
Suppor t for Software Federations:
the PIE1 Platform

G. Cugola1, P.Y. Cunin2, S. Dami2, J. Estublier2,
A. Fuggetta1, F. Pacull 3, M. Rivière3, H. Verjus2,4

1 Politecnico di Milano, Italy.
Cugola@elet.polimi.it, Alfonso.Fuggetta@polimi.it

2LSR laboratory, Grenoble University, France.
{Pierre-Yves.Cunin, Samir.Dami, Jacky.Estublier}@imag.fr

3Xerox Research Centre Europe, Grenoble France.
{Francois.Pacull, Michel.Riviere}@xrce.xerox.com

4LLP/CESALP laboratory, Savoie University, Annecy France.
verjus@esia.univ-savoie.fr

1 Introduction

Research about software processes modelli ng and support, even during the last
decade, has suffered from a lack of practical credibilit y. Most of the solutions
proposed have not gained wide acceptance by the software industry and, moreover,
some fundamental issues li ke evolution have not yet found any reasonable solution.
For these reasons, it was a clear decision in the PIE project to build a platform
providing the requisite features for evolution support, and also addressing many of the
aspects that have so far impeded wide acceptance of process support.

Therefore, a major objective of the PIE platform is to facilit ate the implementation,
in a company, of a complete process support system. This includes the tools, systems
and techniques that process participants (developers, managers) are familiar with, as
well as PIE specific components. The tools that process participants are used to are
li kely to be Commercial Off The Shelf (COTS). The motivation to build such a
Process Support System (PSS) endeavors to interoperate a number of components,
including COTS systems, such that they collectively perform an expected service. We
call this set of components a federation.

We define a federation as an application built mainly from COTS tools, which
implies that they are (mainly) autonomous, and they are not modifiable. The Apel2
foundation is a federation manager, speciali zed in process support.

The goal of the PIE federation (as well as most federations) is not only to provide
collectively a (complex) service, but also to preserve the independence and autonomy
of its components, to be open to dynamic change in composition and distribution

1 PIE: Process Instance Evolution. Esprit Project 34840. UJF Grenoble, Victoria U.

Manchester, Dortmund U., Savoie U., Politecnico di Milano, Xerox Grenoble, Teamware,
Dassault Systèmes.

2 Apel is the process support system from which the PIE platform is built .

(new/changed/ removed/moved components), as well as in changes and enhancements
of the behaviour and characteristics of the whole federation.

Until now, most work addressing interoperabilit y within a federation has focussed
on basic interactions between distributed components. We believe that federations
must rise above this level; we need new concepts for federation interoperabilit y and
new approaches for the definition, control and evolution of software federations.

In section 2, we will explore the concept of federation and the interoperabilit y
paradigms that can be used. In section 3, we show how these paradigms can be
defined and controlled. Section 4 presents the PIE Middleware to which a large part
of federation control has been delegated. Conclusions are reported in section 5.

2 Federations paradigms

Today, many COTS tools are available li ke workflow tools, GroupWare tools,
configuration management tools, change management tools, document management
tools, but also more general ones li ke text editors, spreadsheets, databases and web
browsers, etc. Building a distributed software application [10] often consists of
building a federation where most components are COTS and only a few are
application specific. Such components are autonomous and manage their own
resources or internal processes. It is interesting to note that the design and architecture
of software systems is evolving under the pressure of a number of factors:

• Distribution requires components to communicate through explicit means,
• Maintainabilit y requires minimal change to the source code of components,
• Evolutivity and mobilit y require that components are kept independent and

autonomous.
• Cost requires buying instead of building.

The number of COTS tools is rapidly increasing, their functionalit y is more
comprehensive and their price is dropping. Software products are evolving from being
monolithic and proprietary toward federations. It is of strategic importance to find a
practical way to build federations. Different strategies [13] can be used to define a
federation out of a number of COTS.

2.1 Control-based paradigm. The “ dictatorship” .

The basic idea is to abstract (i.e. encapsulate) the services provided by each
component in order to hide their heterogeneity (formalism, platform etc.). The
services (API) have to be (re)defined in a common formalism (IDL), in such a way
that one tool can call another, whatever their respective internal formalisms and
communication technology. This is a Corba-li ke philosophy.

