
Adaptive Service-Oriented Mobile Applications:
A Declarative Approach?

Gianpaolo Cugola, Carlo Ghezzi, Leandro Sales Pinto, and
Giordano Tamburrelli

DeepSE Group @ DEI - Politecnico di Milano, Italy
{ cugola | ghezzi | pinto | tamburrelli }@elet.polimi.it

Abstract. Modern society increasingly relies on mobile devices and on
distributed applications that use them. To increase development effi-
ciency and shorten time-to-market, mobile applications are typically de-
veloped by composing together ad-hoc developed components, services
available on-line, and other third-party mobile applications. To cope with
unpredictable changes and failures, but also with the various settings of-
fered by the plethora of devices, mobile applications need to be adaptive.
We address this issue by proposing a declarative approach. The advan-
tages of the proposed solution are demonstrated through an example
inspired by an existing worldwide distributed mobile application.

1 Introduction

Mobile applications, commonly referred to as apps, are small-sized, efficient,
modular and loosely coupled aggregates of software components developed with
specific programming frameworks that depend on the target mobile platform.
Their development imposes several challenges to modern software engineering. In
particular, to achieve the desired efficiency in terms of development time and to
exploit existing well established software solutions, apps are typically developed
by composing together: (1) ad-hoc developed components, (2) existing services
available on-line, (3) third-party apps, and (4) platform-dependent components
to access device-specific hardware (e.g., camera, GPS, etc.).

The typical approach to develop such heterogeneous software artifacts follows
a three step approach. Developers first start by conceiving the list of needed func-
tionalities and they organize them in a suitable workflow of execution. Secondly,
they evaluate the trade-offs between implementing such functionalities directly or
resorting to existing services or third-party apps. Finally, they implement the app
by integrating all the components together. Building apps as orchestrations of
components, services and/or other third-party applications, however, introduces
a direct dependency of the system with respect to external software artifacts
which may evolve over time, fail, or even disappear, thereby compromising the
application’s functionality. Moreover, differently from traditional software sys-
tems, the development of mobile apps is characterized by an increased explicit
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dependency with respect to hardware and software settings of the deployment
environment. Indeed, even if developed for a specific platform (e.g., Android,
iPhone, etc.), apps may be deployed on a plethora of different mobile devices
characterized by heterogeneous hardware and software configurations (e.g., avail-
able sensors, firmware version, etc.). To cope with these peculiarities apps need to
be adaptive [8] with respect to the heterogeneous deployment environments and
with respect to the services and external apps they rely upon. The traditional
way to achieve this goal is by explicitly programming the needed adaptations
by heavily using exception handling techniques to manage unexpected scenarios
when they occur. This is quite hard per-se and cannot be done by inexperienced
users. This paper precisely address this issue by proposing a different approach.
We abandon the mainstream path in favor of a strongly declarative alternative,
called SelfMotion1, which allows apps to be modeled in terms of the abstract
functionalities they provide and the overall goal they have to met. SelfMotion
apps are then executed by a middleware that leverages automatic planning tech-
niques to elaborate, at run-time, the best sequence of activities to achieve the
goal. Whenever a change happens in the external environment (e.g., a service
becomes unavailable), which prevents successful completion of the execution,
the middleware tries to find an alternative path toward the goal and continues
executing the app, which results in a nice and effective self-healing behavior.

2 A Motivating Example: The ShopReview App

Let us now introduce ShopReview (SR), the mobile app we will use throughout
the paper to explain our approach. SR is inspired by an existing application (i.e.,
ShopSavvy2). It allows users to share data concerning a commercial product or
query for data shared by others. Users may use SR to publish the price of a
product they have found in a certain shop (chosen among those close to their
current location). In response, the app provides the users with alternative, nearby
places where the same product is sold at a more convenient price. The unique
mapping between the price signaled by the user and the product is obtained
by exploiting the product barcode. In addition, users may share their opinion
concerning the shop and its prices on a social network such as Twitter.

