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1 Introduction 

Research about software processes modelli ng and support, even during the last 
decade, has suffered from a lack of practical credibilit y. Most of the solutions 
proposed have not gained wide acceptance by the software industry and, moreover, 
some fundamental issues li ke evolution have not yet found any reasonable solution. 
For these reasons, it was a clear decision in the PIE project to build a platform 
providing the requisite features for evolution support, and also addressing many of the 
aspects that have so far impeded wide acceptance of process support. 

Therefore, a major objective of the PIE platform is to facilit ate the implementation, 
in a company, of a complete process support system. This includes the tools, systems 
and techniques that process participants (developers, managers) are familiar with, as 
well as PIE specific components. The tools that process participants are used to are 
li kely to be Commercial Off The Shelf (COTS). The motivation to build such a 
Process Support System (PSS) endeavors to interoperate a number of components, 
including COTS systems, such that they collectively perform an expected service. We 
call this set of components a federation. 

We define a federation as an application built mainly from COTS tools, which 
implies that they are (mainly) autonomous, and they are not modifiable. The Apel2 
foundation is a federation manager, speciali zed in process support. 

The goal of the PIE federation (as well as most federations) is not only to provide 
collectively a (complex) service, but also to preserve the independence and autonomy 
of its components, to be open to dynamic change in composition and distribution 
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(new/changed/ removed/moved components), as well as in changes and enhancements 
of the behaviour and characteristics of the whole federation.  

Until now, most work addressing interoperabilit y within a federation has focussed 
on basic interactions between distributed components. We believe that federations 
must rise above this level; we need new concepts for federation interoperabilit y and 
new approaches for the definition, control and evolution of software federations. 

In section 2, we will explore the concept of federation and the interoperabilit y 
paradigms that can be used. In section 3, we show how these paradigms can be 
defined and controlled. Section 4 presents the PIE Middleware to which a large part 
of federation control has been delegated. Conclusions are reported in section 5. 

2 Federations paradigms 

Today, many COTS tools are available li ke workflow tools, GroupWare tools, 
configuration management tools, change management tools, document management 
tools, but also more general ones li ke text editors, spreadsheets, databases and web 
browsers, etc. Building a distributed software application [10] often consists of 
building a federation where most components are COTS and only a few are 
application specific. Such components are autonomous and manage their own 
resources or internal processes. It is interesting to note that the design and architecture 
of software systems is evolving under the pressure of a number of factors:  

• Distribution requires components to communicate through explicit means, 
• Maintainabilit y requires minimal change to the source code of components, 
• Evolutivity and mobilit y require that components are kept independent and 

autonomous. 
• Cost requires buying instead of building. 

The number of COTS tools is rapidly increasing, their functionalit y is more 
comprehensive and their price is dropping. Software products are evolving from being 
monolithic and proprietary toward federations. It is of strategic importance to find a 
practical way to build federations. Different strategies [13] can be used to define a 
federation out of a number of COTS.  

2.1 Control-based paradigm. The “ dictatorship” . 

The basic idea is to abstract (i.e. encapsulate) the services provided by each 
component in order to hide their heterogeneity (formalism, platform etc.). The 
services (API) have to be (re)defined in a common formalism (IDL), in such a way 
that one tool can call another, whatever their respective internal formalisms and 
communication technology. This is a Corba-li ke philosophy. 

To program a federation, a modeller will have to write a specific piece of code, the 
supervisor, which call s the right components at the right time with the right 
parameters. This approach is the usual way to build an application from software 
components. Components have local models and local states inaccessible from the 
outside. They provide and call services and have neither independence nor autonomy 



(see Fig. 1). However, each component may still i nteract on their own with users or 
other federations, so they keep some independence and autonomy outside the 
federation. 

Let us use a metaphor with a human society to ill ustrate process federation 
architectures. Each society agent (COTS) is a human or a business with its own model 
and goal, and it is capable of providing some services in an autonomous way.  

The control-based paradigm belongs to a full y centrali zed society. The goal and the 
rules of the society are clearly defined and enforced by a centrali zed government (the 
supervisor). The place and role of each human/company is defined and controlled by 
the government. This is a dictatorial society in which agents are supposed neither to 
know to which goal they should contribute, nor to take any initiative to contribute to 
change the state of the society. This may be found to be undesirable for a human 
society, but is perfectly acceptable for a software federation. 