To program a federation, a modeller will have to write a specific piece of code, the
supervisor, which call s the right components at the right time with the right
parameters. This approach is the usual way to build an application from software
components. Components have local models and local states inaccessible from the
outside. They provide and call services and have neither independence nor autonomy

(see Fig. 1). However, each component may still i nteract on their own with users or
other federations, so they keep some independence and autonomy outside the
federation.

Let us use a metaphor with a human society to ill ustrate process federation
architectures. Each society agent (COTS) is a human or a business with its own model
and goal, and it is capable of providing some services in an autonomous way.

The control-based paradigm belongs to a full y centrali zed society. The goal and the
rules of the society are clearly defined and enforced by a centrali zed government (the
supervisor). The place and role of each human/company is defined and controlled by
the government. This is a dictatorial society in which agents are supposed neither to
know to which goal they should contribute, nor to take any initiative to contribute to
change the state of the society. This may be found to be undesirable for a human
society, but is perfectly acceptable for a software federation.

2.2 The Common Universe approach.

COTS tools are usually large and designed to fit a number of client’s needs without it
being possible for clients to change or to extend the source code. For that reason most
COTS provide clients not only with an API, but also with a specific formalism,
usually different from the source code language, designed to easil y adapt the COTS
tool behavior to each client’s specific use. For example, a database provides schemas,
spreadsheets provide computation sheets, planners provide planning modellers, PSSs
provide process modellers and so on. We call the “program” written in this formalism
the behaviour model of the component3. See Fig 2.

COTS tools, being designed to be autonomous, directly interact with the external
world (users and/or common computer resources li ke network, database, operating
system or file system). These features and devices being common to all COTS tools,
we call them the Common Universe (CU). The fact that a component has direct
interaction with the common universe has profound consequences on its design: it has
to behave in an unpredictable context. COTS designers usually try to identify a
number of “abnormal” behaviours, and to identify convenient responses to them, in a

3 Usuall y, it is not possible to adapt the behavior of not COTS components. In this case, the

component source code is its own behaviour model (but at a lower abstraction level).

COTS

Main
Component

Component 1 Component 2 Component 3

Communication

Supervisor

Local Models

Local states

 Fig. 1. The dictatorship paradigm

fixed or customizable (i.e. programmable) way. This kind of behaviour can be said to
be the Common Universe model of the tool4.

Each COTS contains:

• Behaviour model. Description of what the component does (its specific
customization).

• Interface. External description of the services that the component provides
(API).

• Common Universe model. Description of component action/reaction to CU
evolution.

• Current state (persistent or not).

For software applications, the common universe always contains the computer
itself (f iles, network, modems, processors, databases, screens, etc.). However,
applications can include (and potentiall y share) many other real world knowledge
(users, mechanical artifacts, activities, etc.) or they can share abstractions (language
concepts li ke variables, “objects” and so on). All this, when reified, constitutes the
common universe.

If different components in the federation have a similar application domain, it is
li kely that their local states contain the same knowledge. However, it is unli kely to be
represented in the same way, or to be modeled using the same concepts. This is
particularly true in process federations where each component deals with different
facets of the same process. For example, the fact "activity FixBug is under way", is
known by different components and interpreted in different ways: the SCM tool
builds a workspace for the activity, the workflow tool adds an activity in an agenda,
the planner starts the tasks and allocates resources, and so on. Further, a tool can use
the concept of task, another one of activity, a third one of workspace, and their
knowledge overlaps but is not identical; their have only partial views; none has a
complete knowledge. Still t his knowledge is part of the CU.

Many aspects of the CU model appear as atomic from the federation point of view
but involve different components. For example, creating an activity in the CU, (which
is an atomic operation) may involve MSProject (for planning), Lotus Notes (for
notification), Adele (for workspace creation) and a monitoring tool (for the team
leader control board). There is a need to coordinate, in a fine-grained way, the actions
of all the components.

The CU provides a sound basis on which the federation components can
synchronize their work, because they can all observe the CU, and update their local
state accordingly, or change the CU according to changes performed in their local
state during execution. In the above example, the creation of a common activity
changes the CU; this is noted by the components, each one reacting in its own way:
updating planning (MSProject), creating a workspace (Adele) and so on.

