This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

A Flexible Architecture for Managing
Vehicle Sharing Systems

A. G. Bianchessi, C. Ongini, S. Rotondi, M. Tanelli, M. Rossi, G. Cugola, S. M. Savaresi

Abstract—Vehicle sharing systems are the key to sustainable
mobility. They need to possess adaptation features to answer
the different user needs, and must be automated to avoid
intermediaries between users and system. Finally, they must be
based on a wide variety of vehicles and on an open ownership
model to become a viable alternative to private vehicles. This
letter presents the solution devised in the Green Move project to
tackle this challenge. In particular, it focuses on the Green Move
vehicle on-board units, for which a dedicated middleware is being
developed. The middleware allows developers to create applica-
tions that can be dynamically loaded/unloaded while preserving
the needed safety levels of the vehicle motion functions.

Index Terms—Transportation systems, electric vehicles, em-
bedded architecture, middleware.

I. INTRODUCTION

New models of sustainable mobility call for the integration
of vehicles that differ in type (cars, scooters, bicycles), tech-
nology (electric, hybrid or with classical combustion engines)
and ownership (they can be publicly or privately owned, fully
or partially shared) within the same system, and they must
offer end-users common functions, services and interfaces [1].

To realize such systems, suitable, innovative solutions must
be found to design a hardware/software architecture that man-
ages the on-board vehicle embedded control units and connects
them to a back-end system that provides the mobility services
to the final users, preferably through personal mobile devices,
such as smartphones, tablets, etc. This calls for solutions that
meet the transparency and availability requirements within a
distributed environment (see, e.g., [2], [3]). This letter presents
the technological solutions adopted in the Green Move (GM)
project to address the above issues. Green Move aims at
realizing an innovative vehicle sharing system based on zero-
emissions electric vehicles. The GM system is innovative
for many aspects: the heterogeneity of the vehicles involved,
the openness of the ownership model and the interaction
protocols between the users and the system, which eliminate
all intermediaries. In [4], readers can find an overview of the
project and its relation with existing vehicle sharing systems.

The project focuses on electric vehicles (EVs) as a means
to achieve a sustainable model of mobility, in particular in the
urban context. At the same time, vehicle sharing, possibly in-
cluding different kinds of vehicles owned by different entities,
is crucial to mitigate the obstacles to the distribution of EVs;
e.g., their high price compared to that of similar combustion

The authors are with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133
Milano, Italy. E-mail: {lastname} @elet.polimi.it.

Work supported by Regione Lombardia through project “Green Move”.

engine vehicles entails that EVs become economically viable
only if they cover long distances during their lifetime, a
target that is difficult to achieve outside of vehicle sharing
solutions. The technology developed within the GM project
is not specific for EVs, aside from some low-level details
concerning the monitored information (e.g., the battery state
of charge), and can be adapted to traditional vehicles, too.
Nevertheless, it answers specific needs that arise in vehicle
sharing systems with heterogeneous ownership models such
as those that can maximize the utility of EVs.

WiFi/3G Green Move

Center

channel B

Bluetooth/NFC WiFi/3G

channel C channel A

Fig. 1. Schematic view of the overall architecture of the GM system.

A key aspect of the GM system is that it does not involve
intermediaries between users and vehicles: reserving, acquir-
ing and releasing a vehicle are all done automatically through
software running on the GM users’ smartphones. Even keys for
accessing vehicles are not required as they are substituted by
software keys. This is reflected in Fig. 1, which shows the core
of the GM architecture. It includes the Green Move Center
(GMC), the Green e-Boxes (GEBs), and the users’ smartphones
on which the GM client app is installed. Communication and
coordination among these components are based on a novel
middleware, which also allows applications to be dynamically
loaded/unloaded on GEBs (more on this later).

