SelfMotion: a Declarative Language
for Adaptive Service-Oriented Mobile Apps

Gianpaolo Cugola, Carlo Ghezzi, Leandro Sales Pinto and Giordano Tamburrelli
DEEPSE Group @ DEl, Politecnico di Milano, ltaly

{cugolajghezzipintojtamburrelli}@elet.polimi.it

ABSTRACT

In this demo we present SelfMotion: a declarative language
and a run-time system conceived to support the develop-
ment of adaptive, mobile applications, built as compositions
of ad-hoc components, existing services and third party ap-
plications. The advantages of the approach and the adaptive
capabilities of SelfMotion are demonstrated in the demo by
designing and executing a mobile application inspired by an
existing, worldwide distributed, mobile application.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Service-oriented architecture (SOA)

General Terms

Languages

Keywords

Mobile applications, Self-adaptive systems, Declarative or-
chestration language

1. INTRODUCTION

Mobile applications, commonly referred to as apps, are
small-sized, efficient, modular and loosely coupled software
artifacts typically developed by composing together: (1) ad-
hoc developed components, (2) existing services available
on-line, (3) third-party apps, and (4) hardware features (e.g.,
camera, GPS, etc.). Building apps as an orchestration of
components, services and/or other third-party applications,
however, introduces a direct dependency of the system with
respect to external software artifacts which may evolve over
time, fail, or even disappear, thereby compromising the ap-
plication’s functionality. This kind of dependency increases
when the app relies on hardware features, usually not present
in all devices. To cope with these peculiarities apps need to
be adaptive with respect to the heterogeneous deployment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT’12/FSE-20, November 11-16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

environments and with respect to the services and exter-
nal apps they rely upon [1]. The traditional way to achieve
this goal is by explicitly programming the needed adapta-
tions, heavily using exception handling techniques to man-
age unexpected scenarios when they occur. Using this tra-
ditional approach it is hard to separate the alternative ways
to achieve the app’s goal from the exception handling code.
This brings further complexity and results in hard to read
and maintain apps. We tackle this problem by abandoning
the mainstream path and by proposing an innovative ap-
proach called SelfMotionl[Q}. This approach comprises an
interpreted Declarative Language and a Middleware, both
presented in this demo. SelfMotion not only supports adap-
tivity but also provides an effective framework to decouple
the business logic from the adaptation logic, facilitating code
reuse and refactoring.

2. SELFMOTION EXPLAINED

The SelfMotion language allows apps to be modeled by
describing: (1) a set of Abstract Actions, (2) a set of Concrete
Actions, and (3) the overall Goal to be met.

Abstract Actions. Abstract actions are high-level descrip-
tions of the primitive actions used to accomplish the app’s
goal. They represent the main building blocks of the app.
Abstract actions are modeled with an easy-to-use, logic-like
language, in terms of: (1) signature, (2) precondition, and
(3) postcondition. The precondition is expressed as a list of
facts that must be true in the current state for the action to
be enabled. The postcondition models the effects of the ac-
tion on the current state of execution by listing the facts to
be added to (and those to be removed from the state). For
example, Listing 3 reports two abstract actions. The first
one corresponds to a component called getPositionWith-
GPS which retrieves the user location via GPS, it requires
as precondition an enabled GPS sensor and asserts with its
postcondition the user location. The second abstract action
corresponds to another component (i.e., getProductName)
which converts an acquired barcode to a product name (we
use these actions in our example, later on).

Goal and Initial State. Besides abstract actions, the goal
and initial state are also needed to build and execute an
app. The goal specifies the desired state after executing the
app. It may actually include a set of states, which reflect
all the alternatives to accomplish the app’s goal, listed in
order of preference. The SelfMotion middleware will start
trying to satisfy the first goal; if it does not succeed it will

1Self-Adaptive Mobile Application.

action getPositionWithGPS

pre : hasGPS, isGPSEnabled
post: position (gpsPosition)
action getProductName(Barcode)
pre : barcode (Barcode)

post: productName (name)

Listing 1: Abstract Action Example.

try to satisfy the second goal, and so on. The initial state
complements the goal by asserting the facts that are true at
app’s invocation time. It is partially generated at run time
by the SelfMotion middleware, which detects the features of
the mobile device in which it has been installed.

Concrete Actions. Concrete actions are the executable
counterpart of abstract actions. In the current implementa-
tion of SelfMotion, concrete actions are implemented through
Java methods. In general, several concrete actions may be
bound to the same abstract action. This way, if the currently
bound concrete action fails (i.e., it returns an exception) the
SelfMotion middleware has other options to accomplish the
app’s step specified by the failed abstract action.