The CU approach, consisting in bringing as much as possible into a single common
formalism and data repository, borrows similarities from database federations, but
there are at least two major differences. In a database federation, the goal is to find a
common schema from which the data stored in the different databases can be

4 For standard software components, the CU model is missing; for usual COTS, it is simple.

PSSs are unique in that their “ raison d’être” is to deal with CU changes; the PSS behaviour
model is its CU model.

accessed. In our approach, the local store of components is never accessed through the
common model. The goal of the common universe model is to define the behavior of
the federation as a whole, whether or not this overlaps with the component process
and/or persistent data. In case of overlap, it is up to each component to make its local
data consistent. It is up to the component to decide what consistent means. The other
major difference is that the purpose is not the static definition, but the dynamic
behavior, i.e. the process. Really there is not much similarity between these two
approaches.

2.3 The simple CU approach. The “anarchy”

The simple implementation of such an approach is presented by the ProcessWall [3].
There is no CU model; the architecture is based only on the effective presence of the
CU, on which each component synchronizes its activity during execution (see Fig. 2).

Component 1 Comp.2 Comp3

Communication

Comp.1

Common Universe

L ocal CU M odels L ocal states

Foundation

Fig. 2. The anarchy paradigm

In our society metaphor, the CU-based paradigm corresponds to an ultra-liberal
society, where each human/organization observes the state of the society (CU) and
decides to “collaborate” freely to its evolution. Groups of humans can handle work in
common by observing the actions of the others (cooperation between overlapping
PSSs). No federation process (the goal i .e. the desired future) is defined, no rules
(correct behaviours and laws) are enforced. It is an anarchic society; which can work
only if each component (human) behaves “correctly” , which is unli kely in a human
society, but not in a computer federation.

2.4 The controlled CU approach. From “ dictatorship” to “anarchy” .

In the control-based approach 2.1, components do not know in what they are
participating, but there is formal knowledge of exactly what will be executed and how

(it is the supervisor’s source code). In the simple CU approach 2.3, each component
knows to what it contributes, but there is no plan for future actions.

The first approach provides the goal and control desirable in a federation, but
introduces severe limitations (partitioning) and lack of f lexibilit y. The simple CU
approach provides the desirable flexibilit y and generalit y, but at the cost of losing
global control (goal and rule enforcement). There are, however, intermediate positions
between dictatorship and anarchy.

If a CU is shared by components, its behaviour is an abstraction of the
"composition" of all components’ CU behaviours. If the federation CU model is
formally defined and executed, it avoids anarchy, and it allows modellers and
managers to understand, customize, and optimize the federation process. The
federation CU model expresses (part of) the federation goal. If this federation CU
model is executable (and executed) and if each one of the federation’s components is
able to execute its part, the goal of the federation becomes explicit and enforceable. It
is semantic interoperabilit y [2][1].

The CU model contains the functional aspects of the CU behavior (the what), not
the operational ones (the how). We also define an operational model, whose purpose
is to focus on defining how aspects mentioned in the CU model should or must be
handled. Instead of relying on implicit and asynchronous invocation, this model
prescribes the reaction to CU changes, and explicitl y indicates the consistency
required for a given reaction. The operational model contains information related with
the consistency control of the CU model implementation much as the ordering of
component invocations for the same CU change, transaction control and so on. To do
so, the interpreter of that model has to know of the federation components and their
services, and has the capabilit y to explicitl y invoke these services. It relies on an
explicit and synchronous invocation paradigm. See figure 3.

In our metaphor, the society has a global society development plan (CU model)
and has a government (the interpreters of the CU and operational models). If using
only the CU model, the government executes the plan, which means it simply asks the
society to do the work (e.g. build a highway). Agents, collectively, are supposed to be
aware of what has to be done and to do it as they li ke. This society has both a goal
(CU model) and a government, even if the latter has very littl e power and initiative. It
is unli kely to work in human society.

If using the operational model, the government not only can ask for something to
be done but can also decides who will do it and how it will be done (the operational
model interpreter directly call s the components that can do the job). The government
can thus decide which aspects of the development plan are to be under complete
control (li ke the army), or partiall y controlled (li ke health services), or completely
free (most normal trade). This society can cover the complete spectrum from
dictatorial (the operational model controls everything; it is the supervisor), to anarchy
(neither operational model nor CU model).

3 PIE architecture

The PIE architecture implements the last federation paradigm (2.4). The foundation
has to provide a repository for the CU, a CU model (and its interpreter) and an
operational model (and its interpreter). The operational model interpreter relies on a

dedicated middleware responsible for providing basic communication faciliti es
(messages and method call s), but also to provide specific control services.