2.2 The Common Universe approach.  

COTS tools are usually large and designed to fit a number of client’s needs without it 
being possible for clients to change or to extend the source code. For that reason most 
COTS provide clients not only with an API, but also with a specific formalism, 
usually different from the source code language, designed to easil y adapt the COTS 
tool behavior to each client’s specific use. For example, a database provides schemas, 
spreadsheets provide computation sheets, planners provide planning modellers, PSSs 
provide process modellers and so on. We call the “program” written in this formalism 
the behaviour model of the component3. See Fig 2. 

COTS tools, being designed to be autonomous, directly interact with the external 
world (users and/or common computer resources li ke network, database, operating 
system or file system). These features and devices being common to all COTS tools, 
we call them the Common Universe (CU). The fact that a component has direct 
interaction with the common universe has profound consequences on its design: it has 
to behave in an unpredictable context. COTS designers usually try to identify a 
number of “abnormal” behaviours, and to identify convenient responses to them, in a 
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fixed or customizable (i.e. programmable) way. This kind of behaviour can be said to 
be the Common Universe model of the tool4.  

Each COTS contains: 

• Behaviour model. Description of what the component does (its specific 
customization). 

• Interface. External description of the services that the component provides 
(API). 

• Common Universe model. Description of component action/reaction to CU 
evolution. 

• Current state (persistent or not). 

For software applications, the common universe always contains the computer 
itself (f iles, network, modems, processors, databases, screens, etc.). However, 
applications can include (and potentiall y share) many other real world knowledge 
(users, mechanical artifacts, activities, etc.) or they can share abstractions (language 
concepts li ke variables, “objects” and so on). All this, when reified, constitutes the 
common universe.  

If different components in the federation have a similar application domain, it is 
li kely that their local states contain the same knowledge. However, it is unli kely to be 
represented in the same way, or to be modeled using the same concepts. This is 
particularly true in process federations where each component deals with different 
facets of the same process. For example, the fact "activity FixBug is under way", is 
known by different components and interpreted in different ways: the SCM tool 
builds a workspace for the activity, the workflow tool adds an activity in an agenda, 
the planner starts the tasks and allocates resources, and so on. Further, a tool can use 
the concept of task, another one of activity, a third one of workspace, and their 
knowledge overlaps but is not identical; their have only partial views; none has a 
complete knowledge. Still t his knowledge is part of the CU. 

Many aspects of the CU model appear as atomic from the federation point of view 
but involve different components. For example, creating an activity in the CU, (which 
is an atomic operation) may involve MSProject (for planning), Lotus Notes (for 
notification), Adele (for workspace creation) and a monitoring tool (for the team 
leader control board). There is a need to coordinate, in a fine-grained way, the actions 
of all the components. 

The CU provides a sound basis on which the federation components can 
synchronize their work, because they can all observe the CU, and update their local 
state accordingly, or change the CU according to changes performed in their local 
state during execution. In the above example, the creation of a common activity 
changes the CU; this is noted by the components, each one reacting in its own way: 
updating planning (MSProject), creating a workspace (Adele) and so on. 

The CU approach, consisting in bringing as much as possible into a single common 
formalism and data repository, borrows similarities from database federations, but 
there are at least two major differences. In a database federation, the goal is to find a 
common schema from which the data stored in the different databases can be 
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PSSs are unique in that their “ raison d’être” is to deal with CU changes; the PSS behaviour 
model is its CU model. 



accessed. In our approach, the local store of components is never accessed through the 
common model. The goal of the common universe model is to define the behavior of 
the federation as a whole, whether or not this overlaps with the component process 
and/or persistent data. In case of overlap, it is up to each component to make its local 
data consistent. It is up to the component to decide what consistent means. The other 
major difference is that the purpose is not the static definition, but the dynamic 
behavior, i.e. the process. Really there is not much similarity between these two 
approaches. 

 

2.3 The simple CU approach. The “anarchy”  

The simple implementation of such an approach is presented by the ProcessWall [3]. 
There is no CU model; the architecture is based only on the effective presence of the 
CU, on which each component synchronizes its activity during execution (see Fig. 2).  