The GMC acts both as a web front-end for GM users
and as an API back-end with which GEBs interact. The GM
middleware uses 3G channels (channel A in Fig. 1) to let the
GMC communicate with GEBs to manage the fleet. The same
channel is used by GEBs to send, at regular intervals, vehicle
data such as diagnostic information, usage statistics, and trip
data (e.g., current GPS position, speed, state of charge) to the
GMC. Finally, the GMC uses this 3G channel to dynamically
add services to each GEB, by uploading new software modules
that provide additional functions. This is a crucial aspect for a
vehicle sharing system with different forms of ownership: as
the fleet itself is reconfigurable, so must be the vehicle sharing

Copyright (c) 2013 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

functions available on vehicles. For example, a vehicle can be
made available for rental through the GM system by its owner
when she does not need it, but it reverts to being a private car
when used by its owner in pre-defined time intervals.

A GM user interacts with the system through the GM client
app installed on her smartphone. It communicates with the
GMC through a WiFi or 3G channel (channel B in Fig. 1)
to reserve vehicles and to retrieve the electronic key required
to unlock a reserved vehicle. The electronic key is exchanged
between the GM client app and the GEB through a Bluetooth
or NFC channel (channel C in Fig. 1) and it is used to
open/close the vehicle doors (if present), and to enable the
vehicle drive. Notice that by using a direct (bluetooth or
NFC) link between the user’s smartphone and the GEB, this
communication can occur at any time, even when there is no
3G/Wi-Fi connection available between the GEB and the GMC
(e.g., in an underground parking lot). The same Bluetooth
connection can be used to access, from the GM client app,
information that is available on the GEB, such as trip statistics.

To manage this complex system and meet the desired re-
quirements of transparency and availability, abstraction mech-
anisms have been implemented, which allow the seamless use
of technologically different vehicles, characterized by different
available signals, different on-board networks, a different split
between digital and analog signals, and so on. Furthermore, as
we mentioned above, the GM middleware allows administra-
tors to manage (add/remove) the features and services of GEBs
while preserving the integrity of the low-level safety-related
routines of the GM vehicles. The rest of the paper discusses
these aspects in detail.

Before presenting the solutions adopted in the GM project,
we point out that systems that offer functions similar to
those of GEBs are available on the market, such as OnStar
[5], MyChevrolet [6] and Viper [7]. Among these, the Viper
system is designed to be integrated into any type of vehicle,
hence it is the most similar to ours. Nevertheless, the goal of
these systems is to allow a vehicle owner to remotely control
her vehicle by means of a smartphone, while the GEB has
been developed to allow any vehicle to be inserted into a
smartphone-based vehicle sharing system.

II. GREEN MOVE VEHICLES
AND EMBEDDED ARCHITECTURE

Being electric is the only requirement that a vehicle has
to satisfy to be added to the GM Vehicle Sharing System
(GMVSS). For demonstration purposes, a heterogeneous set
of 2- and 4-wheeled vehicles with different sizes, ranges and
performances are currently integrated into the GMVSS, while
others (such as 3-wheeled ones), will be added to the fleet
in the next months. In particular, at the time of writing, the
GMVSS includes (see Fig. 2) the following vehicles.

Tazzari Zero Evo is a two-seat electric car with a driving
range of 140 km, and a maximum speed of 100 km/h. The
lithium-ion battery pack requires about 9 hours for a full
charge (0-100%), see [8]. This vehicle is suitable for urban
mobility and/or short-range interurban trips.

Estrima Biro is a two-seat electric vehicle with a maximum
speed of 45 km/h and a range of about 50 km. The Pb-Gel

Fig. 2. Integrated vehicles, from left to right: Tazzari Zero Evo, Estrima
Biro, Piaggio Liberty e-Mail.

Android Board
(Software Abstraction Layer)
GPS 3G WiFI Bluetooth

Serial Communication ﬁ

Embedded Electronic Board
(Harware Abstration Layer)

NFC/RFID Module
% I | Wiring
“12v -
[Vebhicle Electronics & é{:ﬁ ..7. '.J

Green e-Box architecture.

Green e-Box

Fig. 3.

battery pack takes about 9 hours to be fully charged, see [9].
Its extremely compact size makes it suitable for urban (or low-
speed suburban) streets.

Piaggio Liberty e-Mail is an electric scooter with a top
speed of 45 km/h and a range of 70 km. The lithium battery
pack requires about 4 hours for a full charge, see [10]. The
scooter is suitable for city driving, but, unlike the other two
vehicles, it is not for all weather conditions.

