
Green Move: a platform for highly configurable,
heterogeneous electric vehicle sharing

Andrea G. Bianchessi, Gianpaolo Cugola, Simone Formentin, Angelo Morzenti, Carlo Ongini, Emanuele Panigati,
Matteo Rossi∗, Sergio M. Savaresi, Fabio A. Schreiber, Letizia Tanca and Edoardo G. Vannutelli Depoli

Abstract—Vehicle sharing in urban areas has the potential
to be the answer to some of the main issues that hinder the
spreading of electric vehicles, in particular for what concerns the
high upfront costs of the vehicles, combined with their still limited
range, which can induce phenomena such as range anxiety. For
its potential to be realized, vehicle sharing must be tailored to the
multiform needs of its users by offering a wide range of support
services that can be selected based on the user preferences. In this
paper we present the platform for vehicle sharing developed in
the Green Move project, which allows services to be dynamically
loaded and unloaded on vehicles, and describe a pair of prototype
applications to illustrate its benefits.

I. INTRODUCTION

Electric vehicle sharing has the potential to provide a
solution to many of the problems that afflict urban mobility.

Pollution, greenhouse gas emissions are some of the most
prominent issues that modern metropolitan areas have to face
nowadays: the goals set at the political level in this regard –
for example, in 2007, the EU Council stated that, by 2050,
developed countries should reduce their overall greenhouse
gas emissions by 60-80% compared to 1990 – cannot be
achieved without a significant re-think of urban mobility. This
typically starts from a shift in the nature of the vehicles on
which urban mobility is based, from traditional ones powered
by internal combustion engines, to smaller, lighter Electric
Vehicles (EVs), which are almost entirely zero-emissions. The
economic viability of EVs, however, is still a major question
mark, mostly because of technological issues such as battery
life or driving range. Some estimates put the break-even point
of a battery pack at 80% of its lifetime; assuming a battery
pack has a life of 2000 complete discharge/recharge cycles,
and the driving range of the EV with a fully charged battery
is 80km, the vehicle should cover at least 128.000 km in its
lifetime to be economically viable, as depicted in Fig. 1. In an
urban scenario, where a single driver covers at most 20km a
day, this goal is achievable only if the vehicle is shared among
users, thus significantly increasing its usage rate.

A second major problem that plagues urban areas is traffic
congestion, and the related issue of scarcity of parking spaces.
Vehicle sharing, by reducing the number of vehicles within
the city limits, directly helps addressing the latter issue, and
often enjoys subsidies from city governments which reduce
– or eliminate altogether – parking fees. To curb traffic

The authors are with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133
Milano, Italy. ∗E-mail: matteo.rossi@polimi.it.

Work supported by Regione Lombardia through project “Green Move”.

congestion, instead, municipalities such as London and Milan
have introduced so-called “congestion charges” in critical
areas; however, vehicles that are electric, shared, or both are
usually fully exempt from this charge. Hence, vehicle sharing
is incentivized per public policy, which makes it a privileged
form of transportation, especially in city centers.

The management of EVs poses peculiar problems, which
can be mitigated when the vehicles are part of a coordinated
fleet such as a shared one. For example, recharging an EV
usually takes hours, during which the corresponding charging
station is unavailable. Hence, public charging stations be-
come scarce resources, which require the kind of coordinated
management that can be obtained through an ICT-enabled
vehicle sharing system. A related issue that negatively affects
the attitudes of users towards EVs is the so-called range
anxiety; that is, the fear that the battery will empty before the
destination is reached. In this regard, an innovative, automated
vehicle-sharing system can help in two ways: by providing
users with constant – but unobtrusive – monitoring of their
situation; and by intervening with useful advice on keeping
an economic driving style only when this is called for.

For electric vehicle sharing to be part of the solution to
the problems of urban mobility, however, it must provide
easy access, and address the multiform needs of a wide
range of users (e.g. people reaching their workplace, company
employees, families with children). This entails that the service
should offer as wide a range of vehicles as possible, not only
in terms of makers, but also in terms of their kind (2-, 3-,
4-wheeled, 1-2-seats or more, with/without doors, etc.); in
addition, it should be highly configurable, to allow for the
possibility of closely matching the user preferences with the
services offered during the drive.

Fig. 1. Trade-off between vehicle range and cost of the battery pack.

The Green Move project1 [1][2] developed a prototype
platform for electric vehicle-sharing systems that addresses
the issues above in the following way:

• It provides a hardware/software interface, the Green e-
Box (GEB), which allows the system to interact with a
heterogeneous fleet of vehicles in a uniform way.

• It relies on mobile devices to let users access and interact
with the system – take possession/release a reserved
vehicle, open/close its doors, enable/disable the drive.

• It uses standard protocols to allow external partner ser-
vices to access information and operations (e.g., the
reservation of vehicles) on the coordination center.

• If offers an infrastructure to customize the software con-
figuration of vehicles by pushing new services on them
and by removing existing ones, for example depending
on the user preferences.

In this article we focus on the mechanisms developed in the
Green Move project to tailor the functions offered by a vehicle
to the preferences of its current user. This is achieved through
the notion of dynamic application, i.e., a piece of software that
can be loaded on the GEB of a vehicle at any time, whether
it is in use or not, and which extends the functions offered
to the user. Dynamic applications can access the data that are
present on the vehicle – speed, acceleration, state of charge of
the battery, etc. – to create value-added services for the user.

We present a pair of prototype dynamic applications. The
first one addresses the issue of range anxiety mentioned above,
as it gives feedback to the user about her driving style. The
second one provides context-dependent advice to the user, such
as commercial or cultural suggestions; this application can
also be used to coordinate the fleet, for example by notifying
drivers of points of interest that are in their proximity, such as
available charging stations. The Green Move platform allows
these applications to be sent to vehicles depending on their
situation. For example, as described in Sect. V-B, the driving
style application can be loaded only for users who have indi-
cated, among their preferences, the desire to receive that kind
of feedback; or only when the system determines that the user
is exhausting the battery while still far from her destination, so
a more economic style of driving is necessary to maximize the
driving range. Dynamic applications also support a scenario
where a function is realized in different ways – for example
with different styles for presenting feedback to the driver –
and the one that best fits the user preferences is loaded at the
beginning of the trip and unloaded at the end. In addition, a
mechanism where applications are installed dynamically after
the fleet has been deployed allows administrators to remotely
perform updates of the functions offered by the GEBs without
physically operating on them.