Component 1 Comp.2 Comp3

Communication

Comp.1

Common Universe

L ocal CU M odels        L ocal states

Foundation

Fig. 2. The anarchy paradigm 

In our society metaphor, the CU-based paradigm corresponds to an ultra-liberal 
society, where each human/organization observes the state of the society (CU) and 
decides to “collaborate” freely to its evolution. Groups of humans can handle work in 
common by observing the actions of the others (cooperation between overlapping 
PSSs). No federation process (the goal i .e. the desired future) is defined, no rules 
(correct behaviours and laws) are enforced. It is an anarchic society; which can work 
only if each component (human) behaves “correctly” , which is unli kely in a human 
society, but not in a computer federation. 

2.4 The controlled CU approach. From “ dictatorship” to “anarchy” . 

In the control-based approach 2.1, components do not know in what they are 
participating, but there is formal knowledge of exactly what will be executed and how 



(it is the supervisor’s source code). In the simple CU approach 2.3, each component 
knows to what it contributes, but there is no plan for future actions. 

The first approach provides the goal and control desirable in a federation, but 
introduces severe limitations (partitioning) and lack of f lexibilit y. The simple CU 
approach provides the desirable flexibilit y and generalit y, but at the cost of losing 
global control (goal and rule enforcement). There are, however, intermediate positions 
between dictatorship and anarchy. 

If a CU is shared by components, its behaviour is an abstraction of the 
"composition" of all components’ CU behaviours. If the federation CU model is 
formally defined and executed, it avoids anarchy, and it allows modellers and 
managers to understand, customize, and optimize the federation process. The 
federation CU model expresses (part of) the federation goal. If this federation CU 
model is executable (and executed) and if each one of the federation’s components is 
able to execute its part, the goal of the federation becomes explicit and enforceable. It 
is semantic interoperabilit y [2][1]. 

The CU model contains the functional aspects of the CU behavior (the what), not 
the operational ones (the how). We also define an operational model, whose purpose 
is to focus on defining how aspects mentioned in the CU model should or must be 
handled. Instead of relying on implicit and asynchronous invocation, this model 
prescribes the reaction to CU changes, and explicitl y indicates the consistency 
required for a given reaction. The operational model contains information related with 
the consistency control of the CU model implementation much as the ordering of 
component invocations for the same CU change, transaction control and so on. To do 
so, the interpreter of that model has to know of the federation components and their 
services, and has the capabilit y to explicitl y invoke these services. It relies on an 
explicit and synchronous invocation paradigm. See figure 3. 

In our metaphor, the society has a global society development plan (CU model) 
and has a government (the interpreters of the CU and operational models). If using 
only the CU model, the government executes the plan, which means it simply asks the 
society to do the work (e.g. build a highway). Agents, collectively, are supposed to be 
aware of what has to be done and to do it as they li ke. This society has both a goal 
(CU model) and a government, even if the latter has very littl e power and initiative. It 
is unli kely to work in human society. 

If using the operational model, the government not only can ask for something to 
be done but can also decides who will do it and how it will be done (the operational 
model interpreter directly call s the components that can do the job). The government 
can thus decide which aspects of the development plan are to be under complete 
control (li ke the army), or partiall y controlled (li ke health services), or completely 
free (most normal trade). This society can cover the complete spectrum from 
dictatorial (the operational model controls everything; it is the supervisor), to anarchy 
(neither operational model nor CU model). 

3 PIE architecture 

The PIE architecture implements the last federation paradigm (2.4). The foundation 
has to provide a repository for the CU, a CU model (and its interpreter) and an 
operational model (and its interpreter). The operational model interpreter relies on a 



dedicated middleware responsible for providing basic communication faciliti es 
(messages and method call s), but also to provide specific control services. 

The components of the federation (see Fig. 3) are of two kinds: 

• Components which provide the functionaliti es of the PIE system. These 
components are the standard ones developed within the project: pro-active 
monitoring support, change and decision support [14] and evolution strategy 
support [15]. 

• Components which are COTS tools or proprietary components specific to an 
application and fulfilli ng the application users requirements. 
 
In PIE, it is the operational manager who is in charge of translating the operational 

model into a number of rules and laws applied to the communications (thick double 
arrow). The PIE Middleware will be in charge of supporting and interpreting these 
rules, and reali zing the communication. The PIE Middleware is different from usual 
middlewares (such as CORBA [4], [5] or Java Message Service [7], etc.) in that 
existing middlewares provide a communication mechanism but do not ensure or 
enforce any system property. We consider that federation control requires the close 
control of a number of communication properties li ke roles played by components in 
the federation context, rights and duties associated to these roles, substitution of 
components, mobilit y of components and so on.  
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Fig. 3. Architecture of a controlled federation 

This architecture arises from the following considerations: 

• Most federation control can be translated into communication control. 
• Most of the communication controls are services of very wide applicabilit y. 
• The set of communication services can be easil y and dynamicall y extended and 

changed. 