As introduced in the previous section, the development process for an app like
SR starts by listing the needed functionalities and by deciding which of them will
be implemented through an ad-hoc component and which will be implemented by
re-using existing solutions. For example, the communication with social networks
may be delegated to a third party app, while geo-localization of the user may be
performed by a ad-hoc component which exploits the GPS sensor on the device.

Table 1 illustrates the abstract components uses as the main building blocks
for the SR app. For the BarcodeReader, consider we decide to implement its code
as for the original ShopSavvy app, which runs an ad-hoc developed component in
charge of acquiring a picture of the barcode from the mobile camera. Since such

1
Self-Adaptive Mobile Application.

2
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Name Description
BarcodeReader Allows the user to insert the barcode of the product

GetProductName Translates the barcode into the product name
GetPosition Retrieves the current user location
LocalSearch Retrieves other shops in the neighborhood which offer the

product at a more convenient price
SharePrice Shares the price of a product on a given shop on Twitter
InputPrice This component collects from the user the product’s price

Table 1. ShopReview Components.

i f ( manager . hasSys temFeature ( PackageManager .FEATURE CAMERA AUTOFOCUS){
//Run l o c a l barcode r e c o g n i t i o n

}e l s e{ // Invoke remote s e r v i c e w i th b l u r r y decode r a l g o r i t hm }
// . . . .
Loca t i on l o c a t i o n = n u l l ;
i f ( manager . hasSys temFeature ( PackageManager . FEATURE LOCATION GPS){

Lo c a t i o nP r o v i d e r p r o v i d e r = Locat ionManager . GPS PROVIDER ;
t r y{

// Return n u l l i f the GPS s i g n a l i s c u r r e n t l y not a v a i l a b l e
l o c a t i o n = loca t i onManage r . getLastKnownLocat ion ( p r o v i d e r ) ;

}catch ( Excep t i on e){ l o c a t i o n = n u l l ; }
}
i f ( l o c a t i o n==n u l l ){

// Dev ice wh i tou t GPS or an e x c p e t i o n was r a i s e d i n v o k i n g i t . We show up a map
// to a l l ow the u s e r to i n d i c a t e i t s l o c a t i o n manua l l y
showMap ( ) ;

}

Listing 1.1. Adaptive Code Example.

component may execute correctly only on devices with an autofocus camera and
does not work properly on other devices, our choice would limit the usability of
our app. To overcome this limitation and allow a correct barcode recognition also
on devices with fixed focus cameras, SR needs to provide a form of adaptivity.
Indeed, it has to detect if the camera on the current device is autofocus and,
if not, it has to invoke an external service to process the acquired image with
a special blurry decoder algorithm. A similar approach can be used to get the
user location (i.e., GetPosition component), which requires a GPS sensor3. To
execute SR on devices without GPS we may offer a different implementation,
which shows a map to the user for a manual indication of the current location.

The code snippet reported in Listing 1.1 describes a possible implementation
of the described adaptive behavior for the Android platform. Although this is
just a small fragment of the SR app, which is by itself quite a simple example, it
is easy to see how convoluted and error prone the process of defining all possible
alternative paths may turn out to be. Things become even more complex con-
sidering run-time exceptions, like an error while accessing the GPS or invoking
an external service, which have to be explicitly managed through ad-hoc code.
We argue that the main reason behind these problems is that the mainstream
platforms for developing mobile applications are based on traditional impera-
tive languages in which the flow of execution must be explicitly programmed.
In this setting, the adaptive code—represented in our code fragment by all the
if-else branches—is intertwined with the application logic, reducing the overall
readability and maintainability of the resulting solution, and hampering its fu-
ture evolution in terms of supporting new or alternative features, which requires
additional branches to be added to the implementation.