In the next section we briefly survey existing vehicle-
sharing systems to highlight their differences with the Green
Move platform, in particular with respect to the issues of
configurability and interactions of users and vehicles; we
then give an overview of the architecture of the Green Move
platform, describe the mechanisms underlying Green Move
dynamic applications, and present a pair of prototypical ones.

1www.greenmove.polimi.it

II. RELATED SERVICES AND PLATFORMS

Two key areas in which the Green Move project explored
innovative solutions are

• the interaction between user and vehicle, which in the
Green Move approach is key-less and smartphone-based,
without requiring a membership card;

• the configurability of the services offered, which can be
modified after system deployment through the notion of
dynamic applications.

As discussed in the rest of this section, more and more com-
mercial car-sharing services are pursuing a key-less approach
similar, though not as powerful, to the one pioneered by the
Green Move project [1][3]; conversely, none of them has
yet reached the level of configurability that the Green Move
platform allows.

Using smartphones to de-materialize the interaction between
user and vehicle and to dynamically add and modify available
services is, especially in the field of electric vehicles [4][5][6],
a growing area of interest. INVERS2, Convadis3 and Eileo4

are the global market leaders in the domain of technologies
for car-sharing kits. The vehicle-sharing systems built through
these kits – which are the majority – have a number of draw-
backs and limitations compared to the Green Move platform:

• their configurability is limited;
• they do not support Bluetooth, nor NFC communication

for replacing car keys;
• the ownership of the user database and the rights to the

user profiles belong to Convadis/Eileo/INVERS rather
than to the vehicle-sharing company;

• they do not offer the possibility to add/remove functions
depending on the user, location or period.

Some vehicle-sharing systems have recently included con-
cepts similar to those introduced in the Green Move project.
For example, Enjoy5 is one of the first systems which does
not require a membership card for entering the vehicle. The
opening/closing of the vehicle doors is performed through a
smartphone app, but the communication between vehicle and
user smartphone is always mediated by a central server, where
the commands are processed and then forwarded to the vehicle.
This procedure requires time, thus the vehicle doors do not
open for many seconds (around 30) after the smartphone sends
the command. Interested readers can refer to [7] for a thorough
description of available car-sharing technologies.

On the contrary, as explained in Section III, the Green
Move platform relies on NFC and Bluetooth communication
channels between the user smartphone and the vehicle to
directly send open/close commands to the latter. Hence, the
interaction is much faster – vehicle doors open immediately
after the user sends the command through the smartphone; in
addition, it does not require a connection to the server, so it
can occur also when this is absent, as in underground parkings.

The topic of service configurability is even less explored
than smartphone-based interaction: no vehicle-sharing system

2www.invers.com
3www.convadis.ch
4www.eileo.com
5enjoy.eni.com

offers the possibility to configure the services of vehicles
depending on the user preferences or the state of the vehicle.
Some of the most technologically-advanced services offer,
through the vehicles’ onboard computers, applications that
enrich the driving experience. For instance, Car2go6 offers
two onboard services, the navigator and the Driving Style
Assistance System. However, no customization is available;
the services behave the same regardless of the user’s past
habits or vehicle type.

If we broaden the scope to on-board applications in general,
most OEMs produce systems for In-Vehicle Infotainment (IVI)
and telemetry systems for the monitoring of the state of the
vehicle. Most telemetry systems are proprietary, based on real-
time operating systems; they are typically not integrated with
IVI. IVI systems are also usually proprietary, though lately
a few OEMs are converging on common solutions. Mobile
solutions for hardware platforms and operating systems are
the most commonly used basis for building IVI systems. The
recently announced iOS-based CarPlay7 IVI by Apple offers
the possibility to install third-party applications – though not
dynamically – and to interact with the driver’s phone to share
the data and audio channels; at the moment it is not clear
if it offers any access to vehicle data. General Motors has
developed a proprietary solution8, which allows for a closer
integration with the vehicle. In particular, it exposes two
sets of Application Programming Interfaces (APIs): In-Vehicle
APIs and Remote APIs. In-Vehicle APIs allow developers to
access a small set of vehicle data, audio/video capabilities,
navigation information, user interfaces and communication
channels. Remote APIs offer access to the vehicle data and
the ability to send commands to the vehicle. Through these
commands one can lock/unlock the vehicle doors, retrieve
diagnostic information or retrieve the vehicle’s position. This
system, which will be available on next-generation General
Motors vehicles, offers functions similar to those that have
been developed for the Green Move platform; however, unlike
the latter, it does not offer any capability of dynamically
changing the services offered onboard. The GENIVI Alliance9

has developed an open-source infrastructure for in-vehicle
infotainment. The Tizen10 software platform, originally born as
a mobile operating system, is now shifting its focus to the IVI
market through the GENIVI Alliance open-source platform. In
all solutions above the focus is on creating an operating system
that offers access to multimedia and network functions, and in
some cases to vehicle data. Applications developed for these
platforms have to be manually installed and started by the user.

OSGi11 is a service-oriented component-based framework
that allows developers to create and manage dynamically
loadable applications. The OSGi infrastructure is built upon
three basic abstractions: modules, life cycle management and
services. A module is a single portion of functional code,
wrapped in a deployable unit called bundle. The OSGiCon-

6www.car2go.com
7www.apple.com/ios/carplay
8developer.gm.com
9www.genivi.org
10www.tizen.org
11www.osgi.org

tainer provides the bundles’ execution environment and prim-
itives to manage their life cycle. Bundles can be dynamically
downloaded, installed and started. Services are built upon
modules. Every module can offer and consume services.
OSGiContainer provides standard modules to manage security
issues. The OSGi architecture targets generic Java Virtual
Machines rather then Android’s Dalvik, although Android
implementations are available. The Green Move mechanisms
for managing dynamic applications, instead, have been specifi-
cally designed for vehicle-sharing systems: They allow for the
installation of new components without driver intervention,
and for the access to vehicle data. In addition, the Green
Move APIs for programming dynamic applications are simple
and lightweight, but nevertheless they fit different kinds of
applications, as Sect. V-VI show.