These considerations explain why we decided to delegate a large part of the 
federation control to a generic communication layer: the PIE Middleware. It basicall y 
relies on a “standard” message-passing system (‘communication’ in Fig. 3), almost 
JMS compliant, and on a control layer for the support of federation control.  

The services that must be provided by the PIE Middleware control layer should 
include: 

• Simple communication control: Inhibit messages, Redirect messages, Change 
message content, Replace a message by a method call (or vice versa), Duplicate, 
broadcast a method call , Reject a method call , and so on. 

• Advanced services: Enforce reactions ordering, Enforce transactional li ke 
capabiliti es, Handle messages with multiple replies, method broadcast, Provide 
advanced delivery properties and so on. 

Both layers are described in the following section. 

4 PIE Middleware 

To satisfy the requirements identified in the previous section, the PIE Middleware has 
to provide a rich set of services. It has to include 1) basic asynchronous, message-
based communication services and 2) synchronous, service-request-based 
communication services. In addition, more advanced services have to include support 
for atomic deli very of a set of messages, for distributed transactions, and, more in 
general, for controlli ng a federation of COTS. These services must be integrated in a 
unified API to minimize the effort needed to use the middleware and to avoid 
duplication, redundancy, and inconsistency among different services. 

To pursue this ambitious goal the communication and data model of the PIE 
Middleware have to be carefull y designed to offer the common basis for 
implementing the required services. 

Among the set of services provided by the PIE Middleware, we can distinguish 
four areas:  

• basic message-based communication services,  
• basic service-request-based communication services,  
• services to change the middleware behaviour dynamicall y,  
• and enhanced services, such as atomic deli very of messages and transactions.  

For compatibilit y with current standards, the basic communication layer is 
compliant with JMS (for message services) and RMI (for method call s). Any tool 
using these standards can be used as is in a PIE federation. 

The set of services, which allows the behaviour of the PIE Middleware to be 
changed at run-time, is a key feature of the PIE Middleware that is crucial to support 
run-time changes of the architecture of the PIE federation. 



4.1 Communication layer 

Communication and data models constitute the basis of any middleware. The first 
describes the underlying model of communication adopted by the middleware, while 
the second describes the properties of the information exchanged by the clients of the 
middleware (i.e., the components of the resulting architecture) through the set of 
services provided. 

Different middlewares adopt different communication and data models. As an 
example CORBA [4] [5] and RMI [6] adopt a model based on service requests, with a 
complex type system, while message-oriented middlewares [7] [11] adopt a model 
based on message passing with much simpler type systems (often messages are 
untyped). To allow high level interaction between components (e.g. [12]) the PIE 
Middleware offers both models of communication, each with an appropriate data 
model, very simple (untyped) for message-based communications and richer (Java 
types) for service-requests. 

The communication model 
As mentioned above, the PIE Middleware offers both message-based and service-
request-based communication services, giving its users the chance to choose an 
appropriate communication model. These two communication models have been 
integrated by translating service requests into messages in a way that is transparent to 
the programmer. By doing so, the clients of the PIE Middleware (i.e., the PIE clients) 
can adopt any of the two models of communication, while internall y both messages 
and service requests are managed in the same manner. 

As for message-based communication, the PIE Middleware implements both push 
and pull communication models. In a push approach the PIE Middleware pushes 
messages to their recipients. According to the semantics of JMS, when they connect 
to the middleware (or when they subscribe to a class of messages), clients have to 
provide a method to be invoked to process incoming messages (i.e., a callback). 
Conversely, the pull model assumes that it is the recipient that “pull s” messages from 
the PIE Middleware. 

As for service requests, the PIE Middleware is totall y compatible with RMI. This 
means that both RMI clients and servers can use the PIE Middleware without any 
modification. More specificall y, service requests are managed as standard RMI 
communications (i.e., they are sent directly from the client to the server) as soon as 
the PIE Middleware is not required to intercept them to offer richer services. When 
this happens, the PIE Middleware becomes an intermediary for service requests. This 
shift, from direct client-server connection to the mediated one is made transparently to 
both the clients and the servers. 