3
Network Positioning System is not precise enough for our needs.
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3 The SelfMotion Approach

The SelfMotion approach comprises activities at design-time as well as at run-
time. Initially, at design time, it requires the intervention of domain experts
and software engineers, while at run-time it executes autonomously. Design-time
activities are supported by a declarative language, while at run-time activities are
supported by a middleware. At design time, domain experts and engineers must
declare the following elements: (1) the app’s Goal, expressed as a set of facts that
are required to be true at the end of the app’s execution; (2) the Initial State,
which models the set of facts one can assume to be true at app invocation time;
(3) a set of Abstract Actions, which models the primitive operations that can
be executed to achieve the goal; (4) A set of Concrete Actions, one or more for
each abstract action. Concrete actions map abstract ones to executable snippets
that define the actual steps required for realizing them, e.g., by invoking an
external service. At run-time, the SelfMotion middleware comes into play to
actually execute the app. It comprises two distinct components: a Planner and
an Interpreter. The Planner analyzes the goal, the initial state, and the abstract
actions to build an Abstract Execution Plan, which lists the logical steps to reach
the goal. The Interpreter is in charge of enacting this plan by associating each
step (i.e., each abstract action) with the concrete action to execute, possibly
invoking external components where specified. If something goes wrong (e.g.,
an external service returns an exception), the Interpreter first tries a different
concrete action for the abstract action that failed. If no alternative action can be
found or all alternatives have been tried unsuccessfully, it invokes the Planner
again to build an alternative plan. From a deployment viewpoint the Interpreter
is installed on the mobile device, since it is in charge of actually executing the
app. The Planner, instead, may be deployed either locally or remotely.

3.1 The SelfMotion Declarative Language

Abstract Actions. Abstract actions are high-level descriptions of the primi-
tive actions used to accomplish the app’s goal. They represent the main building
blocks of the app. Listing 1.2 illustrates the abstract actions for the SR refer-
ence example: they correspond to the high level components listed in Table 1.
In some cases, the same functional component may correspond to several ab-
stract actions, depending on some contextual information (e.g., if the device has
a camera with autofocus or not). For example, we split the GetPosition func-
tionality into two abstract actions getPosWithGPS and getPosManually. We
also introduced an enableGPS abstract action, which encapsulates the logic to
activate the sensor. Similarly, the blurryDecoder abstract action represents a
remote component in charge of recognizing barcodes from pictures taken with
fixed focus cameras. Together with the blurryBarcodeReader action it can read
the barcode when an autofocus camera is not available.

Abstract actions are modeled with an easy-to-use, logic-like language, in
terms of: (1) signature, (2) precondition, and (3) postcondition. Signatures in-
clude a name and a list of arguments. For instance, the localSearch action
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ac t i on barcodeReader ac t i on b l u r r yBa r codeReade r ac t i on enableGPS ac t i on i n p u tP r i c e (Name)
pre : hasAutoFocusCamera pre : hasF ixedFocusCamera pre : ˜ i sGPSEnabled pre : prodName (Name)
post : ba rcode ( prodBarcode ) post : image ( b l u r r y Image ) post : i sGPSEnabled post : p r i c e ( p r odP r i c e )

ac t i on b l u r r yDecode r ( Image ) ac t i on getProdName ( Barcode ) ac t i on l o c a l S e a r c h ( Barcode , Pos )
pre : image ( Image ) pre : ba rcode ( Barcode ) pre : ba rcode ( Barcode ) , p o s i t i o n ( Pos )
post : ba rcode ( prodBarcode ) post : prodName (name) post : l i s t O f L o c a l P r i c e s

ac t i on getPosWithGPS ac t i on getPosManua l l y ac t i on s h a r eP r i c e (Name , P r i c e )
pre : hasGPS , i sGPSEnabled pre : t r u e pre : prodName (Name) , p r i c e ( P r i c e )
post : p o s i t i o n ( gpsPos ) post : p o s i t i o n ( manualPos ) post : s h a r e dP r i c e

Listing 1.2. SR Abstract Actions.

