Writing Dynamic Service Orchestrations with DSOL

Leandro Sales Pinto, Gianpaolo Cugola, Carlo Ghezzi
Dipartimento di Elettronica e Informazione
Politecnico di Milano
Milano, Italy
{pinto,cugola,ghezzi} @elet.polimi.it

Abstract—We present the workflow language DSOL, its run-
time system and the tools available to support the development
of dynamic service orchestrations. DSOL aims at supporting
dynamic, self-managed service compositions that can adapt to
changes occurring at runtime.

Keywords-Service oriented computing; service orchestration;
declarative language

I. INTRODUCTION

Service orchestrations [1] live in a very unstable world
in which changes occur continuously and unpredictably.
External services invoked by the orchestration may be
discontinued by their providers, they may fail, or they
may become unreachable or incompatible with the original
versions. Furthermore, the orchestration requirements may
evolve due to business needs. It is therefore fundamental that
orchestration languages and their runtime systems provide
simple yet efficient ways to write service compositions that
are able to cope with exceptional situations and are also able
to easily adapt dynamically to external changes.

The DSOL language and its associated runtime system
are the result of research [2], [3] to explore an alterna-
tive language to current mainstream imperative workflow
languages for service orchestrations. DSOL adopts an in-
novative declarative approach in which an orchestration is
modeled in terms of its goals and the actions to reach them.
At runtime, DSOL uses planning techniques to determine the
actual flow of execution to achieve the orchestration’s goals
(i.e., which actions to execute and in which order). The same
planning techniques are also used in case of faults, to build
alternative paths of execution without the need for explicitly
programming them.

This eases the job of building flexible orchestrations
capable of coping with faults and changes in the external
environment, while the modularity and dynamism inherent
in such approach also simplifies the steps required to change
the orchestration model at runtime.

II. A WALK THROUGH DSOL

To introduce the various aspects included in the DSOL
orchestration model, we present a simple example scenario.
The idea is to design a service to translate an existing Doodle
poll into a chosen language. Such a service is built as an

978-1-4673-1067-3/12/$31.00 (© 2012 IEEE

1383

orchestration of three existing external services: a service
to retrieve information related to the existing Doodle poll,
a service to detect the language in which the poll was
initially written, and a service to actually translate the text
included in the poll. In particular, we consider the following
requirements:

1) The composite service shall be invoked with the
identification code (¢d) of the existing Doodle poll to
be translated, and the language (desiredLanguage)
to which the poll should be translated.

2) To detect the language in which the poll was initially
written, the system shall use its title.

3) The service shall translate the title, the description and
the options of the existing poll and return the translated
poll to the client.

The DSOL model of a service orchestration includes

different aspects, which are defined separately, possibly by
different stakeholders, as shown below.

A. Abstract Actions

Abstract actions are high-level descriptions of the primi-
tive actions available in a given domain, which DSOL uses
at runtime as the building blocks to automatically build
orchestration plans. They are modeled in an easy-to-use,
logic-like language, in terms of their signature, precondition,
and postcondition. Listing 1 illustrates the abstract actions
that model the poll translator scenario. Note how they reflect
all the activities described in the service requirements.

action getPoll(Id)
pre: pollid(Id)
post: poll(requestedPoll)

action translatePoll(Poll, PollLanguage, TolLanguage)
pre: poll(Poll), language(Poll, PollLanguage), language (TolLanguage)
post: poll(translatedPoll), language(translatedPoll, TolLanguage)

action detectLanguage (Text)
pre: text(Text)
post: language (Text,detectedLanguage)

seam action getText
pre: poll(requestedPoll)
post: text(requestedPoll. title)

seam action getPollLanguage (Language)
pre: language(requestedPoll. title , Language)
post: language (requestedPoll, Language)

Listing 1. The abstract actions for the poll translator example

Although abstract actions are specified in a very abstract
way, they are meant to be executed by one or more concrete
counterparts that implement it (see Section II-B). Listing 1

ICSE 2012, Zurich, Switzerland
Formal Research Demonstrations

also shows the usage of a special kind of abstract action,
called seam action. Seam actions do not have a concrete
implementation and are used in some situations in which
is necessary to relate different states of a domain or deduce
some new facts. For example, using the seam action getText,
it is possible to deduce that a poll title is a text, and the action
detectLanguage could be called using it as an argument.