The data model 
The adopted communication model has strong relationships with the chosen data 
model. The PIE Middleware adopts a very simple data model for message-based 
communications and a richer model for service requests. This choice was motivated 
by the need for keeping message-based communication as simple and lightweight as 
possible, and to enhance scalabilit y and interoperabilit y among heterogeneous PIE 
clients that want to exchange messages. Conversely, service requests adopt a complex 



data model to allow PIE clients acting as servers to export a complex and expressive 
interface. 

In the context of message-based services, the PIE Middleware introduces the 
concept of a PIEMessage. As mentioned above, in order to support scalabilit y and 
heterogeneity, the PIE Middleware does not rely on any kind of common type system, 
i.e., PIEMessages are untyped. Each PIE client can send a PIEMessage that includes 
any set of user-defined fields. The interpretation of messages is made at the 
application level and the PIE Middleware does not perform any kind of type checking 
on the behalf of the application. 

The content of a PIEMessage, is composed of three parts: a set of recipients, a set 
of named fields (composed of a set of system fields, which are always present, and a 
set of user-defined fields), and a payload.  

• Each PIEMessage recipient can be a (li st of) topic and/or a (li st of) component 
identifier. Topics are used to implement multi cast communication in a 
publish/subscribe style. Each topic has a name, which is a string composed of a 
dot-separated li st of identifiers. Component identifiers are used to implement 
point-to-point communication. Each PIE client has an associated identifier. By 
using these identifiers, PIEMessages can be addressed to specific PIE clients. 

• Each field has a name and a value. Both names and values are strings. The PIE 
Middleware distinguishes between a set of system fields, which are always present, 
and a set of user-defined fields. PIE clients can create PIEMessages having any 
number of user-defined fields. Fields can be used to perform content-based 
subscription when the publish/subscribe communication style is adopted. 

• The payload is a special field, an array of bytes containing application-specific data 
that cannot be used to perform content-based subscription. 

A message identifier (contained into the messageId system field) uniquely 
identifies each message. 

While message-based services adopt a quite simple data model, a complex data 
model characterizes service requests. Each PIE client can export a set of public 
methods that compose the interface of the client. Each method is characterized by a 
name, a set of typed parameters, and by the type of the return value. Any valid 
(seriali zable) Java types can be used for parameters and for the return value. As 
mentioned, the PIE Middleware service requests are totall y compatible with RMI. 
This is true also for the data model adopted. As a consequence the interested reader 
may refer to the RMI specification [6] for further detail s. 

Basic message-based communication services 
To use the services of the PIE Middleware, PIE clients have to open a PIESession to 
the PIE Middleware5. More specificall y, from the point of view of the PIE 
Middleware, a PIE client is, by definition, any executing unit that has at most one 
session opened. 

A PIESession can be in one of three states: closed, opened, or suspended. When 
created for the first time a PIESession is in the closed state. A closed session can be 
                                                        
5 Observe that the PIE middleware does not have any concept of “connection” similar to the 

one provided by JMS. It is responsibilit y of the PIE middleware to share connections as 
much as possible to improve scalabilit y. 



opened by specifying the address of the PIE dispatching server the client wants to 
connect to. To support migration of PIE clients, the PIE Middleware allows 
PIESessions to be suspended and reopened from a different location and/or to a 
different PIE dispatcher. 

Each PIESession is uniquely identified by a middleware, provided identifier that 
can be used both as a proxy to issue service requests to the PIE client that opened it 
(see next section), and as a recipient of messages that have to be addressed to the 
same PIE client. In the remainder we will use the term “ identifier” of a PIE client C to 
indicate the identifier of the PIESession opened by C. 

The PIE Middleware provides a name service to let a PIE client export its identifier 
to other clients. In particular, the PIE name service adopts the standard JNDI interface 
[8], thus allowing a PIE client to export its identifier under a symbolic name chosen 
by the client itself. Other PIE clients may query the PIE Middleware for the identifier 
of the PIE client having a known symbolic name. Observe that, to simpli fy client 
programming, symbolic names can be directly used to address PIEMessages to 
specific clients. 

A PIE client connected to the PIE Middleware through a PIESession is able to 
browse the li st of available topics; create a new Message, send a Message to a specific 
set of recipients (using topics or component identifiers), subscribe to an existing topic, 
receive Messages and reply to messages.  PIE Middleware administrators can also 
create and remove topics.  