The components of the federation (see Fig. 3) are of two kinds:

• Components which provide the functionaliti es of the PIE system. These
components are the standard ones developed within the project: pro-active
monitoring support, change and decision support [14] and evolution strategy
support [15].

• Components which are COTS tools or proprietary components specific to an
application and fulfilli ng the application users requirements.

In PIE, it is the operational manager who is in charge of translating the operational

model into a number of rules and laws applied to the communications (thick double
arrow). The PIE Middleware will be in charge of supporting and interpreting these
rules, and reali zing the communication. The PIE Middleware is different from usual
middlewares (such as CORBA [4], [5] or Java Message Service [7], etc.) in that
existing middlewares provide a communication mechanism but do not ensure or
enforce any system property. We consider that federation control requires the close
control of a number of communication properties li ke roles played by components in
the federation context, rights and duties associated to these roles, substitution of
components, mobilit y of components and so on.

Method call

Event
notification

Strategy

CU Model Operational
Model

CU

Control

Communication

PIE
Middleware

Foundation

PIE
Components

PIE
Platform

Main

Change and
Decision

Monitoring

C1
C2

Application
Components

Federation
Components

Fig. 3. Architecture of a controlled federation

This architecture arises from the following considerations:

• Most federation control can be translated into communication control.
• Most of the communication controls are services of very wide applicabilit y.
• The set of communication services can be easil y and dynamicall y extended and

changed.

These considerations explain why we decided to delegate a large part of the
federation control to a generic communication layer: the PIE Middleware. It basicall y
relies on a “standard” message-passing system (‘communication’ in Fig. 3), almost
JMS compliant, and on a control layer for the support of federation control.

The services that must be provided by the PIE Middleware control layer should
include:

• Simple communication control: Inhibit messages, Redirect messages, Change
message content, Replace a message by a method call (or vice versa), Duplicate,
broadcast a method call , Reject a method call , and so on.

• Advanced services: Enforce reactions ordering, Enforce transactional li ke
capabiliti es, Handle messages with multiple replies, method broadcast, Provide
advanced delivery properties and so on.

Both layers are described in the following section.

4 PIE Middleware

To satisfy the requirements identified in the previous section, the PIE Middleware has
to provide a rich set of services. It has to include 1) basic asynchronous, message-
based communication services and 2) synchronous, service-request-based
communication services. In addition, more advanced services have to include support
for atomic deli very of a set of messages, for distributed transactions, and, more in
general, for controlli ng a federation of COTS. These services must be integrated in a
unified API to minimize the effort needed to use the middleware and to avoid
duplication, redundancy, and inconsistency among different services.

To pursue this ambitious goal the communication and data model of the PIE
Middleware have to be carefull y designed to offer the common basis for
implementing the required services.

Among the set of services provided by the PIE Middleware, we can distinguish
four areas:

• basic message-based communication services,
• basic service-request-based communication services,
• services to change the middleware behaviour dynamicall y,
• and enhanced services, such as atomic deli very of messages and transactions.

For compatibilit y with current standards, the basic communication layer is
compliant with JMS (for message services) and RMI (for method call s). Any tool
using these standards can be used as is in a PIE federation.

The set of services, which allows the behaviour of the PIE Middleware to be
changed at run-time, is a key feature of the PIE Middleware that is crucial to support
run-time changes of the architecture of the PIE federation.

4.1 Communication layer

Communication and data models constitute the basis of any middleware. The first
describes the underlying model of communication adopted by the middleware, while
the second describes the properties of the information exchanged by the clients of the
middleware (i.e., the components of the resulting architecture) through the set of
services provided.

Different middlewares adopt different communication and data models. As an
example CORBA [4] [5] and RMI [6] adopt a model based on service requests, with a
complex type system, while message-oriented middlewares [7] [11] adopt a model
based on message passing with much simpler type systems (often messages are
untyped). To allow high level interaction between components (e.g. [12]) the PIE
Middleware offers both models of communication, each with an appropriate data
model, very simple (untyped) for message-based communications and richer (Java
types) for service-requests.

The communication model
As mentioned above, the PIE Middleware offers both message-based and service-
request-based communication services, giving its users the chance to choose an
appropriate communication model. These two communication models have been
integrated by translating service requests into messages in a way that is transparent to
the programmer. By doing so, the clients of the PIE Middleware (i.e., the PIE clients)
can adopt any of the two models of communication, while internall y both messages
and service requests are managed in the same manner.