B. Concrete Actions

Concrete Actions are the actual implementation of abstract
actions. They are implemented as Java methods using the
ad-hoc annotation @Action to refer to the abstract actions
they implement. Several concrete actions may be bound to
the same abstract action, representing different alternatives
to accomplish the same actions.

Concrete actions may be of two different types: ser-
vice actions and generic actions. The former are abstract
Java methods directly mapped to external services. As an
example see Listing 2. The special attribute service
of the @Action annotation is a reference to the exter-
nal service to invoke. In the example, the abstract action
detectLanguage will be implemented by invoking the
service identified by the reference languageDetector. Having
just a mnemonic label to reference a service allows us to
have a loosely coupled model that could be easily modified,
even at runtime. In fact, the actual information about the
service (e.g., URI, operation) is specified externally (see
Section II-C).

@Action (name="detectLanguage”, service="languageDetector”)
public abstract String detectLanguage(String text);

Listing 2.
action

Service action that implements the detectLanguage abstract

Generic actions are ordinary Java methods to be used to
perform general operations like retrieving information from
a database or pre-processing data between service invoca-
tions. Listing 3 illustrates a generic action. This generic
action is used to specify which parts of the poll should be
translated (title, description and poll), and translates them
by calling the translate method, which is a service action.

@Action (name="translatePoll”)
@ReturnValue ("translatedPoll”)
public Poll translatePoll(Poll poll, String pollLanguage, String targetLanguage){

Poll translatedPoll = new Poll(poll);
String title = translate(poll.getTitle (), pollLanguage,
targetLanguage);

String description = translate(poll.getDescription(), pollLanguage,
targetLanguage);

//translate options

return translatedPoll;

Listing 3. Generic action that implements the translatePoll abstract action

C. Composed Services

The to-be composed services can be defined in two
distinct moments. At design time, using a XML file with
ad-hoc tags. At runtime, the composed services can be

modified using the provided Web interface, or programmat-
ically using the RESTful API exposed for that purpose (see
Section III-C).

Listing 4 illustrates the XML definition of two of the
services used in our example. The first one represents the
service provided by Doodle to retrieve an existing poll and
the second one the service provided by Microsoft Translator
API to detect the language in which a given text was written.
In this example we show the two kind of services supported
by DSOL: SOAP and REST. Both kinds of services must
include a name and an id. The former is used by concrete
actions to refer to the service they are linked to. Actually,
more than one service can have the same name, and they are
used as alternatives'. The latter is used to uniquely identify
a service description. It is used, for example, to delete
programmatically a specific service, if a monitor detects it
is unavailable. The meaning of the other attributes present
in the service tag is straightforward.

In the case of a REST service, DSOL supports the use
of all four HTTP methods (GET, POST, DELETE, and
UPDATE). To send and receive messages, xml and json are
supported as media type.

Services may also include arguments that come from the
concrete actions they are linked to. Note in the url attribute
of service getDoodle, the usage of #{pollld} representing
that this value must be changed at runtime with the actual
value of the pollld argument passed to the concrete action.
This is useful in the case of RESTful services that usually do
not have a formal specification of the method to be invoked.

Concrete actions attached to SOAP services must comply
with the expected arguments of the external service. For
instance, the service provided by Microsoft Translator API
to detect the language of a text expects an argument of
type String. So, concrete actions linked to the microsoft-
LanguageDetector service must receive String as an argu-
ment. In such a way, services can be automatically invoked
without having to generate stub classes, as usually is done
for SOAP services.

<services>
<service type="soap”
name="languageDetector”
id="microsoftLanguageDetector”
wsdl="http://api. microsofttranslator.com/V2/Soap.svc”
operationNamespaceUri="http://api. microsofttranslator.com/Vv2”
operation="Detect" />

<service type="rest”
name="poll”
id="getDoodle”
url="http://doodle—test.com/api1WithoutAccessControl/polls/#{ pollld}”
method="GET"
mediaType="application/xml” />

</services>

Listing 4. Services composed in the poll translator example

D. Orchestration Interface
The orchestration interface formalizes how the orches-
tration is exposed as a Web service and it is defined as

IReaders are welcome to recall the definition of the service action in
Listing 2

1384

a Java interface compliant with the JAX-WS specification,
which specifies how Web services are created in Java. The
provided annotations are used in mapping Java to WSDL and
in controlling how runtime processes respond to Web service
invocations. Listing 5 shows the orchestration interface of
our example.