To be integrated into the GMVSS, each vehicle has been
equipped with a GEB, which allows a vehicle-independent
communication among GMVSS elements. It is composed
of a low-level embedded board and a high-level Android
board (see Fig. 3). In order to have a constant monitoring
of each vehicle, even when turned off and not in use, the
GEB is directly connected to the permanent 12V line of the
vehicle. The GEB is also wired to the vehicle electronics, it
communicates with the GMC via a 3G channel, and with the
users’ smartphone via Bluetooth or NFC links. In particular,
the use of smartphones for dematerializing the interaction with
users and for dynamically adding new services as mobile apps,
is one of the most promising options currently being explored,
especially in the field of electric vehicles [11], [12], [13].

Fig. 4 details the GEB architecture, which was designed by
following the principles of modularity (separate components
are responsible for different functions, e.g. retrieving data from
the vehicle) and extensibility (e.g., new functions can be easily
added that can exploit the data collected from the vehicle).

Copyright (c) 2013 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

Green e-Box | Vehicle Electronics / ECU
1
5 1
Android Board ‘ 1 { Embedded Board I State of Charge —— Analog
(SAL) 10 (HAL) I
1 —
: Battery Current Analog
: Group Charging/not in Digital
VehicleInterface 1 I
<<Interface>> 1 Voltage —— Analog
i I
b+ getsoc() 1 L
[getcurrent() : Doors Opened/Closed —— Digital
[+ getBatteryStatus() —
[+ getvoltage() 1 Group Locked/Unlocked
[+ getDoorStatus() 1
I+ getg‘recszj)n() : Direction —— Digital
I+ getspee
l+ getFaults() : — (S;llfgﬁg +[
[+ getHeatingStatus() -
I+ getDrivingMode() 1 — 0-100 Km/h PWM
|+ ExecCommand(command, arg) ':—
- : Faults -I—[Battery Faults —— Digital
: ﬂ Drive Faults —— Digital
: Heating ON/OFF —— Digital
I | Others
GM : I Driving Mode —— Digital
1
App IS : I Lock/Unlock —— Digital Input
: L Commands Enable/Disable -
Group | |
i g |
1 I Dashboard access w

Fig. 4. Green e-Box abstraction layers and measured signals for the Tazzari
Zero Evo. The highlighted signals and commands are those not available for
the considered vehicle.

The embedded board acts as a Hardware Abstraction Layer
(HAL) and it is designed to abstract the vehicle-specific
details; thus, it creates a virtual layer between software
applications and the actual hardware, providing a general
communication protocol to the high-level layers built on top
of it. To achieve this, the embedded board has a CAN-bus
to retrieve data directly from the vehicle ECU and several
analog and digital input/output channels so that the GEB
can be installed on a large variety of heterogeneous vehicles,
even those without an ECU (e.g., Tazzari and Bir0d). A mi-
crocontroller handles each signal, acquiring the vehicle data
at a constant rate and, since the set of available signals is
strongly vehicle-dependent, it collects them into well-defined
packets so that they can be easily transmitted to the high-
level Android board. The vehicle signals are clustered into 6
categories: battery, doors, speed, faults, commands and others.
Each signal available on the vehicle must belong to one of
the previous categories. For instance, the provided current, the
state of charge of the battery, and the battery’s state (charging
or not) belong to the battery group. Fig. 4 shows an example
of the signals available on the Tazzari vehicle and how they
are grouped by the embedded board. The signals of Bird and
Liberty are not reported here for the sake of conciseness.

The Android board provides the Software Abstraction Layer
(SAL) which receives (in a vehicle-independent way) the data
from the low-level board; the SAL uses a singleton object
to store, for each monitored quantity, the last value received;
this object also offers, for each quantity, a getter method
that allows other GM applications residing on the GEB (see
Section III), to easily access the vehicle information. The GEB
decouples the high-level fleet management functions from
those, implemented in the vehicle ECU, related to the control
of the vehicle motion, thus isolating the latter from the former,
which guarantees the necessary safety requirements.