To summarize, finding new solutions for an optimal man-
agement of electric, flexible and heterogeneous fleets is one
of the main challenges facing today’s urban mobility. The
Green Move project has tackled this issue through a platform
that allows both a high level of automation in the interaction
between users and system, and powerful customizations of
onboard services through the notion of dynamic applications.

III. OVERVIEW OF THE GREEN MOVE PLATFORM

The main elements of the Green Move platform are shown
in Fig. 2. They are the Green Move Center, which coordinates
the system, the Green e-Boxes, which constitute the interface
between the vehicles and the rest of the system, and the
users’ smartphones, on which the Green Move client app
is installed. The Green Move Center (GMC) coordinates the

Fig. 2. Schematic view of the overall architecture of the Green Move system.

activities of the Green Move system and offers services such
as user and vehicle registration, vehicle reservation/acquisi-
tion/release/monitoring, and so on. To retrieve and distribute
information among the managed vehicles, the GMC includes
the T-Rex Complex Event Processing (CEP) engine [8][9].
In CEP infrastructures [10] we distinguish between event
generators (sources) and event consumers (sinks). The former
observe primitive events and report about them, while the
latter receive event notifications and react to them. Using
the nomenclature typical of publish-subscribe systems we say
that sources publish event notifications (or simply events)
and sinks subscribe to events. The CEP engine sits in the
middle with the task of detecting so-called composite events

from primitive ones through a set of rules – expressed in an
ad-hoc language – that are conceived and deployed by rule
managers. An example of composite event is “if the vehicle
is moving and there is no ongoing rental, then the vehicle is
being stolen”. The Green Move platform uses CEP technology
to both monitor the vehicles and send them configuration
commands. For example, Listing 1 of Sect. V shows the T-Rex
complex event that is used to realize the driving style scenario
described in Sect. I. We have also investigated using the PerLa
language and middleware [11] next to the T-Rex CEP engine.
PerLa offers context management capabilities [12] that can be
useful for applications such as the one described in Sect. VI.

Each Green Move vehicle is equipped with a device, the
Green e-Box (GEB), through which it interacts with the overall
system. From a technical point of view, the only requirement
for a vehicle to be introduced in the Green Move system is to
have a GEB; this ensures that the interaction between vehicle
and system occurs according to standardized protocols. This
allows for the possibility of adding to the system vehicles
that are heterogeneous not only in their types, but also in
their ownership [1]. The GMC communicates with GEBs
through 3G channels to manage the fleet. The same channel
is used by GEBs to send to the GMC vehicle data – which
are distributed at regular intervals as T-Rex events – such
as diagnostic information, usage statistics, and trip data (e.g.,
current GPS position, speed, state of charge). GEBs run the
Android operating system, which executes the Green Move
vehicle app. This app is the software interface between the
vehicle and the rest of the system; in addition to executing core
functions such as data retrieval and actuation of commands
such as open/close doors, it provides hosting facilities for
dynamic applications. Additional details on the architecture
and functions performed by the GEB can be found in [2].

The interaction of Green Move users with the system occurs
through their smartphones, on which the Green Move client
app must be installed. The app communicates with the GMC
through a WiFi or 3G channel to reserve vehicles and to
retrieve the electronic key that is necessary to access the
vehicle. This key is exchanged between the Green Move client
app and the GEB through a Bluetooth or NFC channel; it
is used to send commands from the user’s smartphone to
the vehicle, such as open/close the doors (if present), and
enable/disable the drive. By using a direct (Bluetooth or
NFC) link between the user’s smartphone and the GEB, this
communication can occur at any time, even when there is no
3G/WiFi connection available between the GEB and the GMC.
The same connection can be used by the GEB to send data to
the users’ smartphones, such as customized advice of various
kinds (e.g., commercial).

The architecture outlined above supports the mechanisms
described in the next section, which allow administrators to
remotely modify the functions installed on GEBs.

IV. DYNAMIC APPLICATIONS

In the Green Move platform, dynamic applications are
bundles of Java code that, packaged into JAR files, can be
sent to GEBs, where they are executed within the Green Move

Android application running on the GEB. As explained in
some detail in [2], a Green Move dynamic application (GMA
for short) must implement suitable interfaces, through which it
receives access to the resources of the GEB, such as the data
collected from the vehicle. Fig. 3 shows the steps through
which a GMA is uploaded on a GEB. First (3(a)) a T-Rex
event is sent to the GEB, which notifies the latter that a GMA
is to be installed; the event contains the address on the GMC
where the GMA is to be retrieved. Then, the app running on
the GEB accesses the GMC (3(b)) and retrieves the Java code
of the GMA (3(c)). Finally, the interfaces implemented by the
GMA allow the GEB to instantiate the application and start
it (3(d)). Similar mechanisms are used to uninstall a GMA
from a GEB, or to reload a running GMA. The GMC gives
administrators different options to select the vehicles on which
a GMA is to be uploaded: single vehicles (unicast), groups of
vehicles (multicast) or the whole fleet (broadcast).

On the GEB side, the component that is in charge of
managing GMAs is called GMcontainer, and is shown in
Fig. 4. In particular, the GMcontainer listens to the events sent
by the GMC; it reacts to them by downloading the GMA code,
instantiating it, and removing it when it is no longer needed.
In addition, the GMcontainer keeps a persistent registry of the
GMAs installed.

GM container

Green Move
Dynamic Application

G
U

I

Sensor Data Retrieval

Bluetooth

HTTP

T-Rex
Comm.

primitives

Vehicle Data GPS Data

Fig. 4. Schematic view of the Green Move Dynamic App Container.

