
Poster Abstract - WSN-Erlang: a Functional, High
Level Approach to WSN Development

Alessandro Sivieri
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy
sivieri@elet.polimi.it

Gianpaolo Cugola
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy
cugola@elet.polimi.it

Abstract—The complexity in designing, coding, and testing
WSN applications is considered among the most relevant factors
that limit the diffusion of WSN technology. In this work we claim
that Erlang, a concurrency and distribution-oriented, functional
language, could greatly reduce this complexity. Moving from
this premise we introduce a new platform, named WSN-Erlang,
which leverages the Erlang peculiarities adapting them to the
requirements of WSNs. WSN-Erlang also includes a testing and
simulation framework, fully supporting the entire life-cycle of
WSN applications.

I. INTRODUCTION

Most of the researchers operating in the WSN area agree
that what limits the diffusion of WSNs and pervasive systems
in general is the complexity in designing, programming,
testing, and deploying real scale applications based on such
technologies. In particular, the research community is still
debating about the best programming paradigm to use [1].

Indeed, the peculiarities of the hardware platform introduce
several new challenges: WSN applications are executed on a
distributed environment composed of heterogeneous devices,
with different capabilities and limited resources, intercon-
nected using short and unreliable wireless links.

The research community has proposed two main paradigms
to tackle these issues: micro-programming gives the pro-
grammer the responsibility of decomposing the problem and
developing code for each of the network nodes, comprising the
low level hardware and protocol details; this approach does
not try to hide the complexity of WSNs, it gives its burden on
the developers’ shoulders. Macro-programming allows devel-
opers to access the network as a single entity, which can be
programmed using abstract primitives, while the underlying
framework takes care of the low level and communication
details; this approach reduces the complexity of development,
but it loses generality with respect to the previous one, so
that many of the frameworks developed under this paradigm
can be applied to a limited number of similar scenarios.
Besides these differences, many of the approaches analyzed
in [1] have never been tested in real world scenarios and their
apparent applicability remains limited. At the same time, the
main development process adopted for WSN applications is
the “code and fix” one [2], which relies on the developers’
skills to overcome the limitations of the platform and the
difficulties in programming it, with limited attention to the
issues of reusability and maintainability.

To address this situation, we need a new language and
programming framework, and we claim that Erlang [3] could
represent a good starting point: it is a high-level, functional
programming language, which supports facilities like:

• lightweight concurrency using the actor model [4];
• distributed programming, with high-level communication

primitives;
• transparent resolution of process names over the network;
• handling of heterogeneity through the use of a virtual

machine;
• pattern matching on bit streams;
• support for fault-tolerant applications.

Many of these characteristics are tipically found in WSN
applications, or can be quite useful for this area. Moreover,
the combination of the actor-model of concurrency with high-
level communication facilities, and the use of a virtual ma-
chine, ease the development of simulation tools for testing
applications before deployment.

II. THE FRAMEWORK

WSN-Erlang is a new programming framework and run-
time system adapting Erlang to WSN requirements. Indeed,
the standard Erlang platform, even if originally developed for
embedded systems (telecommunication devices), has grown
overtime and nowadays contains a huge number of accessory
libraries and facilities, most of which make no sense in WSNs.
Because of this, we had to strip the run-time from all those
parts that are not useful for our target applications. This
reduced the memory, storage, and processing requirements of
the platform, which as of today runs on an embedded device
having an ARM926EJ-S CPU with 64 MB of RAM and 64
MB of flash, while we are currently porting it to a smaller
device with a RT3050 CPU with 32 MB of RAM and 8 MB
of flash. This is enough to show the advantages of our platform
in terms of expressiveness and ease of use. Next step will be to
enter more deeply into the virtual machine, to further reduce
its requirements.

On the other hand, reducing the memory, storage, and
processing requirements of the virtual machine is only a pre-
requisite to use Erlang in WSNs. The most important part
of our work was to adapt the language and library to the
peculiarities of the platform. In particular, Erlang assumes



the availability of a full fledged TCP/IP stack, offering reli-
able message passing among nodes, independently from their
physical location. This is a strong assumption for most WSN
scenarios, which we relaxed in WSN-Erlang to assume the
only availability of a (unreliable) link-layer protocol. In a
wireless network this means that a message may reach its
destination only if the sender and the receiver are in range.
Accordingly, WSN-Erlang changes the semantics of message
passing to reflect this assumption. A similar change applies to
the spawning of new processes among different nodes, which
is unreliable and only happens if the two nodes are in range.
At the same time, we leverage the availability of a shared
medium to offer a broadcast version of the communication
and process spawning facilities.