Q@Action (name="getProductName"”, priority=1)

public String getProductNameViaService(Barcode barcode){

String barcodeValue = barcode.getValue();
//Invoke remote service (e.g., http://searchupc.com/)
return productName;

Q@Action (name="getProductName"”, priority=2)

public String getProductNameFromUser(Barcode barcode){
String barcodeValue = barcode.getValue();
//Ask the user for the product name
return productName;

}

Listing 2: getProductName Concrete Actions.

For example, for the getProductName abstract action we
may have two corresponding concrete actions: one exploiting
a Web service (e.g., http://searchupc.com/) to map the
barcode value to a product name, the other asking it to the
user. The latter is automatically selected by the middleware
when the former fails. Listing 2 reports the code used to
define these concrete actions.

The Middleware. SelfMotion apps are executed by a
middleware that leverages automatic planning techniques to
elaborate, at run-time, the best sequence of abstract actions
to achieve the goal. Whenever a change happens in the
external environment (e.g., a service becomes unavailable),
which prevents successful completion of the execution, the
SelfMotion middleware tries to find an alternative path to-
ward the goal and continues executing the app, which results
in a nice and effective adaptive behavior. The middleware’s
architecture comprises two distinct components: a Planner
and an Interpreter. The Planner analyzes the goal, the ini-
tial state, and the abstract actions provided at design-time
by the developer and builds an Abstract Ezecution Plan.
Such plan lists the logical steps to reach the expected goal
(i.e., a list of abstract actions that lead from the initial state
to a state that satisfies the goal). The Interpreter is in charge
of enacting the generated plan by associating each step (i.e.,
each abstract action) with a concrete action that is executed,
possibly invoking external components where specified. If

something goes wrong (e.g., an external service is unable to
accomplish the expected task), the Interpreter first tries a
different concrete action for the abstract action that failed.
Afterwards, if none of the available concrete actions is able
to complete successfully, the Interpreter invokes the Planner
invoked again to build an alternative plan that avoids the
failing step.

Enable Adaptation. By separating abstract and concrete
actions and supporting one-to-many mappings we solve two
key typical problems of mobile apps: (1) how to adapt the
app to the plethora of devices available, and (2) how to cope
with failures happening at run-time. Concerning problem
(1), traditional approaches require to explicitly hard-code
(using if-else constructs) the various alternatives (e.g., to
handle the potentially missing sensor on a certain device),
and any new option introduced by new devices would in-
crease the number of possible branches. Conversely, Self-
Motion just requires a separate concrete action for each op-
tion, leaving to the middleware the duty of selecting the
most appropriate ones, considering the current device capa-
bilities and the order of preference provided by the app’s
designer. As for problem (2), consider the example of get-
ProductName, which is implemented in SelfMotion by a sin-
gle abstract action mapped to two different concrete actions
(Listings 1 and 2). The middleware initially tries the first
concrete action that invokes an external service: if this re-
turns an exception, the second concrete action is automat-
ically tried. If none of the available concrete actions suc-
ceeds, SelfMotion may rely on its re-planning mechanism.
Consider the case in which the middleware is executing a
plan which include the location retrieval via GPS and let us
assume that the GPS sensor fails throwing a system excep-
tion. The middleware catches the exception and recognizes
the getPositionWithGPS as faulty, which has no alternative
concrete actions. Thus the Planner is invoked to generate
a new plan that avoids the faulty step for example by us-
ing an alternative abstract actions which asks the user to
manually indicate its current location (i.e., getPosition-
Manually). These examples show how SelfMotion relieves
programmers from the need for explicitly handling the inter-
twined exceptional situations that may happen at run-time.

Decouple Design from Implementation. SelfMotion
achieves a clear separation among the different aspects of the
app: from the more abstract ones, captured by goals, initial
state, and abstract actions, to those closer to the implemen-
tation domain, captured by concrete actions. In defining
abstract actions developers may focus on the features hey
want to introduce in the app, ignoring how they will be
implemented (e.g., ad-hoc developed components, services,
or third party apps). This choice is delayed until run-time
binding. This way the app may be gradually evolved, by
adding new concrete actions that implement the additional
features, e.g., exploiting a Web service. This process, in
which the system design is decoupled from the implementa-
tion, is not currently supported by mainstream app devel-
opment environments. SelfMotion is an attempt to fill this
gap. In addition the modularization of the app’s functional-
ity avoids the typical, spaghetti-like code required to merge
all possible alternatives and exception handling fragments.
As aresult, code is easy to read, write, maintain, and evolve.
In addition, SelfMotion increases reusability, since the same
actions can be reused across different apps.

Table 1: ShopReview Components.