Basic service-request-based communication services 
In addition to the message-based services described in the previous section, PIE 
clients can take benefit of advanced services based on the service-request paradigm. 
In particular, PIE clients can export some of their methods to other clients, allowing 
them to invoke such “services” in a transparent manner. As already mentioned, the 
PIE Middleware adopts the standard RMI facilit y to implement such services. This 
means that any standard RMI/JNDI component can act both as a client and as a server 
in an RMI communication supported by the PIE Middleware. 

The value added by the PIE Middleware to the standard RMI facilit y is the abilit y 
of providing one or more handlers (see 4.2) [9] capable of changing the way service 
requests issued by RMI clients are dispatched and served by RMI servers. As an 
example, it is possible to write a middleware handler capable of intercepting a service 
request issued to a PIE client in order to translate them as a pair <message, reply> 
issued to a different client. As another example it is possible to implement a 
middleware handler capable of supporting transparent management of a repli cated set 
of RMI servers. This handler would intercept any call i ssued to a PIE client C 
translating it in a call to one of a set of PIE clients <C1, ..., CN> acting as a set of 
repli cated servers. 

4.2 The Control Layer 

Process enactment in a widely distributed environment, composed of several COTS 
components, and subject to process instance change is complex. It sets strong 
requirements to the middleware in charge of supporting the communication among 
components. The dynamics of the application and the complexity of the 



communication patterns that need to be put in place, makes it very hard to anticipate 
the communication services required. 

To overcome this problem the PIE Middleware adopts two complementary 
approaches. First, as described in the first part of this document, it supports different 
communication patterns ranging from asynchronous multi cast message to simple 
method call s. Second, it offers a set of services to change the middleware behaviour at 
run-time and to add new communication services dynamicall y. 

This last feature is obtained by means of PIE handlers, special kind of plug-in 
modules that can be added to a PIE dispatching server at run-time to change its 
behaviour or to add new services. 

Middleware core

mh1

Middleware handler

Legenda :

mhn... ah1 ahm...

Application handler

Shared data structures

PIE library

PIE client

.…

 Name server          JNDI

Stubs

Method call

….

Fig. 4. The logical architecture of the PIE Middleware 

From a logical point-of-view, the PIE Middleware is composed of a core, a set of 
handlers, and a set of shared data structures (i.e., shared among different middleware 
handlers). PIE clients interact with the PIE Middleware by taking advantage of a 
library, which implements the PIE Middleware API (see Fig. 4). The role of the PIE 
Middleware core is to manage activation of handlers. It encapsulates also the JNDI 
[8] name service used to export PIE client identifiers. 

Middleware behaviour : handlers 
Handlers implement all the user functionaliti es provided by the middleware. In 
particular, a (small set of) middleware handlers is provided with the system to 
implement the functionaliti es described in the previous sections. Middleware vendors 
can add new middleware handlers to extend the set of functionaliti es provided by the 
system. 

A unique name, a message selector, a priority, and a body characterize each PIE 
handler. The message selector is used to specify the set of PIEMessages the handler 



applies to. The priority is used to choose the ordering in which message handlers have 
to be applied. Handlers with the same message selector must have a different priority. 
The body describes the actions that have to be made when a PIEMessage that matches 
the message selector is sent to the PIE Middleware for dispatching. 

The PIE Middleware distinguishes between two classes of handlers: application 
handlers and middleware handlers. 

• Application handlers are application specific, stateless plug-ins whose body can 
specify a limited set of operations to change the PIEMessages content: basicall y 
the set of recipients of the message and its fields. They are supposed to be defined 
by clients using a very limited and controlled language. 

• Middleware handlers are generic plug-ins used to extend the middleware 
functionaliti es by providing additional features. Like application handlers they can 
access and change the set of recipients of messages and their fields. Moreover, they 
can access and change the message payload. Most important, they can hold an 
internal state and can access shared data to cooperate with other middleware 
handlers. They are supposed to be defined by middleware vendors using a 
complete programming language.  

To understand how PIE handlers work, we have to describe how the PIE 
Middleware logicall y operates. When a PIE client invokes a service of the PIE 
Middleware an internal PIEMessage M is inserted it in the “deli very queue” of the 
PIE Middleware. 