@WebService

public interface PollTranslator{

@WebResult(name="translatedPoll”)

public Poll getTranslatedPoll (@WebParam(name="pollld”) String id,
@WebParam(name="language”) String desiredLanguage);

}

Listing 5. The poll translator orchestration interface

The orchestration interface may actually include several
methods. For each method, an initial state and a goal must
be specified. The initial state models the state in which
the orchestration starts while the goal represents the desired
state after executing it. This is actually how the orchestration
is built, using planning techniques to find a plan that goes
from the initial to the goal state using the provided abstract
actions.

The initial state is actually derived from the method
signature in the orchestration interface. For instance, in our
example, the derived initial state for the method getTrans-
latedPoll is pollld(id) and language(desiredLanguage).
The same JAX-WS annotations used to generate the WSDL
are used to generate the initial state, together with the formal
names of parameters. The developer can also specify an
additional part of the initial state to help in the construction
of the plan, e.g., a fact that relates two of the parameters,
through the Web interface (see Section III-B).

The goal state is specified by the developer also
as part of the orchestration model file or through the
Web interface. Since the goal of the orchestration is
to have a poll translated into a given language, it
is expressed in DSOL as poll(translatedPoll) and
language(translated Poll, desired Language).

E. Execution

At the time a DSOL orchestration is invoked, its goal,
initial state, and abstract actions are used by an internal
Planner to build an abstract plan of execution, which lists the
logical steps through which the desired goal may be reached.
Listing 6 illustrates a plan for our example. It includes a list
of abstract actions that can lead from the initial state to a
state that satisfies the orchestration goal.

getPoll(id)
detectLanguage (requestedPoll. title)
translatePoll (requestedPoll ,detectedLanguage ,desiredLanguage)

Listing 6. A possible plan for the poll translator example

This plan is taken and enacted by associating each step
(i.e., each abstract action) with a concrete action that is
executed, possibly invoking external services. Note that,
while the plan is described as a sequence of actions, the
system is free to execute them in parallel, by invoking each
of them as soon as their precondition is satisfied.

During the execution of the orchestration, if something
goes wrong (e.g., an external service is unavailable), first a
different concrete action for the abstract action that failed is
tried. If this is not enough to overcome the current situation,
the Planner is invoked again to find a different course of
actions that could skip the failed step. Furthermore, by
comparing the old and the new plan, and considering the
current state of execution, the system is able to calculate the
set of actions that need to be compensated (i.e., undone) as
they have already been executed but are not part of the new
plan. Compensation actions are defined following the same
idea of concrete actions.

This plan-execute-replan process is repeated until one plan
is found that successfully reaches the orchestration goal
or a plan cannot be built. In the first case, a successful
message is sent to the client. Otherwise, the last tried plan
is compensated and an exception is thrown.

III. SUuPPORT TOOLS

In this section, we describe the tools provided by DSOL
to help the development and also the management of orches-
trations at runtime.

A. Eclipse Plug-In

The DSOL Eclipse plug-in helps developers to configure
a DSOL orchestration project with an ad-hoc wizard that
creates a skeleton of the project, based on the information
entered by the developer. This skeleton project includes
the configuration files, the source code for the abstract
actions, concrete actions and orchestration interface, and also
runtime information like the context and the port in which
the service must be available when running.

Using the DSOL plug-in it is also possible to run and
debug the orchestration from inside Eclipse. Furthermore, it
provides additional wizards to help the developer to specify
abstract actions, concrete actions and to define the services
to be composed.

B. Runtime Web Interface

Modularity, achieved by the loose coupling between ab-
stract and concrete actions and also by how services are
dynamically bound to actions, and dynamism, achieved by
building the flow of execution at runtime, are inherent
in the DSOL approach. Thanks to them, while a DSOL
orchestration is running, the runtime system provides a Web
interface that can be used to change the orchestration model
and its running instances.

Figure 1 illustrates the page to modify the available
abstract and concrete actions. Note it is also possible to test
if the orchestration goal is still reachable using the new set
of abstract action before actually changing the model. Other
pages allow to manage initial states and goals, and to add
new composed services.