The interface implemented by a GMA allows it to retrieve
from the GMcontainer references to other components of the
Green Move environment running on the GEB. In particular,
a GMA can use primitives that allow it to: (i) send messages
through a variety of communications channels; (ii) acquire the
vehicle data (speed, acceleration, state of charge, etc.) from
the sensors; (iii) display information on the Graphical User
Interface (GUI) of the GEB if one is available.

A GMA can communicate with remote components in
several different ways. It can use an HTTP channel that is
made available and mediated by the GEB. Such a channel
can be used to interact with external services to send/retrieve
information (e.g., weather, traffic, advertisements) through
standard protocols. For security reasons, the HTTP connection
is managed on the GEB by a software proxy which has the
possibility to check the traffic and, for example, block access
to blacklisted servers. A standard HTTP channel, however,
is ill-suited for transmitting (or receiving) streams of data,
such as telemetry or composite events. For this reason the
GMcontainer offers GMAs access to a T-Rex channel, through
which they can publish or subscribe to events. The T-Rex
channel allows a GMA to distribute information to other
vehicles, if the latter subscribe to the events published by the

(a) (b) (c) (d)

Fig. 3. Installation of a dynamic application.

former. A GMA can also use the Bluetooth channel mediated
by the GMcontainer (see Fig. 4) to send messages to the
smartphone of the user during the rental. This allows a GMA
to communicate with the Green Move client application, or
another companion application on the user’s smartphone, as
explained in Sect. VI.

The GMcontainer offers GMAs the possibility to interact
with the vehicle through a high-level interface. The interface
is very general, and it can be used to read the status of the
vehicle, such as the state of charge of the battery or the speed
of the vehicle. However, as mentioned above the Green Move
platform targets fleets made of heterogeneous vehicles, so
different kinds of vehicles might offer different kinds of data;
for example, not all vehicles have doors and, for those that do
not, a “door status” is not available. Through this high-level
interface a GMA can also send commands to the vehicle. For
example, “open/close door” commands can be issued if the
GMA resides on the GEB of a vehicle that has doors. As
before, the sending/receiving of commands is mediated by the
GEB, which can monitor the interaction.

If the GEB has a screen (not all do, such as those of
scooters) a GMA can use it to provide information to the
user. For example, a GMA might display suitable diagrams to
give the user feedback on the driving style. The GMcontainer
offers GMAs two different possibilities to show information
on the GEB GUI: display a short, purely textual message on
the main view of the GEB app; or build a full-screen, graphical
view that is under the control of the GMA. The availability
of different primitives allows GMA programmers to select the
one that better fits the needs of the application, for example
from the point of view of the energy consumption.

The next sections present meaningful examples of proto-
type GMAs that illustrate the features available to dynamic
applications, and what benefits can be gained from them.

V. THE DRIVING STYLE DYNAMIC APPLICATION

The limited driving range of EVs represents a significant
obstacle to their widespread diffusion; it is at the root of range
anxiety, one of the main psychological barriers that hinder the
acceptance of green mobility services [13]. Hence, energy-
saving strategies which provide drivers with a consistent usable
range and which enhance the maximum range are of primary
importance for EVs. It is well known that the driver’s behavior
has a significant effect on energy consumption; then, important
energy savings can be achieved through systems that help
promote an economical style of driving [14], [15].

Within the Green Move project, a GMA called Driving Style
Dynamic Application has been developed to help the user save
battery. The application computes a quantitative estimation
of the driving style of a Green Move user, communicates
this information to the GMC, and displays it to the driver,
thus inducing her to keep an energy-saving driving profile. As
explained later on, the flexibility of the dynamic application
framework allows the driving style GMA to be tailored to
different user needs.

A. Overview of the application

Fig. 5 shows a general overview of the driving style GMA
and its interactions with vehicle and user. The purpose of the
application is to gather vehicle data from the GEB, such as
current speed and acceleration, and use this information to
compute suitable aggregate indicators. In particular, the appli-
cation uses a custom algorithm to estimate and evaluate the
driving style of the Green Move user by computing some real-
time indexes. Feedback is provided to the user to nudge her to
adopt a more economical driving style, whereas the GMC can
use this information to make appropriate enhancements to its
service or to provide additional features (adopt personalized
fees, alert the user, improve the prediction of the vehicle’s
range, perform fleet optimization, etc.).

Fig. 5. Overview of the driving style GMA.

1) The algorithm: To give a synthetic evaluation of the
user’s driving style, some cost functions for the estimation
of energy-inefficient behavior are defined. The first step is to
obtain a signal that is as accurate as possible of the power
consumed during the drive; this is achieved by computing the
net power at the wheel defined as

Pwheel (v(t), v̇(t)) = Piner (v(t), v̇(t)) + Pres (v(t)) (1)

where Piner is the inertial power and Pres represents the power
dissipated by the non-conservative forces such as aerodynamic,
slope and rolling friction forces acting on the vehicle. Thus,

Pwheel is a nonlinear function of the speed v(t) and the
acceleration v̇(t); these are the variables upon which one must
act to reduce the energy consumption. Estimating accurately
the acceleration and speed profiles of a Green Move driver
is very simple, since this information is retrieved directly
from the GEB through the GMcontainer primitives which give
access to the vehicle data.

2) The indexes: After obtaining an accurate estimation of
the vehicle energy consumption, the application computes the
following two indicators that capture those aspects of power
consumption directly influenced by the driving behavior.

Driving Aggressiveness Index γ1: it stems from the consid-
eration that the best behavior to reduce energy consumption
consists in proceeding at a constant speed and, when braking
and accelerating, doing so gradually [14]. Thus, we defined
γ1 as the high-pass filter of Pwheel, evaluating the smoothness
of the power profile chosen by the driver. In fact, the power
spent at the wheel (Pwheel) can be split into two parts: a low-
frequency one, PLPF, which is needed to move the vehicle,
and a high-frequency one, PHPF that represents unnecessary
inertial power that is wasted in the process [16]. Fig. 6 shows
the strict relation existing between driving style (aggressive or
smooth) and spectral density of Pwheel.

Fig. 6. Speed profile and spectral content of Pwheel for (a) a smooth driver
and (b) an aggressive one.