For each message in this “deli very queue” the PIE Middleware looks for the 
highest priority handler whose message selector matches M. Let be H such handler, 
whose body is then executed.  

The body of H can either discard the message, or it modifies the message M and/or 
generates new messages. A modified message keeps its original identification while 
generated messages have their own identification. The modified initial message and 
the possible generated ones are inserted in the ‘deli very queue’ and can thus be 
processed at their turn.  

A standard middleware handler with the lowest priority is in charge of replacing 
any topics that are in the set of recipients and to convert them in a li st of component 
identifiers. 

The following poli cy is followed: 

• A handler is used only once on a message (same message identifier). 
• If several handlers match a message M with the same priority, one of them is 

picked up in a non-deterministic way. 
• If at the end of the process (no more handlers may be applied including the 

standard middleware handler, see below) all messages that contain topics are 
discarded. 

Usual middlewares li ke JMS are implemented in the PIE Middleware as the core 
plus the standard handler. Unlike usual middlewares, any additional service can be 
added by simply adding handlers implementing the service.  

The needs for federation control, as explained above, are such that a number of 
handlers, other than the standard handler, are predefined.  



Enhanced services 
The PIE Middleware supports several kinds of “ higher level services” , for instance:  

Grouped delivery. A client can start a grouped delivery operation to send a set of 
messages as a single atomic operation. This ensures two basic properties at the level 
of the messages delivery. First, the ‘all or nothing’ property ensures that either all the 
messages are eventually deli vered, or none of them. Second, the messages external to 
the group are either deli vered before or after the group of messages. 

Atomic deli very. This is a special case of grouped delivery to ensure that the groups 
of messages are deli vered at the same logical instant. This means that if two clients 
send two grouped messages to common recipients, they receive the two groups of 
messages in the same order. 

Method call s. The method call we consider in the PIE Middleware follows the 
classical RMI scheme. However, in the frame of the PIE Middleware we provide the 
possibilit y of intercepting an invocation from a client to a server in order to modify, 
thanks to a set of handlers, the initial behaviour. It allows the adaptation of a method 
call to a modified interface, or to redirect the method call to the new location of the 
client. 

Method handlers can also be used to manage a set of clients as if it were single.  

The above concerns message/method delivery, but PIE clients may want to have 
more guarantees about the real processing of the message. For that purpose we 
introduce the transactional processing of messages and method call s. Even if it is 
technicall y possible to reali ze real ACID transactions, the real problem is that the 
server’s behaviour is not controlled, and that the semantics is not always clear, in 
particular regarding the actions to do when a transaction is aborted. Is the component 
able to roll back? If it cannot, how criti cal are the consequences?  Basicall y we 
consider a classical two-phase commit protocol where the message/method is 
deli vered in the first phase. The replies of the first phase inform the middleware 
handler of the possibilit y to process the message or not. If all the involved recipients 
reply favorably, a commit message is sent, otherwise an abort message is sent. 

The behaviour of the two phases is left to the responsibilit y of the servers that can 
either consider a partial, optimistic or pessimistic approach. In the partial approach, 
servers may only partiall y (or not at all ) roll back the transaction. In the optimistic 
approach, processing the message/method is done in the first phase and rollback is 
necessary in case of reception of an abort message. The pessimistic approach consists 
of verifying that the message/method can be processed, possibly locking some 
resources and effectively processing it when the commit message is received.  

Here we can clearly see the difference between the protocol that is imposed by the 
middleware (e.g. the two phase-commit) and the behaviour of the servers that can in 
theory implement what they want for the two phases according to their own semantic 
and the semantics attached to the message. 

 
Let us exempli fy how the PIE middleware is used to support federation building 

and control. 
Usually, most methods declared in CU classes are executed by a given component. 

This is reali zed by putting a handler that redirects these method call s to the 
responsible component and simultaneously emits the corresponding notification. On 
the extreme, the CU can be totall y virtual, all call s to the CU being directed toward 
the right components, in a completely transparent way; allowing to build reali stic and 



eff icient distributed federations. Component mobilit y is solved that way; components 
rights are also dynamicall y checked by handlers.  

Event "activity FixBug starts" (see example in  Err or ! Reference source not 
found.) is simply captured by a handler which deletes it and transactionaly call s the 
SCM tool to build a workspace for the activity, the workflow tool to add an activity in 
an agenda, the planner to start the tasks and allocates resources, and so on.  