Name Description
BarcodeReader It allows to scan the product barcode
GetProductName | It maps the barcode in a product name

the barcode into the product name
GetPosition It retrieves the user location
WebSearch It retrieves more convenient
prices offered online
It retrieves online other shops in the
LocalSearch neighborhood which offer the product at
a more convenient price exploiting the
data provided by other users of the app.
SharePrice It allows users to share
the product’s price on Twitter
InputPrice It collects from the
user the product’s price

3. THE DEMO

The demo illustrates SelfMotion by designing and execut-
ing a realistic mobile application for the Android platform.
In particular, the demo is organized in two parts: (1) App
Design and (2) App Execution. In the first part we design
and develop the app, highlighting the SelfMotion peculiar-
ities and emphasizing the advantages of the approach with
respect to the state-of-the-art. Subsequently, in the App
Execution part, we run the app on an emulator as well as
on a real mobile device to illustrate the SelfMotion middle-
ware. The combination of the two parts of the demo clearly
provides a typical usage scenario of the language and the
tool.

The mobile app we develop in the demo is called ShopRe-
view (SR) and is inspired by an existing application (i.e.,
ShopSavvy?). SR allows users to share data concerning
a commercial product or query for data shared by others.
Users may use SR to publish the price of a product they
have found in a certain shop (chosen among those close to
their current location). In response, the app provides the
users with alternative, nearby places where the same prod-
uct is sold at a more convenient price. The unique mapping
between the price signaled by the user and the product is
obtained by exploiting the product barcode. In addition,
users may share their opinion concerning the shop and its
prices on a social network such as Twitter.

The development process for an app like SR typically
starts by listing the needed functionalities and by deciding
which of them will be implemented through an ad-hoc com-
ponent and which will be implemented by re-using existing
solutions (i.e., services or third party apps). Table 1 lists all
the building blocks that compose the SR app.

3.1 App Design

The demo starts by modeling the SR app in terms of ab-
stract actions as reported in Listing 3 where each action
corresponds to the high level components listed in Table 1.
In some cases, the same functional component corresponds
to several abstract actions, depending on some contextual
information. For example, we split the GetPosition func-
tionality into two abstract actions getPositionWithGPS and

’http://shopsavvy.mobi/

action barcodeReader

pre true

post : barcode(productBarcode)
action getProductName(Barcode)

pre : barcode (Barcode)

post: productName (name)

action inputPrice(Name)

pre : productName (Name)

post : price(productPrice)

action sharePrice(Name, Price)

pre : productName (Name), price(Price)
post : sharedPrice

action getPositionWithGPS

pre : hasGPS, isGPSEnabled

post: position (gpsPosition)

action getPositionManually

pre true

post: position(userDefinedPosition)
action enableGPS

pre : “isGPSEnabled

post: isGPSEnabled

action webSearch(Name)

pre : productName (Name)

post : listOfOnlinePrices

action localSearch(Barcode, Position)
pre : barcode(Barcode), position(Position)
post : listOfLocalPrices

Listing 3: SR Abstract Actions.

getPositionManually. We also introduced an enableGPS
abstract action, which encapsulates the logic to activate the
sensor. At this step we also discuss the details related to the
language syntax, such as parameters of pre/postconditions
(e.g., Position or Barcode). These parameters start with an
uppercase letter, which denote unbound objects. Unbounded
objects are bound at planning time to instances, whose name
starts instead with a lowercase letter.

goal

listOfLocalPrices and listOfOnlinePrices and sharedPrice

and position(gpsPosition)
or

listOfLocalPrices and listOfOnlinePrices and sharedPrice

and position(userDefinedPosition)

start hasGPS and “isGPSEnabled

Listing 4: SR Goal and Initial State.

At this stage the demo proceeds by declaring the goal for
the SR app (see Listing 4), which is composed in turn by
two alternative goals. The first one requires the GPS sen-
sor and the second one relies on the user input to retrieve
the location (this way the app will be adaptive w.r.t. the
GPS sensor, which may be potentially missing on certain
devices). As described in the previous section the initial
state is generated at run time by the SelfMotion middleware,
which detects the features of the mobile device in which it
has been installed. In our example, assuming the device has
a GPS sensor which is currently disabled, it generates the
initial state shown in Listing 4, which will prevent the Plan-
ner to generate a plan including the getPositionWithGPS
action. After these steps, the demo focuses on illustrating

enableGPS

barcodeReader

getPositionWithGPS
getProductName(barcode)
inputPrice (name)

webSearch (name)

localSearch (barcode, gpsPosition)
sharePrice (name, price)

Listing 5: A Possible Abstract Execution Plan.