As for message-based communication, the PIE Middleware implements both push
and pull communication models. In a push approach the PIE Middleware pushes
messages to their recipients. According to the semantics of JMS, when they connect
to the middleware (or when they subscribe to a class of messages), clients have to
provide a method to be invoked to process incoming messages (i.e., a callback).
Conversely, the pull model assumes that it is the recipient that “pull s” messages from
the PIE Middleware.

As for service requests, the PIE Middleware is totall y compatible with RMI. This
means that both RMI clients and servers can use the PIE Middleware without any
modification. More specificall y, service requests are managed as standard RMI
communications (i.e., they are sent directly from the client to the server) as soon as
the PIE Middleware is not required to intercept them to offer richer services. When
this happens, the PIE Middleware becomes an intermediary for service requests. This
shift, from direct client-server connection to the mediated one is made transparently to
both the clients and the servers.

The data model
The adopted communication model has strong relationships with the chosen data
model. The PIE Middleware adopts a very simple data model for message-based
communications and a richer model for service requests. This choice was motivated
by the need for keeping message-based communication as simple and lightweight as
possible, and to enhance scalabilit y and interoperabilit y among heterogeneous PIE
clients that want to exchange messages. Conversely, service requests adopt a complex

data model to allow PIE clients acting as servers to export a complex and expressive
interface.

In the context of message-based services, the PIE Middleware introduces the
concept of a PIEMessage. As mentioned above, in order to support scalabilit y and
heterogeneity, the PIE Middleware does not rely on any kind of common type system,
i.e., PIEMessages are untyped. Each PIE client can send a PIEMessage that includes
any set of user-defined fields. The interpretation of messages is made at the
application level and the PIE Middleware does not perform any kind of type checking
on the behalf of the application.

The content of a PIEMessage, is composed of three parts: a set of recipients, a set
of named fields (composed of a set of system fields, which are always present, and a
set of user-defined fields), and a payload.

• Each PIEMessage recipient can be a (li st of) topic and/or a (li st of) component
identifier. Topics are used to implement multi cast communication in a
publish/subscribe style. Each topic has a name, which is a string composed of a
dot-separated li st of identifiers. Component identifiers are used to implement
point-to-point communication. Each PIE client has an associated identifier. By
using these identifiers, PIEMessages can be addressed to specific PIE clients.

• Each field has a name and a value. Both names and values are strings. The PIE
Middleware distinguishes between a set of system fields, which are always present,
and a set of user-defined fields. PIE clients can create PIEMessages having any
number of user-defined fields. Fields can be used to perform content-based
subscription when the publish/subscribe communication style is adopted.

• The payload is a special field, an array of bytes containing application-specific data
that cannot be used to perform content-based subscription.

A message identifier (contained into the messageId system field) uniquely
identifies each message.

While message-based services adopt a quite simple data model, a complex data
model characterizes service requests. Each PIE client can export a set of public
methods that compose the interface of the client. Each method is characterized by a
name, a set of typed parameters, and by the type of the return value. Any valid
(seriali zable) Java types can be used for parameters and for the return value. As
mentioned, the PIE Middleware service requests are totall y compatible with RMI.
This is true also for the data model adopted. As a consequence the interested reader
may refer to the RMI specification [6] for further detail s.

Basic message-based communication services
To use the services of the PIE Middleware, PIE clients have to open a PIESession to
the PIE Middleware5. More specificall y, from the point of view of the PIE
Middleware, a PIE client is, by definition, any executing unit that has at most one
session opened.

A PIESession can be in one of three states: closed, opened, or suspended. When
created for the first time a PIESession is in the closed state. A closed session can be

5 Observe that the PIE middleware does not have any concept of “connection” similar to the

one provided by JMS. It is responsibilit y of the PIE middleware to share connections as
much as possible to improve scalabilit y.

opened by specifying the address of the PIE dispatching server the client wants to
connect to. To support migration of PIE clients, the PIE Middleware allows
PIESessions to be suspended and reopened from a different location and/or to a
different PIE dispatcher.

Each PIESession is uniquely identified by a middleware, provided identifier that
can be used both as a proxy to issue service requests to the PIE client that opened it
(see next section), and as a recipient of messages that have to be addressed to the
same PIE client. In the remainder we will use the term “ identifier” of a PIE client C to
indicate the identifier of the PIESession opened by C.