Average Driving Style Index γ2: whereas γ1 gives an in-
stantaneous information of the user’s driving style, this cost
function aims to keep track of the driver’s behavior over a fixed
time interval. The index is defined by equation (2) as the ratio
between the power spent by resistance dissipative forces Pres,
divided by the total power spent Pwheel, and multiplied by a
forgetting factor parameter δ which attributes more importance
to recent data over a time window of M seconds.

γ2 =
i∑

t=i−M

δ(M−t) Pres(t)

Pwheel(t)
(2)

The detailed formulation of the indicators and a discussion
of the implementation of the algorithm can be found in [16].

3) The HMI: It is generally accepted that providing the
driver with real-time feedback via dedicated visual representa-
tions is a good strategy for saving energy [15], [17]. Therefore,

a graphical version of the driving style GMA has been realized
thanks to the GMcontainer primitives that allow access to the
GEB GUI. In this case, the goal is to provide the user with a
real-time feedback of the indexes; this passive control energy-
saving mechanism aims at indirectly influencing the driver’s
behavior by making her aware of the quality of her driving
in terms of energy consumption. Fig. 7 shows the graphical
user interface that provides a quick and simple representation
of the driving style’s indexes described above.

Fig. 7. Driving style GMA running on a Green Move vehicle.

B. Benefits of the dynamic applications framework

The driving style GMA highlights the benefits that can be
gained by using the dynamic applications framework. Several
reasons led us to developing the application as a GMA.

A heterogeneous fleet needs customized applications, de-
signed specifically for different vehicle models. The access to
the GUI of each vehicle changes from model to model (e.g.
some vehicles have an embedded tablet, others give access to
the proprietary dashboard) as well as the available data (speed,
current, voltage, etc.).

The high configurability of the system can lead to custom
modifications of the algorithm. Some parameters can be dif-
ferentiated for each Green Move user in order to tailor the
driving style assessment on the user’s needs and preferences.

The events generated by the application may need to be
dynamically modified depending on the specific needs of the
GMC (e.g., change the sending rate, differentiate the number
and the type of data to be received, etc.).

GM containerG
U

I

Sensor Data Retrieval

Bluetooth

HTTP

T-Rex
Comm.

primitives

Vehicle Data GPS Data

Driving Style Dynamic App

Vehicle Energy
Estimation

Driving Style
Assessment

Fig. 8. Features offered by GMcontainer used by the driving style GMA.

As shown in Fig. 8, the application has been developed to
exploit some of the features offered by the dynamic application
framework, and in particular

• the GUI’s primitives, to display the driving style indexes
on the GEB;

• the T-Rex event channel, to send messages to the GMC;
• the vehicle data retrieval interface, to gather data about

the vehicle (e.g. speed and acceleration).
Another benefit of the dynamic applications framework is

that the GMC can monitor the vehicle status and force the GEB
to install new applications to gather more data or give driving
advice to the user where needed. Consider, for example, the
scenario in which a user is driving a Green Move vehicle to
the supermarket and then back home. The GMC knows the
initial state of charge (SoC) of the battery, thanks to T-Rex
event SocWhenTaken defined in Listing 1. More precisely, a
SocWhenTaken event is generated when a rental starts (which
corresponds to event Taken); it contains the last value of the
SoC that is retrieved from the vehicle. At regular intervals
while the vehicle is moving the GEB sends VehicleStatus
events to the GMC; when the residual charge of the battery
is less than a given threshold, a SendApp event, whose T-
Rex definition is shown in Listing 1, is generated containing
the information needed to load the driving style GMA. The
installation is triggered when constraint (3) holds, that is, when
the current SoC is less than the SoC consumed since the
beginning of the rental times factor k.

SoCcurr ≤ k (SoCinit − SoCcurr) (3)

VI. THE CUSTOM ADVICE DYNAMIC APPLICATION

A service that aims to be tailored to the needs of its users
must be able to provide them with customized advice without
violating their privacy; otherwise, users might be inclined to
give inaccurate information about their preferences, which
is of little use for personalization purposes. The GMadvisor
GMA exploits the mechanisms available to dynamic applica-
tions to provide users with customized advice through context-
aware procedures, without requiring that user preferences be
shared with the rest of the Green Move system.

The GMadvisor GMA is based on the notion of Context
Dimension Tree (CDT) for describing contexts [18], and on
an adaptation of the PervAds framework [19], which supports
privacy-enforced ads and the distribution of service-related
information from sellers to customers. In the rest of this
section we briefly describe the features of CDTs and of the
PervAds framework, then present the GMadvisor GMA.

A. Representing contexts through Context Dimension Trees

A Context Dimension Tree captures the categories that
are relevant to describe an entity, such as for example the
user of a system, or a vehicle, or a service. In a CDT the
children nodes of the root correspond to the main dimensions
of interest of the entity being represented. For example, in
a CDT that represents the profile of a user, the dimensions
along which the user is categorized could be age, gender,
profession, family status, hobbies, mobility preferences. Each
dimension has children nodes, which represent the values that
the dimension can take – e.g., the values for hobbies could
be theater, music, and sports, whereas the values for mobility
preferences could be private vehicle and public transports.
The structure can be iterated an arbitrary number of times:

each value node can in turn have children representing further
dimensions in which that value can be decomposed, whose
children are also value nodes, and so on. For example, the
sub-dimensions of public transports could be local, regional,
and international, with taxi, bus, metro, shared car the values
for the local dimension.

Given a CDT, a context is the conjunction of different
dimension-value pairs, any number of which can be selected
provided that they obey the following rules:

• No dimension-value pair can be selected if another one
deriving from the same dimension is present already (e.g.,
if the value shared car is selected for dimension local of
public transports, this implies that no other value of the
same subtree – e.g., taxi – can be chosen).

• For each selected dimension node, exactly one value from
its children nodes is chosen (e.g., music and shared car).

In addition, if a value is decomposed in further dimensions,
and none of them is selected, by the semantics of CDTs any
of them is possible.