III. EMBEDDED GREEN E-BOX MIDDLEWARE

The functions realized by the GEB can be divided in two
categories: core operations of the GMVSS (e.g., user authen-
tication, vehicle monitoring, etc.), and optional functions that,
though not essential, provide added value to GM users (e.g.,
commercial and traffic information). Whereas core operations
are known from the design phase of the GMVSS and change
infrequently, optional functions could be added or removed
after the system deployment (e.g. new commercial agreements
between GM and its partners). Consider a scenario such that,
after the GMVSS has been deployed, a new commercial deal
is struck with an ad provider who developed an application to
notify users in real time of discounts available in shops close
to their current location. In this case, the application should be
installed on all GEBs from the beginning of the commercial
agreement, until its end. In addition, the application should be
able to read the current location of the vehicle from the GEB,
to provide users with accurate information. This suggests that
the GEB should have the possibility of dynamically loading
and unloading applications which have suitably controlled
access to vehicle information retrieved by the GEB itself.
Thus, the GEB software should be designed to enable the
kind of scenarios outlined above. In particular, it should have a
modular structure, where each module oversees a cohesive set
of GEB functions (e.g., vehicle data retrieval, communication
with the GMC); it should also provide a set of primitives
and mechanisms that make it possible to build and manage
applications in a dynamic way. In the rest of this section
we discuss the choices made and the mechanisms realized to
achieve these goals.

Dynamically-loaded
apps
GM container

Core functions
(authentication, monitoring...)

Sensor Data retrieval Communication primitives

Android OS

Fig. 5. Layered structure of the functions of the GEB.

The GEB software is built on the Android OS according
to the layered structure shown in Fig. 5. At its core are
the modules providing the basic mechanisms for the retrieval
of data from the vehicle sensors and for the communication
with the GMC. They are used to realize the core functions
of the GEB, such as, for example, vehicle monitoring, and
they are made available to third-party applications through a
component called GMContainer.

The GMContainer is part of the GM Middleware (GMM)
infrastructure that allows system administrators to load and
remove applications from GEBs dynamically. The main com-
ponents of the GMM are the Code Server, which resides on
the GMC, and the GMContainer part of the GEBs.

1) Code Server: The Code Server (CS) is a module of the
GMC that allows trusted parties to upload their applications, to
verify them and to distribute them to GEBs through the GMM.
It also allows administrators to get the current list of devices

Copyright (c) 2013 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

running a certain application, to stop any running instance
and uninstall it, or to deploy it a second time. Applications
are uploaded as signed JAR files, which are verified for
authenticity before being made distributable.

2) GMContainer: The main responsibility of the GMCon-
tainer is to allow Green Move Applications (GMAs) to be
added and removed at run time. GMAs are downloaded when
requested and their code is linked to the GEB code at run-time.
The application entry point is then executed and a reference
to the latter is kept by the GEB for future unloading.

- Green Move @
x Application E 2
a GM container S E
1 a
i
Sensor Data retrieval
Fig. 6. Interfaces of the GMContainer.

As depicted in Fig. 6, GMAs are provided appropriate
APIs for interacting with the GM ecosystem. They allow
applications to:

« display text or images to the end user (ads, messages);

o communicate with other GM components (including the

GMC) by sending and receiving events according to a
publish-subscribe paradigm;

o read sensors data from the GEB embedded board, e.g.,

the GPS position and the vehicle speed.
GMAs are independent of one another, although no restriction
is enforced on their interaction. They are provided to GEBs
via the GMC. Their code is downloaded and executed, and
then disposed of when the application no longer needs to be
active, or system resources need to be freed.

3) Implementation: GMAs are Android components which
adhere to the single entry point convention enforced by the
GMContainer. This means that applications could be coded in
any language which can be run on top of the Android Java
Virtual Machine (Dalvik), such as Ruby or Python. The current
implementation assumes that the application code is sealed in
a standard JAR file.

CS allows a publisher to upload JAR files, to verify their
integrity according to the publisher’s certificate and to select
the specific GEBs that have to receive the application, e.g., all
of them or only those installed on a specific vehicle type, etc.
The CS leverages the T-Rex publish-subscribe middleware, see
[14], to communicate with GEBs and send them the “load
code” message, which contains the references to the file to
load and the entry point of the application.