The PIE Middleware provides a name service to let a PIE client export its identifier
to other clients. In particular, the PIE name service adopts the standard JNDI interface
[8], thus allowing a PIE client to export its identifier under a symbolic name chosen
by the client itself. Other PIE clients may query the PIE Middleware for the identifier
of the PIE client having a known symbolic name. Observe that, to simpli fy client
programming, symbolic names can be directly used to address PIEMessages to
specific clients.

A PIE client connected to the PIE Middleware through a PIESession is able to
browse the li st of available topics; create a new Message, send a Message to a specific
set of recipients (using topics or component identifiers), subscribe to an existing topic,
receive Messages and reply to messages. PIE Middleware administrators can also
create and remove topics.

Basic service-request-based communication services
In addition to the message-based services described in the previous section, PIE
clients can take benefit of advanced services based on the service-request paradigm.
In particular, PIE clients can export some of their methods to other clients, allowing
them to invoke such “services” in a transparent manner. As already mentioned, the
PIE Middleware adopts the standard RMI facilit y to implement such services. This
means that any standard RMI/JNDI component can act both as a client and as a server
in an RMI communication supported by the PIE Middleware.

The value added by the PIE Middleware to the standard RMI facilit y is the abilit y
of providing one or more handlers (see 4.2) [9] capable of changing the way service
requests issued by RMI clients are dispatched and served by RMI servers. As an
example, it is possible to write a middleware handler capable of intercepting a service
request issued to a PIE client in order to translate them as a pair <message, reply>
issued to a different client. As another example it is possible to implement a
middleware handler capable of supporting transparent management of a repli cated set
of RMI servers. This handler would intercept any call i ssued to a PIE client C
translating it in a call to one of a set of PIE clients <C1, ..., CN> acting as a set of
repli cated servers.

4.2 The Control Layer

Process enactment in a widely distributed environment, composed of several COTS
components, and subject to process instance change is complex. It sets strong
requirements to the middleware in charge of supporting the communication among
components. The dynamics of the application and the complexity of the

communication patterns that need to be put in place, makes it very hard to anticipate
the communication services required.

To overcome this problem the PIE Middleware adopts two complementary
approaches. First, as described in the first part of this document, it supports different
communication patterns ranging from asynchronous multi cast message to simple
method call s. Second, it offers a set of services to change the middleware behaviour at
run-time and to add new communication services dynamicall y.

This last feature is obtained by means of PIE handlers, special kind of plug-in
modules that can be added to a PIE dispatching server at run-time to change its
behaviour or to add new services.

Middleware core

mh1

Middleware handler

Legenda :

mhn... ah1 ahm...

Application handler

Shared data structures

PIE library

PIE client

.…

 Name server JNDI

Stubs

Method call

….

Fig. 4. The logical architecture of the PIE Middleware

From a logical point-of-view, the PIE Middleware is composed of a core, a set of
handlers, and a set of shared data structures (i.e., shared among different middleware
handlers). PIE clients interact with the PIE Middleware by taking advantage of a
library, which implements the PIE Middleware API (see Fig. 4). The role of the PIE
Middleware core is to manage activation of handlers. It encapsulates also the JNDI
[8] name service used to export PIE client identifiers.

Middleware behaviour : handlers
Handlers implement all the user functionaliti es provided by the middleware. In
particular, a (small set of) middleware handlers is provided with the system to
implement the functionaliti es described in the previous sections. Middleware vendors
can add new middleware handlers to extend the set of functionaliti es provided by the
system.

A unique name, a message selector, a priority, and a body characterize each PIE
handler. The message selector is used to specify the set of PIEMessages the handler

applies to. The priority is used to choose the ordering in which message handlers have
to be applied. Handlers with the same message selector must have a different priority.
The body describes the actions that have to be made when a PIEMessage that matches
the message selector is sent to the PIE Middleware for dispatching.

The PIE Middleware distinguishes between two classes of handlers: application
handlers and middleware handlers.

• Application handlers are application specific, stateless plug-ins whose body can
specify a limited set of operations to change the PIEMessages content: basicall y
the set of recipients of the message and its fields. They are supposed to be defined
by clients using a very limited and controlled language.

• Middleware handlers are generic plug-ins used to extend the middleware
functionaliti es by providing additional features. Like application handlers they can
access and change the set of recipients of messages and their fields. Moreover, they
can access and change the message payload. Most important, they can hold an
internal state and can access shared data to cooperate with other middleware
handlers. They are supposed to be defined by middleware vendors using a
complete programming language.

