772, 2005.

[8] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter,
a social network or a news media? In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, pages
591–600, 2010.

[9] Y. Luo, G. H. L. Fletcher, J. Hidders, and P. D. Bra. Efficient
and scalable trie-based algorithms for computing set contain-
ment relations. In Proceedings of the International Conference
on Data Engineering, ICDE ’15, pages 303–314, 2015.

[10] N. Mamoulis. Efficient processing of joins on set-valued
attributes. In Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’03,
pages 157–168, 2003.

[11] A. Margara and G. Cugola. High-performance publish-
subscribe matching using parallel hardware. IEEE Transactions
on Parallel and Distributed Systems, 25(1):126–135, 2014.

[12] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set
containment joins. ACM Transactions on Database Systems, 28
(1):56–99, 2003.

[13] T. Morzy and M. Zakrzewicz. Group bitmap index: A
structure for association rules retrieval. In Proceedings of the
International Conference on Knowledge Discovery and Data
Mining, KDD ’98, pages 284–288, 1998.

[14] M. Papalini, A. Carzaniga, K. Khazaei, and A. L. Wolf. Scal-
able routing for tag-based information-centric networking. In
Proceedings of the 1st International Conference on Information-
centric Networking, ICN’14, pages 17–26, 2014.

[15] M. Papalini, K. Khazaei, A. Carzaniga, and D. Rogora. High
throughput forwarding for ICN with descriptors and locators.
In Proceedings of the 2016 Symposium on Architectures for

Networking and Communications Systems, ANCS ’16, pages
43–54, 2016.

[16] D. Perino, M. Varvello, L. Linguaglossa, R. Laufer, and
R. Boislaigue. Caesar: A content router for high-speed
forwarding on content names. In Proceedings of the Symposium
on Architectures for Networking and Communications Systems,
ANCS ’14, pages 137–148, 2014.

[17] K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik.
Set containment joins: The good, the bad and the ugly. In
Proceedings of the International Conference on Very Large
Data Bases, VLDB ’00, pages 351–362, 2000.

[18] R. Rantzau. Processing frequent itemset discovery queries by
division and set containment join operators. In Proceedings of
the SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, DMKD ’03, pages 20–27, 2003.

[19] R. L. Rivest. Partial-match retrieval algorithms. SIAM Journal
on Computing, 5(1):19–50, 1976.

[20] K. H. Tsoi, I. Papagiannis, M. Migliavacca, W. Luk, and
P. Pietzuch. Accelerating publish/subscribe matching on
reconfigurable supercomputing platforms. In Many-Core and
Reconfigurable Supercomputing Conference, MRSC ’10, 2010.

[21] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng,
H. Dai, X. Tian, Z. Xu, H. Wu, and D. Yang. Wire speed name
lookup: A gpu-based approach. In Proceedings of the USENIX
Conference on Networked Systems Design and Implementation,
NSDI ’13, pages 199–212, 2013.

[22] Y. Wang, B. Xu, D. Tai, J. Lu, T. Zhang, H. Dai, B. Zhang,
and B. Liu. Fast name lookup for named data networking.
In Proceedings of the International Symposium of Quality of
Service, IWQoS ’14, pages 198–207, 2014.

[23] T. W. Yan and H. Garcia-Molina. Index structures for selective
dissemination of information under the Boolean model. ACM
Transactions on Database Systems, 19(2):332–364, 1994.

[24] H. Yuan and P. Crowley. Reliably scalable name prefix
lookup. In Proceedings of the Symposium on Architectures for
Networking and Communications Systems, ANCS ’15, pages
111–121, 2015.