the concrete actions that implement the abstract actions,
similarly to what reported in Listing 2 in which we showed
the concrete actions associated to the getProductName ab-
stract action. Notice that during this part of the demo we
highlight the difference and the advantages of our approach
with respect to the traditional imperative paradigm. Indeed,
to execute SR on devices without GPS, its implementation
include an adaptive behavior which shows a map to the user
for a manual indication of the current location if GPS is
missing. The code snippet reported in Listing 6 describes a
possible implementation of the described adaptive behavior
for the Android platform [4]. Although this is just a small
fragment of the SR app, which is by itself quite a simple ex-
ample, it is easy to see how convoluted and error prone the
process of defining all possible alternative paths may turn
out to be. Things become even more complex considering
run-time exceptions, like an error while accessing the GPS
or invoking an external service, which have to be explicitly
managed through ad-hoc code.

if (manager. hasSystemFeature (FEATURE_.CCAMERA_AUTOFOCUS) {
//Run local barcode recognition

}else{

//Invoke remote service with blurry decoder algorithm

Location location = null;
if (manager. hasSystemFeature (FEATURE_LOCATION_GPS){
LocationProvider provider =
LocationManager.GPS_PROVIDER;
try{
/* The following line returns null if the
GPS signal is not availablex/
location = locationManager.
getLastKnownLocation(provider);
}catch (Exception e){
location = null;

if(location=null){

/+xDevice whitout GPS or an excpetion was raised
invoking it. We show up a map to allow the user
to indicate its location*/

showMap ();

Listing 6: Traditional Adaptive Code Example

The main reason behind these problems is that the main-
stream platforms for developing mobile applications are based
on traditional imperative languages in which the flow of ex-
ecution must be explicitly programmed. In this setting, the
adaptive code—represented in our code fragment by all the
if-else branches—is intertwined with the application logic,
reducing the overall readability and maintainability of the
resulting solution, and hampering its future evolution in
terms of supporting new or alternative features, which re-
quires additional branches to be added to the implementa-
tion. In the demo we actually compare this solution with
the SelfMotion counterpart, which relies on several abstract

actions with different preconditions (see Listing 3). We also
demonstrate these concepts to the case of the third-party
apps invoked to obtain specific functionalities, like those
used by SR to access the different social networks. These
apps are typically installed by default on devices but they
can be removed by users, thus jeopardizing the app’s ability
to accomplish its tasks.

3.2 App Execution

The second part of the demo illustrates the SelfMotion
middleware by running the SR app. Indeed, given abstract
actions, goal, and initial state, the Planner can build an
Abstract Execution Plan. Listing 5 reports a possible plan
for the SR example with a GPS sensors available but not
enabled (i.e., hasGPS set to true, isGPSEnabled set to false).
Notice that: (1) when several sequences of actions could
satisfy the goal, the Planner chooses one non-deterministi-
cally; (2) although the plan is described as a sequence of
actions, the middleware is free to execute them in parallel,
as soon as the respective precondition becomes true. In
the demo we launch the middleware which executes the app
in the Android emulator as well as on a real device. The
execution shows that the middleware does not introduce any
significant delay or overhead at run-time.

In addition, in this part of the demo we illustrate the
adaptive capabilities of the planner. For example we artifi-
cially inject a fault in the concrete action getProductName
which invokes the external Web service (see Listing 2) sim-
ulating an unresponsive or faulty service and we show how
the planner automatically switches to the alternative con-
crete action. This way we point out how the SelfMotion
approach is able to adapt to unexpected scenarios without
requiring the convoluted code exemplified in Listing 6. We
also deploy the app with two different settings of the emu-
lator representing two devices with and without the GPS to
demonstrate the adaptivity of the approach with respect to
the plethora of devices available today.

SelfMotion is available, together with the ShopReview ex-
ample, at http://www.dsol-lang.net/self-motion.html.
This work is part of a long running research stream, which
alms at investigating declarative approaches to enforce adap-
tive capabilities in software systems (e.g., [2, 3]).

4. REFERENCES

[1] B. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, et al. Software engineering for
self-adaptive systems: A research roadmap. Software
Engineering for Self-Adaptive Systems.

[2] G. Cugola, C. Ghezzi, L. P. Pinto, and G. Tamburrelli.
Adaptive service-oriented mobile applications: A
declarative approach. In Service-Oriented
Computing-ICSOC 2012 (to appear).

[3] G. Cugola, C. Ghezzi, and L. S. Pinto. DSOL: a
declarative approach to self-adaptive service
orchestrations. Computing, pages 1-39.

[4] R. Rogers. Android application development. O’Reilly,
2009.