1385

= € | © localhost: T e X

Home > Available actions

Save Changes | Test

Abstract actions
+New Abstract Action Load abstract actions from source code:{ Choose File | No file chosen + | Load
action getPoll(id) x| action translatePoll(Poll, PollLanguage. ToLanguage) x
pre: pallld(id) pre: poli(Poll), language(Poll,PollLanguage), language(ToLanguage)
post: polirequestedPoll) post.). Poll, ToLanguage)
enabled: ¥ enabled: ¥
See available concrete actions See available concrete actions
action detectLanguage(Text) x seam action getText() x
pre: text(Text) pre: poll(requestedPoll)
post: language(Text,detectedLanguage) post: text(requestedPoll title)
enabled: ¥ enabled: ¥
See available concrete actions
seam action getPollLanguage(Language) ®
pre: language(requestedPoll title, Language)
post: language(requestedPoll, Language)
enabled:

Concrete actions classes
+New Concrete Action Class

« action.ConcreteActions x

Classpath
Select jar: | Choose File | No file chosen + | Upload
Figure 1. Web interface to manage the available actions at runtime

C. RESTful service API

The DSOL runtime also allows the services binding to
be changed at runtime in a programmatic manner. To do
so, DSOL exposes a set of operations that can be invoked
using HTTP requests. For example, a GET request sent to
api/services will return, in a json format, the list of all
available services, including all related information. A POST
request sent to api/services/<service_name>
will include a new service in the group of services
referenced by service_name. A DELETE request sent to
api/services/<service_name>/<service_id>
removes from the orchestration model the service identified
by service_id. Such API? could be useful, for example,
for monitoring tools that can possibly monitor the composed
services and manage them automatically to prevent faults
or violation of QoS contracts.

IV. RELATED WORK

DSOL was designed as an alternative to traditional orches-
tration languages such as BPEL, Jolie [4] and JOpera [5].
In general, such languages adopt an imperative style, which
limits the ability of the defined service compositions to
evolve at runtime and to cope with exceptional situations. In
contrast, DSOL adopts a declarative approach to support the
definition of flexible and self-adaptive service orchestrations,
also able to cope with unexpected behaviors at runtime.

Other researchers followed the idea of adopting a declar-
ative approach. Among those proposals, DecSerFlow [6] is
the closest to our work. In DecSerFlow service composi-
tions are defined as a set of actions and the constraints

2The complete reference can be found at DSOL website

that relate them. Both actions and constraints are mod-
eled graphically, while constraints have a formal semantics
given in Linear Temporal Logic (LTL). There are several
differences between DecSerFlow and DSOL. First of all,
DecSerFlow focuses on modelling service compositions to
support verification and monitoring. Conversely, we focus
specifically on enacting them. This difference motivates
the adoption of LTL as the basic modeling tool, as it
enables powerful verification mechanisms but introduces an
overhead that can be prohibitive for an enactment tool. The
DSOL approach to modeling offers less opportunities for
verification but it can lead to an efficient enactment tool.
Secondly, DSOL emphasizes re-planning at runtime as a
mechanism to support self-adaptive service orchestrations
that maximize reliability even in presence of unexpected
failures. This is an issue largely neglected by DecSerFlow,
as it focuses on specification and verification and it does not
offer specific mechanisms to manage failures at runtime.

V. CONCLUSION

In this paper we presented DSOL, its runtime system
and the tools available to support the development and the
maintenance of service orchestrations written in DSOL.

DSOL is completely written in Java and easily extensible.
It can be found, together with its source code and the
example presented in this paper, at http://www.dsol-lang.net.

A video of our tool-set is available at
http://www.dsol-lang.net/demo.

ACKNOWLEDGMENT

This work was partially supported by the European
Commission, Programme IDEAS-ERC, Project 227977-
SMScom.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology,
and Design. Prentice Hall PTR, 2005.

[2] G. Cugola, C. Ghezzi, and L. S. Pinto, “Process programming
in the service age: Old problems and new challenges,” in
Engineering of Software. Springer Berlin Heidelberg, 2011.

[3] L. S. Pinto, “A declarative approach to enable flexible and
dynamic service compositions,” in Proceeding of the 33rd
International Conference on Software engineering, 2011.

[4] E. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro, “Jolie:
a java orchestration language interpreter engine,” Electronic
Notes in Theoretical Computer Science, vol. 181, no. 0, pp.
19-33, 2007.

[5] C. Pautasso and G. Alonso, “JOpera: A Toolkit for Efficient
Visual Composition of Web Services,” Int. J. Electron. Com-
merce, vol. 9, 2005.

[6] M. Montali, M. Pesic, W. M. P. v. d. Aalst, F. Chesani, P. Mello,
and S. Storari, “Declarative specification and verification of
service choreographies,” ACM Trans. Web, vol. 4, pp. 3:1-3:62,
January 2010.

1386