All these changes not only adapt the distribution model
of Erlang to the peculiarities of WSNs (whose nodes rarely
implement a full fledged TCP/IP stack), but it also represent
the key pre-requisite to remove all the IP-based mechanisms
from the standard Erlang interpreter, our next step to further
reduce the WSN-Erlang requirements.

As pointed out previously, testing and simulation are an
area not well supported by existing WSN frameworks; by
leveraging the Erlang peculiarity of blurring the distinction be-
tween centralized and distributed applications, which are both
organized as a set of concurrent processes that communicate
with each other, we were able to integrate a WSN simulator
in WSN-Erlang, capable of handling a completely simulated
network of Erlang processes, running the very same code that
runs on real nodes. In particular, the communication between
nodes is simulated using the same channel and propagation
models used by TinyOS [5]; two modes can be employed:

• complete simulation of the network, where each physical
node is virtualized and executed inside a single computer;
the developer can also monitor each node and inject
messages in the network;

• mixed simulation of the network, where part of the
nodes is virtualized and part is executed inside the target
devices.

This approach allows to start debugging a WSN application
in a fully simulated deployment, to move afterwards toward a
mixed deployment with only one node running on the target
device and the others being simulated, to conclude with a
mixed deployment in which few physical nodes interact with
the simulated ones. All with the guarantee that the code that
is being tested coincides, line by line, with the code that will
build the final application.

III. EVALUATION

We tested our prototype by implementing several algorithms
that realize typical WSN activities, like collecting data from
sensors or broadcasting information to the whole network.
We compared them with the same algorithms developed using
common WSN platforms, i.e., TinyOS and Contiki.

Results of our experiments show improvements at the source
code level, in terms of readability with respect to the other
implementations (which use different dialects of C). Among

TABLE I
ALGORITHMS LOC

Algorithm TinyOS Contiki WSN-Erlang
Opportunistic flooder 495 187 100
Trickle 219 194 61
Collection algorithm 2169 1470 303

the features we benefit were bit sequence parsing and pattern
matching on bit groups, which increased readability and code
compactness of the main networking operations. Overall, the
WSN-Erlang versions of the various algorithms gain one order
of magnitude in terms of number of lines of code, with respect
to the other versions (see Table I).

Reusability is also increased through the modularization
facilities that WSN-Erlang inherits from Erlang. In particular,
the usage of multiple processes inside each node can be
leveraged for separating the different aspects, which can be
more easily reused inside other applications, also improving
the readability of the code.

IV. CONCLUSIONS AND FUTURE WORKS

WSN-Erlang addresses two limitations of currently avail-
able platforms to develop WSN applications: the lack of
adequate, high-level programming abstractions to easily write
reusable, maintainable code, and the difficulty in developing
and testing code that may run on heterogeneous networks,
with good support for debugging. Preliminary testing shows
that this approach gives good results and improves the overall
process of writing WSN applications.

Our current prototype cannot support the most resource
constrained WSN scenarios, but at the same time WSN-Erlang
runs smoothly on the kind of devices that can be found in
several WSN scenarios, like health-care, where the need of
saving resources is balanced by a need of reliability and fault-
tolerance. Moreover, we consider the current WSN-Erlang
prototype only as a first step to demonstrate the advantages
of the Erlang programming model when applied to WSNs. In
the future we plan to continue our work on the WSN-Erlang
run-time to further reduce its requirements, putting our hands
more deeply into the virtual-machine, if required.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission, Programme IDEAS-ERC, Project 227977-SMScom.

REFERENCES

[1] L. Mottola and G. P. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Comput. Surv., vol. 43,
pp. 19:1–19:51, 2011.

[2] G. P. Picco, “Software engineering and wireless sensor networks: happy
marriage or consensual divorce?” in Proceedings of the FSE/SDP work-
shop on Future of software engineering research, 2010.

[3] J. Armstrong, Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

[4] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formal-
ism for artificial intelligence,” in Proceedings of the 3rd international
joint conference on Artificial intelligence, 1973.

[5] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the 1st
international conference on Embedded networked sensor systems, 2003.