5 Conclusions 

A number of factors deeply influence the way modern applications are to be designed 
and built . Among the most obvious, we could mention distribution and that 
applications are being built from large existing pieces of software, mostly often 
coming from third parties and COTS tools. Thus new applications must be designed 
as a federation of distributed and autonomous components. 

Our work in process support is a special case of this evolution. We think it 
contributes to federations in three respects. First we have shown that new paradigms 
have to be used for the design and control of federations. Second, we have shown 
these new paradigms have to rely on the existence of a common universe, and that 
process technology is the “natural way” to deal with CU definition and control. Third, 
federations, being distributed, have to rely on a middleware. We have shown that 
many of the features needed for federation control can and should be part of the 
middleware services. 

Regarding federation, we believe our work contrasts with contemporary 
approaches. In these federation approaches, components are linked together to 
constitute the application. The fact that we have explicitl y introduced the universe, 
common to different components, and that we used process technology to model and 
control it , is a major change. The separation of operational and CU models is another 
major improvement over the classic approaches. We believe our approach could 
become a general approach for building federations. 

Regarding middleware, we believe this work also contrasts with earlier work. In 
normal middlewares, layers are added on top of a basic communication layer (e.g. 
CORBA services on top of an ORB). The classic approach does not provide any 
control over the communication, and services can be used only explicitl y. Our 
requirements are to control the communication, to provide advanced services and to 
change dynamically the middleware behaviour, transparently from the client’s point 
of view. Instead of layers, controls and services are plugged into the core middleware. 
Due to its generalit y, extensibilit y, flexibilit y and (supposed) eff iciency, we consider 
our approach could contribute to an alternative approach to the building of 
middleware. 

We believe that the solutions proposed are going farther than software process 
federation. Indeed, we have tried in this work, as well as in this paper, to address the 
issues, and to design solutions potentiall y usable for many software federations. We 
hope the experiments under way will show the validity of our claims. 



References 

[1] J. Estublier and N.S. Barghouti. Interoperabilit y and Distribution of Process-Sensiti ve 
Systems. Software Engineering for Parallel and Distributed Systems (PDSE’98). Kyoto 
April 19-25, 1998. 

[2] S. Heiler. Semantic Interoperabilit y. ACM Computing Surveys, 27(2):271-273, June, 
1995. 

[3] D. Heimbigner. “T he ProcessWall : a Process State Server Approach to Process 
Programming” . ACM-SDE, December 1992.  

[4] Object Management Group, “ CORBA services: Common Object Services Specifi cation” , 
July 1997. 

[5] Object Management Group, "The Common Object Request Broker: Architecture and 
Specifi cations (revision 2.0)". OMG, Framinghm, MA, July 1995. 

[6] Sun Microsystems, “Java Remote Method Invocation Specifi cation” , February 10, 1997. 
[7] Sun Microsystems, "Java Message Service", Version 1.0.5, October 5, 1998. 
[8] Sun Microsystems, “Java Naming and Directory Interface” , Version 1.2, July 14, 1999. 
[9] D. Garlan, “Low-cost adaptable tool integration poli cies for integrated environments” , in 

Proceedings of SDE90. 
[10] G. Cugola, E. Di Nitto, A. Fuggetta, “ Exploiting an event-based infrastructure to develop 

complex distributed systems” , in Proceedings of ICSE’20, April 1998 
[11] OVUM, “OVUM Evaluates: Middleware” , OVUM Ltd, 1996 
[12] J.M. Andreoli , D. Arregui, F. Pacull , M. Riviere, J.Y. Vion-Dury, J. Will amowski, 

“CLF/Mekano: A Framework for Building Virtual-Enterprise Appli cations” , in 
Proceedings of International Enterprise Distributed Object Computing, 1999, (to appear) 

[13] J. Estublier, H. Verjus, “Definiti on of the Behaviour Paradigms of a Heterogeneous 
Federation of Evolving Process Components” , PIE2 Deli verable D2.01, 1999 

[14] I. Alloui, S. Beydeda, S. Cîmpan, V. Gruhn, F. Oquendo and C. Schneider, “Advanced 
Services for process Evolution: Monitoring and Decision Support” , EWSPT7, Salzburg, 
Austria, February 2000 

[15] M. Greenwood, I. Robertson and B. Warboys, “ A Support Framework for Dynamic 
Organizations” ,  EWSPT7, Salzburg, Austria, February2000 

 