To understand how PIE handlers work, we have to describe how the PIE
Middleware logicall y operates. When a PIE client invokes a service of the PIE
Middleware an internal PIEMessage M is inserted it in the “deli very queue” of the
PIE Middleware.

For each message in this “deli very queue” the PIE Middleware looks for the
highest priority handler whose message selector matches M. Let be H such handler,
whose body is then executed.

The body of H can either discard the message, or it modifies the message M and/or
generates new messages. A modified message keeps its original identification while
generated messages have their own identification. The modified initial message and
the possible generated ones are inserted in the ‘deli very queue’ and can thus be
processed at their turn.

A standard middleware handler with the lowest priority is in charge of replacing
any topics that are in the set of recipients and to convert them in a li st of component
identifiers.

The following poli cy is followed:

• A handler is used only once on a message (same message identifier).
• If several handlers match a message M with the same priority, one of them is

picked up in a non-deterministic way.
• If at the end of the process (no more handlers may be applied including the

standard middleware handler, see below) all messages that contain topics are
discarded.

Usual middlewares li ke JMS are implemented in the PIE Middleware as the core
plus the standard handler. Unlike usual middlewares, any additional service can be
added by simply adding handlers implementing the service.

The needs for federation control, as explained above, are such that a number of
handlers, other than the standard handler, are predefined.

Enhanced services
The PIE Middleware supports several kinds of “ higher level services” , for instance:

Grouped delivery. A client can start a grouped delivery operation to send a set of
messages as a single atomic operation. This ensures two basic properties at the level
of the messages delivery. First, the ‘all or nothing’ property ensures that either all the
messages are eventually deli vered, or none of them. Second, the messages external to
the group are either deli vered before or after the group of messages.

Atomic deli very. This is a special case of grouped delivery to ensure that the groups
of messages are deli vered at the same logical instant. This means that if two clients
send two grouped messages to common recipients, they receive the two groups of
messages in the same order.

Method call s. The method call we consider in the PIE Middleware follows the
classical RMI scheme. However, in the frame of the PIE Middleware we provide the
possibilit y of intercepting an invocation from a client to a server in order to modify,
thanks to a set of handlers, the initial behaviour. It allows the adaptation of a method
call to a modified interface, or to redirect the method call to the new location of the
client.

Method handlers can also be used to manage a set of clients as if it were single.

The above concerns message/method delivery, but PIE clients may want to have
more guarantees about the real processing of the message. For that purpose we
introduce the transactional processing of messages and method call s. Even if it is
technicall y possible to reali ze real ACID transactions, the real problem is that the
server’s behaviour is not controlled, and that the semantics is not always clear, in
particular regarding the actions to do when a transaction is aborted. Is the component
able to roll back? If it cannot, how criti cal are the consequences? Basicall y we
consider a classical two-phase commit protocol where the message/method is
deli vered in the first phase. The replies of the first phase inform the middleware
handler of the possibilit y to process the message or not. If all the involved recipients
reply favorably, a commit message is sent, otherwise an abort message is sent.

The behaviour of the two phases is left to the responsibilit y of the servers that can
either consider a partial, optimistic or pessimistic approach. In the partial approach,
servers may only partiall y (or not at all) roll back the transaction. In the optimistic
approach, processing the message/method is done in the first phase and rollback is
necessary in case of reception of an abort message. The pessimistic approach consists
of verifying that the message/method can be processed, possibly locking some
resources and effectively processing it when the commit message is received.

Here we can clearly see the difference between the protocol that is imposed by the
middleware (e.g. the two phase-commit) and the behaviour of the servers that can in
theory implement what they want for the two phases according to their own semantic
and the semantics attached to the message.

Let us exempli fy how the PIE middleware is used to support federation building

and control.
Usually, most methods declared in CU classes are executed by a given component.

This is reali zed by putting a handler that redirects these method call s to the
responsible component and simultaneously emits the corresponding notification. On
the extreme, the CU can be totall y virtual, all call s to the CU being directed toward
the right components, in a completely transparent way; allowing to build reali stic and

eff icient distributed federations. Component mobilit y is solved that way; components
rights are also dynamicall y checked by handlers.