The GMContainer is implemented as an Android Service.
It provides a primitive that allows GMAs to access the API
through which sensor data can be retrieved. Similar primitives
allow GMAs to access the communication infrastructure used
by the GMContainer to communicate with the GMC, and the
abstraction layer to access the display to show text and images.
Every GMA implements an interface offering a primitive to
stop the application, which is responsible for the disposal of
its own resources (sockets, running threads and so on).

IV. CONCLUDING REMARKS AND FUTURE WORK

The architecture of the GM system was designed to leverage
the classic notions of component, connector, and interface,
both at the hardware and at the software level, to provide the
flexibility that is necessary to manage heterogeneous fleets
of vehicles whose services evolve over time. As such, it is
a blueprint for a wide class of systems that include, but
are not limited to, next generation vehicle sharing systems.
This letter focused in particular on the structure of the on-
board unit, the GEB, which acts as the interface between the
system and the vehicles, and on the GMM, the middleware
infrastructure that has been designed to allow the functions of
the GEBs to evolve after the system deployment. The GMM
offers developers of GMAs mechanisms to send information
not only to the GMC, but also to other vehicles through the
event-distribution component of the GMC. As such, it provides
capabilities that could be used to develop applications that are
based on interactions among vehicles.

Future work on the GEB and the GMM will follow several
directions: new modules of the GEB will be deployed to
perform various analyses of vehicle sensor data. These will
provide the user, dynamically-loaded GMAs and the GMC
with rich information such as, quantitative measures of the
“driving style”, which can be used to optimize performance,
sustainability, and/or driving range. The GMM will also be
enriched to include context-aware mechanisms through which
system administrators can allow/disallow certain operations
depending on the current situation, so as to be able to actively
enforce safety objectives.

REFERENCES

[1] A. Kalogeras, P. Foundas, M. Georgoudakis, K. Charatsis, and P. Kon-
stantinopoulos, “Integrated system for smart transport services,” in IEEE
Conf. on Emerging Technologies Factory Automation, 2009, pp. 1-6.

[2] R.Pon, M. Batalin, M. Rahimi, Y. Yu, D. Estrin, G. Pottie, M. Srivastava,
G. Sukhatme, and W. Kaiser, “Self-aware distributed embedded sys-
tems,” in IEEE International Workshop on Future Trends of Distributed
Computing Systems, 2004, pp. 102-107.

[3] A. Osoério, H. Afsarmanesh, and L. Camarinha-Matos, “Towards a
reference architecture for a collaborative intelligent transport system
infrastructure,” Collaborative Networks for a Sustainable World, vol.
336/2010, pp. 469477, 2010.

[4] G. Alli et al.,, “Green move: towards next generation sustainable
smartphone-based vehicle sharing,” in Proceedings of SustainIT, 2012.

[5] OnStar, LLC, 2013. [Online]. Available: http://www.onstar.com

[6] Chevrolet, 2013. [Online]. Available: http://www.chevrolet.com

[7]1 Directed Electronics, 2013. [Online]. Available: http://www.viper.com/

[8] Tazzari GL s.p.a., 2012. [Online]. Available: http://www.tazzari-
zero.com

[91 ESTRIMA SRL, 2012. [Online]. Available: http://www.estrima.com

[10] Piaggio & c s.p.a., 2012. [Online]. Available: http://www.piaggio.com
[11] S. Di Martino, C. Giorio, and R. Galiero, “A rich cloud application to
improve sustainable mobility,” Web and Wireless Geographical Infor-
mation Systems, vol. 6574/2011, pp. 109-123, 2011.

M. Conti, D. Fedeli, and M. Virgulti, “Bluetooth for electric vehicle to
smart grid connection,” IEEE Intelligent Solutions in Embedded Systems,
vol. 1, p. 1318, 2011.

A. Dardanelli, M. Tanelli, B. Picasso, S. Savaresi, O. di Tanna, and
M. Santucci, “A smartphone-in-the-loop active state-of-charge man-
ager for electric vehicles,” IEEE ASME Transactions on Mechatronics,
vol. 17, no. 3, pp. 454-463, 2012.

G. Cugola and A. Margara, “Complex event processing with T-REX,”
JSS, vol. 85, no. 8, pp. 1709-1728, 2012.

[12]

[13]

[14]

Copyright (c) 2013 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