For example, the set of values {music, public transports}
could describe a context in which the user is pursuing her
musical interests using public transportation (e.g., she is going
to a concert using a car sharing service). Additional constraints
in the definition of contexts may be applied by means of
specific edges between nodes, as described in [20].

Through the context model presented above the GMadvisor
GMA can capture both the current user context and the context
in which a suggestion must be shown.

B. The PervAds framework

When dealing with the most sensitive user data, one of
the main issues that arise is the possibility of improper –
and unwanted – disclosure. A user may fear that making her
preferences available to a system can lead to a loss of privacy,
for example if the system owner or its affiliated partners access
her data for marketing purposes. A user may also be wary
of possible data theft if she fears the security settings of the
central storage are too loose. The PervAds framework [19]
mitigates these risks by avoiding that sensitive user data leave
the user’s smartphone.

The architecture of the PervAds system has been adapted
for the GMadvisor GMA. It consists of a server that, through
an internet connection, provides a set of ads to the user smart-
phone, on which a PervAds client runs. When the smartphone
client app connects to a PervAds server, the latter sends the
former all ads related to shops in its neighborhood; each ad
includes a small caption, an optional picture and a set of
metadata that describe the target categories of the ad. The
PervAds smartphone app receives and filters the ads using the
user preferences saved on the device; it assigns each ad a score
and displays only those that have reached a certain threshold,
or the top-k ones. No user data ever leaves the smartphone,
which mitigates against any risk of losing control of the data.

The PervAds framework is based on the CDT context
model of Sect. VI-A, which is used to capture the user
preferences, the ads metadata describing the targets and the
possible contexts of interest.

Define SocWhenTaken (String: greenBox_id, int:soc)
From Taken(greenBox_id=$a) and last VehicleStatus(greenbox_id=$a) within 5 days from Taken
Where SocWhenTaken.greenBox_id=VehicleStatus.greenBox_id and SocWhenTaken.soc=VehicleStatus.soc

Define SendApp (String: greenBox_id, String: appUrl, String:class)
From VehicleStatus(greenbox_id=$a) and last SocWhenTaken(greenBox_id=$a) within 1 day from VehicleStatus and

not Released(greenBoxId=$a) between VehicleStatus and SocWhenTaken and VehicleStatus.soc < SocWhenTaken.soc*k/(1+k)
Where SendApp.greenBox_id=VehicleStatus.greenBox_id and SendApp.appUrl = "<GMAurl>" and SendApp.class="<GMAclassName>"

Listing 1. T-Rex rule forcing the installation of the driving style GMA.

C. GMadvisor
The mechanisms described in Sect. VI-A and VI-B have

been adapted to fit the dynamic applications paradigm of
Sect. IV and to build a GMA, called GMadvisor, for providing
Green Move users with customized advice.

The GMadvisor GMA relies on the following features of
the dynamic applications framework, as shown in Fig. 9:

• access to the GEB GUI, to show suggestions on the GEB
display (if this is available);

• communication with the user smartphone through the
Bluetooth channel, to exchange messages between the
user device (which selects the advice to show, according
to the framework of Sect. VI-B) and the GEB;

• communication with external servers through the HTTP
channel, to interact with the central server containing the
advice to be distributed;

• retrieval of vehicle data, to determine, for example, the
current position of the user.

GM containerG
U

I

Sensor Data Retrieval

Bluetooth

HTTP

T-Rex
Comm.

primitives

Vehicle Data GPS Data

GMadvisor
Dynamic App

Fig. 9. Features offered by the GMcontainer used by the GMadvisor GMA.

The choice to adapt the PervAds framework into a GMA
is driven by two factors. First, not all users may be willing
to receive additional information during a trip; this might also
depend on the purpose of the trip, as a user might be willing to
receive advice – e.g., of commercial nature – during a leisure
trip, but not during a business one. Second, by exploiting
the HTTP channel provided by the GEB the user avoids
consuming her own internet traffic, with its related costs.

The framework providing customized advice to users is
based on three components (as depicted in Fig. 10):

• A server storing the set of advice that can be sent to users
(e.g., position of charging stations, points of interest).

• The GMadvisor GMA installed on the GEB; the applica-
tion sends to the advice server the user id and position,
receives the advices and displays those that match the
user preferences as determined by the client app.

• The GMadvisor client app installed on the user de-
vice; the app is responsible for storing the private user

preferences that should not reside on a remote server;
depending on them, it filters the advices received by the
GMA; it can also display advices to the user if the GEB
does not have a GUI.

The set of possible advice stored on the server can be
large. Hence, the system should balance the computational
load between the server and the instances of the GMadvisor
GMA installed on GEBs, and also avoid sending too many
suggestions to GEBs, thus exhausting the available bandwidth.
To achieve this, the information to be sent to GEBs is pre-
filtered at the server level based on the user position, the time
and the user’s data that is associated with her registration with
the Green Move system (non-sensitive information such as
age, gender, etc.). The pre-filtered advice received from the
server is further filtered on the client app installed on the user’s
smartphone using the sensitive profile information stored there.

Fig. 10. Schematic description of the GMadvisor GMA and service.

Fig. 10 shows the steps performed and the interactions
among the different components in a usage scenario. First,
the user installs the client app on her device and selects her
preferences according to a CDT retrieved from the central
server. During the trip, the client app exploits the Bluetooth
channel to interact with the GMadvisor GMA installed on the
GEB. In response to the GMadvisor GMA sending the id and
position of the user, the advice server sends back a set of pre-
filtered advice, whose metadata is relayed by the GMA to the
client app for further filtering. Finally, the selected advice is
displayed on the GEB if a GUI is available there (otherwise
the advice is shown on the user’s smartphone).

VII. DYNAMIC APPLICATIONS IN DEVELOPMENT

The applications described in the previous sections have
been fully integrated in the Green Move system as GMAs.
The framework described in Sect. IV, however, is general,

flexible, and open, and it can be exploited to enrich the range
of services offered during trips through applications possibly
developed by third parties. To illustrate the extensibility of the
services offered, in this section we briefly present two other
GMAs that are currently being developed: Feedback Dynamic
Pricing and Active State-of-Charge Control.