Event "activity FixBug starts" (see example in Err or ! Reference source not
found.) is simply captured by a handler which deletes it and transactionaly call s the
SCM tool to build a workspace for the activity, the workflow tool to add an activity in
an agenda, the planner to start the tasks and allocates resources, and so on.

5 Conclusions

A number of factors deeply influence the way modern applications are to be designed
and built . Among the most obvious, we could mention distribution and that
applications are being built from large existing pieces of software, mostly often
coming from third parties and COTS tools. Thus new applications must be designed
as a federation of distributed and autonomous components.

Our work in process support is a special case of this evolution. We think it
contributes to federations in three respects. First we have shown that new paradigms
have to be used for the design and control of federations. Second, we have shown
these new paradigms have to rely on the existence of a common universe, and that
process technology is the “natural way” to deal with CU definition and control. Third,
federations, being distributed, have to rely on a middleware. We have shown that
many of the features needed for federation control can and should be part of the
middleware services.

Regarding federation, we believe our work contrasts with contemporary
approaches. In these federation approaches, components are linked together to
constitute the application. The fact that we have explicitl y introduced the universe,
common to different components, and that we used process technology to model and
control it , is a major change. The separation of operational and CU models is another
major improvement over the classic approaches. We believe our approach could
become a general approach for building federations.

Regarding middleware, we believe this work also contrasts with earlier work. In
normal middlewares, layers are added on top of a basic communication layer (e.g.
CORBA services on top of an ORB). The classic approach does not provide any
control over the communication, and services can be used only explicitl y. Our
requirements are to control the communication, to provide advanced services and to
change dynamically the middleware behaviour, transparently from the client’s point
of view. Instead of layers, controls and services are plugged into the core middleware.
Due to its generalit y, extensibilit y, flexibilit y and (supposed) eff iciency, we consider
our approach could contribute to an alternative approach to the building of
middleware.

We believe that the solutions proposed are going farther than software process
federation. Indeed, we have tried in this work, as well as in this paper, to address the
issues, and to design solutions potentiall y usable for many software federations. We
hope the experiments under way will show the validity of our claims.

References

[1] J. Estublier and N.S. Barghouti. Interoperabilit y and Distribution of Process-Sensiti ve
Systems. Software Engineering for Parallel and Distributed Systems (PDSE’98). Kyoto
April 19-25, 1998.

[2] S. Heiler. Semantic Interoperabilit y. ACM Computing Surveys, 27(2):271-273, June,
1995.

[3] D. Heimbigner. “T he ProcessWall : a Process State Server Approach to Process
Programming” . ACM-SDE, December 1992.

[4] Object Management Group, “ CORBA services: Common Object Services Specifi cation” ,
July 1997.

[5] Object Management Group, "The Common Object Request Broker: Architecture and
Specifi cations (revision 2.0)". OMG, Framinghm, MA, July 1995.

[6] Sun Microsystems, “Java Remote Method Invocation Specifi cation” , February 10, 1997.
[7] Sun Microsystems, "Java Message Service", Version 1.0.5, October 5, 1998.
[8] Sun Microsystems, “Java Naming and Directory Interface” , Version 1.2, July 14, 1999.
[9] D. Garlan, “Low-cost adaptable tool integration poli cies for integrated environments” , in

Proceedings of SDE90.
[10] G. Cugola, E. Di Nitto, A. Fuggetta, “ Exploiting an event-based infrastructure to develop

complex distributed systems” , in Proceedings of ICSE’20, April 1998
[11] OVUM, “OVUM Evaluates: Middleware” , OVUM Ltd, 1996
[12] J.M. Andreoli , D. Arregui, F. Pacull , M. Riviere, J.Y. Vion-Dury, J. Will amowski,

“CLF/Mekano: A Framework for Building Virtual-Enterprise Appli cations” , in
Proceedings of International Enterprise Distributed Object Computing, 1999, (to appear)

[13] J. Estublier, H. Verjus, “Definiti on of the Behaviour Paradigms of a Heterogeneous
Federation of Evolving Process Components” , PIE2 Deli verable D2.01, 1999

[14] I. Alloui, S. Beydeda, S. Cîmpan, V. Gruhn, F. Oquendo and C. Schneider, “Advanced
Services for process Evolution: Monitoring and Decision Support” , EWSPT7, Salzburg,
Austria, February 2000

[15] M. Greenwood, I. Robertson and B. Warboys, “ A Support Framework for Dynamic
Organizations” , EWSPT7, Salzburg, Austria, February2000