1) Feedback Dynamic Pricing: In vehicle-sharing systems
that allow one-way trips (i.e., where the destination differs
from the origin) the distribution of vehicles across stations
tends to be unbalanced: some stations end up with too many
vehicles (i.e., they are attraction points) whereas others have
too few (possibly zero). This poses a number of problems
regarding fleet management so, even though one-way trips
are very attractive for users, they are sometimes forbidden
in vehicle-sharing systems. In the Green Move context this
problem has been addressed from a novel perspective, by
reformulating it as a control problem according to the Feed-
back Dynamic Pricing rationale (see [21] for details). The key
consideration is that, assuming that people are sensitive to
changes in the price of the service, a vehicle-sharing system
can be accurately modeled by a dynamical system, and its
balance can be actively and real-time controlled by acting on
the trip fee. With reference to Fig. 4, the primitives offered
by GMcontainer that are necessary to realize the Feedback
Dynamic Pricing GMA are the GPS localization provided by
the vehicle data retrieval interface, access to the GEB GUI and
to the HTTP channel. The mechanism of Feedback Dynamic
Pricing could also be used to address the issues of coordinated
access to charging stations mentioned in Sect. I.

2) Active State-of-Charge Control: One way to overcome
the driving range limitations of EVs is to adopt strategies based
on the active control of the vehicle dynamics. More precisely,
a pro-active Energy Management System can control the state
of charge of EVs by enforcing – rather than simply suggesting
– limitations on the driving style [5]. In fact, on some Green
Move vehicles the GEB can set bounds on the values of certain
parameters, such as speed and acceleration. This opens the
possibility of developing a GMA that actively controls the
state of charge of the vehicle battery. The discharge rate is
tracked by means of speed and acceleration controllers, which
intervene to constrain the vehicle dynamics according to high-
level energy management policies [22]. Through the GEB GUI
made available by GMcontainer (see Fig. 4), the Active State-
of-Charge Control GMA allows the user to set the information
about the planned route and other preferences. It also uses
the vehicle data retrieval facilities offered by GMcontainer
to obtain the information on the current state of charge of
the vehicle battery. Finally, the application runs a control
algorithm which actively modifies the dynamic behavior of
the vehicle by ensuring that speed and acceleration are kept
within prescribed bounds.

VIII. CONCLUSIONS

The Green Move platform for electric vehicle-sharing sys-
tems is highly configurable, thanks to the mechanisms that
allow applications to be dynamically loaded onto the vehicles’
onboard computers before and during trips, and then be re-
moved when they are no longer needed. This flexibility allows

us to tailor the services offered during the vehicle rental to the
user’s needs and preferences, as witnessed by the prototype
applications described in this article. We are currently working
on improving the framework of the dynamic applications,
in particular in relation to its security aspects. We are also
building mechanisms that exploit dynamic applications to
automatically re-configure the services offered by vehicles,
depending on the state of charge of the battery, to manage
the energy consumed and the level of service offered in a
joint optimal manner.

REFERENCES

[1] G. Alli, L. Baresi, A. Bianchessi, G. Cugola, A. Margara, A. Morzenti,
C. Ongini, E. Panigati, M. Rossi, S. Rotondi et al., “Green move:
towards next generation sustainable smartphone-based vehicle sharing,”
in Sustainable Internet and ICT for Sustainability (SustainIT), 2012.
IEEE, 2012, pp. 1–5.

[2] A. Bianchessi, C. Ongini, S. Rotondi, M. Tanelli, M. Rossi, G. Cugola,
and S. Savaresi, “A flexible architecture for managing vehicle sharing
systems,” IEEE Embedded Systems Letters, vol. 5, no. 3, pp. 30–33,
2013.

[3] A. Luè, A. Colorni, R. Nocerino, and V. Paruscio, “Green move:
An innovative electric vehicle-sharing system,” Procedia-Social and
Behavioral Sciences, vol. 48, pp. 2978–2987, 2012.

[4] S. Di Martino, C. Giorio, and R. Galiero, “A rich cloud application to
improve sustainable mobility,” Web and Wireless Geographical Infor-
mation Systems, vol. 6574/2011, pp. 109–123, 2011.

[5] A. Dardanelli, M. Tanelli, B. Picasso, S. Savaresi, O. di Tanna, and
M. Santucci, “A smartphone-in-the-loop active state-of-charge man-
ager for electric vehicles,” IEEE ASME Transactions on Mechatronics,
vol. 17, no. 3, pp. 454–463, 2012.

[6] M. Conti, D. Fedeli, and M. Virgulti, “Bluetooth for electric vehicle to
smart grid connection,” IEEE Intelligent Solutions in Embedded Systems,
vol. 1, pp. 13–18, 2011.

[7] A. Bianchessi, C. Ongini, G. Alli, E. Panigati, and S. Savaresi, “Vehicle-
sharing: Technological infrastructure, vehicles, and user-side devices -
technological review,” in International Conference on Intelligent Trans-
portation Systems (ITSC), Oct 2013, pp. 1599–1604.

[8] G. Cugola and A. Margara, “Complex event processing with T-REX,”
Journal of Systems and Software, vol. 85, no. 8, pp. 1709 – 1728, 2012.

[9] ——, “Low latency complex event processing on parallel hardware,”
Journal of Parallel and Distributed Computing, vol. 72, no. 2, pp. 205
– 218, 2012.

[10] ——, “Processing flows of information: From data stream to complex
event processing,” ACM Computing Surveys, vol. 44, no. 3, pp. 15:1–
15:62, 2012.

[11] F. A. Schreiber, R. Camplani, M. Fortunato, M. Marelli, and G. Rota,
“Perla: A language and middleware architecture for data management
and integration in pervasive information systems,” IEEE Transactions
on Software Engineering, vol. 38, no. 2, pp. 478–496, 2012.

[12] F. Schreiber, L. Tanca, R. Camplani, and D. Viganò, “Pushing context-
awareness down to the core: more flexibility for the perla language,” in
International Workshop on Personalized Access, Profile Management,
and Context Awareness in Databases, 2012, pp. 1–6.

[13] N. S. Pearre, W. Kempton, R. L. Guensler, and V. V. Elango, “Electric
vehicles: How much range is required for a day’s driving?” Transporta-
tion Research Part C: Emerging Technologies, vol. 19, no. 6, pp. 1171
– 1184, 2011.

[14] V. Manzoni, A. Corti, P. De Luca, and S. Savaresi, “Driving style
estimation via inertial measurements,” in International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2010, pp. 777–782.

[15] C. Vagg, C. Brace, D. Hari, S. Akehurst, J. Poxon, and L. Ash,
“Development and field trial of a driver assistance system to encourage
eco-driving in light commercial vehicle fleets,” IEEE Transactions on
Intelligent Transportation Systems, vol. 14, no. 2, pp. 796–805, 2013.

[16] A. Corti, C. Ongini, M. Tanelli, and S. Savaresi, “Quantitative driving
style estimation for energy-oriented applications in road vehicles,”
in IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2013, pp. 3710–3715.

[17] M. Van der Voort, “Fest. a new driver support tool that reduces fuel
consumption and emissions,” in International Conference on Advanced
Driver Assistance Systems (ADAS), 2001, pp. 90–93.

[18] C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato, F. A.
Schreiber, and L. Tanca, “And what can context do for data?” Com-
munications of the ACM, vol. 52, no. 11, pp. 136–140, 2009.

[19] L. Carrara, G. Orsi, and L. Tanca, “Semantic pervasive advertising,”
in Web Reasoning and Rule Systems, ser. Lecture Notes in Computer
Science, vol. 7994, 2013, pp. 216–222.

[20] C. Bolchini, E. Quintarelli, and L. Tanca, “Carve: Context-aware auto-
matic view definition over relational databases,” Information Systems,
vol. 38, no. 1, pp. 45–67, 2013.

[21] A. Bianchessi, S. Formentin, and S. Savaresi, “Active fleet balancing
in vehicle sharing systems via feedback dynamic pricing,” in 16th
Conference on Intelligent Transport Systems (ITSC). IEEE, 2013.

[22] A. Dardanelli, M. Tanelli, B. Picasso, S. Savaresi, O. di Tanna, and
M. Santucci, “Speed and acceleration controllers for a light electric two-
wheeled vehicle,” in IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC), 2011, pp. 2523–2528.

Andrea G. Bianchessi received the M.Sc. in Com-
puter Engineering from the Politecnico di Milano
in 2011. He is currently a Ph.D. Student in the
Automation Engineering section at the Dipartimento
di Elettronica, Informazione e Bioingegneria of the
Politecnico di Milano in the MOtor VEhicle control
team (MOVE). His main research interests are about
the design and control of advanced vehicle sharing
systems.

Gianpaolo Cugola is Associate Professor at Politec-
nico di Milano. His research interests are in the area
of Software Engineering, Distributed Systems, and
middleware technology for highly reconfigurable
applications, with a special attention to the issue
of Complex Event Processing. On these and other
topics he authored a hundred papers published in
international journals and conferences.

Simone Formentin received his Ph.D. degree in
Information Technology within a joint program be-
tween Politecnico di Milano and Johannes Kepler
University Linz, Austria. He currently is an assistant
professor at Politecnico di Milano. His research in-
terests include data-driven controller tuning methods
and automotive applications.

Angelo C. Morzenti is Full Professor at Politecnico
di Milano, where he chairs the Computer Science
and Engineering Study Programme. His research in-
terests are centered on languages, methods, and tools
for the specification, the analysis and the design of
computer-based systems with a particular emphasis
on real-time, embedded, and distributed systems.

Carlo Ongini received the M.Sc. in Computer Engi-
neering from the Politecnico di Milano in 2011. He
currently is a Ph.D. candidate in Information Tech-
nology at the Department of Electronic, Information
and Bioengineering of the Politecnico di Milano.
His main research interests are about automotive
applications, with focus on the design of energy-
oriented driver assistance systems.

Emanuele Panigati received the MSc degree in
Computer engineering in 2010 and is currently a
Ph.D. candidate in Informatics engineering at the
Department of Electronic, Information and Bioengi-
neering of the Politecnico di Milano in the PErvasive
Data GRoup of EngineErs. His research interests
include context-aware systems, complex event pro-
cessing systems, data stream management systems
and RDF/OWL reasoning systems.

Matteo Rossi is an assistant professor at Politec-
nico di Milano. His research interests are in formal
methods for safety-critical and real-time systems,
architectures for real-time distributed systems, and
transportation systems both from the point of view
of their design, and of their application in urban
mobility scenarios. He has previously participated in
several national and international projects, including
MADES and Green Move.

Sergio M. Savaresi is Full Professor in Automatic
Control at Politecnico di Milano, where he chairs
the Systems&Control area of Dipartimento di Elet-
tronica, Informazione e Bioingegneria. His main
interests are in the areas of vehicles control, automo-
tive systems, data analysis and system identification,
non-linear control theory, and control applications.
On these topics he has published more than 300
scientific publications.

Fabio A. Schreiber is Full Professor of Databases
and of Pervasive Data Management at the Depart-
ment of Electronic, Information, and Bioengineering
of the Politecnico di Milano. His current research
interests include: data management in pervasive sys-
tems, Database Systems for context-aware appli-
cations, Very Small and Mobile Database design
methodologies and applications. He authored a hun-
dred papers published in international journals and
conferences.

Letizia Tanca is Full Professor at Politecnico di
Milano, where she chairs the Computer Science
Dept. Area. She teaches courses on Databases and
Information System Technologies. She is the author
of more than 120 papers on databases and database
theory, deductive and active databases, graph-based
languages, semantic-web information management,
and recently on context-aware knowledge manage-
ment and Big Data analytics.

Edoardo G. Vannutelli Depoli received the M.Sc.
in Computer Engineering from the Politecnico di
Milano in 2007. He is currently research assistant
at the Dipartimento di Elettronica, Informazione e
Bioingegneria of the Politecnico di Milano. His
main research interests are about the design and
development of mobile applications, with particular
focus on transportation systems and on the support
of people with disabilities.