goa l ( l i s t O f L o c a l P r i c e s and s h a r e dP r i c e and p o s i t i o n ( gpsPos ) ) or
( l i s t O f L o c a l P r i c e s and s h a r e dP r i c e and p o s i t i o n ( u s e rDe f i n edPos ) )

s t a r t ( hasFixedFocusCamera and hasGPS and ˜ isGPSEnabled )

Listing 1.3. SR Goal and Initial State.

has the following signature: localSearch(Barcode, Pos). The precondition is
expressed as a list of facts that must be true in the current state for the ac-
tion to be enabled. For localSearch we use the expression barcode(Barcode),

position(Pos) to denote the fact that the Barcode parameter is a product bar-
code, while the Pos parameter represents the user’s position. The postcondition
models the effects of the action on the current state of execution by listing the
facts to be added to and the ones to be removed from the state. In our example,
when inputPrice is executed the fact price(prodPrice) is added to the state,
while no facts are deleted (deleted facts, when present, are designed by using the
“~” symbol). Facts are expressed as propositions, characterized by a name and
parameters, which represent relevant objects of the domain. Parameters that
start with an uppercase letter denote unbound objects, which must be bound to
instances, whose name starts with a lowercase letter, to generate an execution
plan. For instance, if at any point the fact position(gpsPos) is added to the
state, the object gpsPos becomes available to be bound to the Pos parameter in
the localSearch action.

Goal and Initial State. Besides abstract actions, the goal and initial state
are also needed to build and execute apps. The goal specifies the desired state
after executing the app. It may actually include a set of states, which reflect
all the alternatives to accomplish the app’s goal, listed in order of preference.
As an example, in the SR app (see Listing 1.3) we have two alternative goals.
The first one requires the GPS sensor and the second relies on the user input
to retrieve the location. The initial state complements the goal by asserting
the facts that are true at app invocation time. It is partially generated at run
time by the SelfMotion Middleware, which detects the features of the mobile
device in which it has been installed. In our example, assuming the device has
a fixed-focus camera and a disabled GPS, it generates the initial state shown in
Listing 1.3. Developers may add application specific facts to this auto-generated
initial state, if needed. By relying on abstract actions, goal, and initial state,
the Planner can build an Abstract Execution Plan. The Planner starts trying to
build an Abstract Execution Plan to satisfy the first goal; if it does not succeed
it tries to satisfy the second goal, and so on. Listing 1.4 reports a possible plan
of the SR example for a device without autofocus (i.e., hasFixedFocusCamera
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1 : b l u r r yBa r codeReade r 5 : getProdName ( barcode )
2 : enableGPS 6 : i n p u tP r i c e ( name)
3 : b l u r r yDecode r ( b l u r r yBa r code Image ) 7 : l o c a l S e a r c h ( barcode , gpsPos )
4 : getPosWithGPS 8 : s h a r eP r i c e (name , p r i c e )

Listing 1.4. A Possible Abstract Execution Plan.

@Action (name=”getProdName” , p r i o r i t y =1) @Action (name=”getProdName” , p r i o r i t y =2)
pub l i c S t r i n g getProdNameViaServ ice ( Barcode barcode ){ pub l i c S t r i n g getProdNameFromUser ( Barcode barcode ){

S t r i n g barcodeVa lue = barcode . ge tVa lue ( ) ; S t r i n g barcodeVa lue = barcode . ge tVa lue ( ) ;
//Use remote Web s e r v i c e ( e . g . , s ea r chupc . com) //Ask the u s e r f o r the p roduc t name
S t r i n g productName = . . . ; S t r i n g productName = . . . ;
r e t u r n productName ; r e t u r n productName ;

} }

Listing 1.5. getProdName Concrete Actions.

is set to true) and with a GPS sensors available but not enabled (i.e., hasGPS
set to true, isGPSEnabled set to false). This Abstract Execution Plan is a list of
abstract actions that lead from the initial state to a state that satisfies the goal.
Notice that: (1) when several sequences of actions could satisfy the goal, the
Planner chooses one non-deterministically; (2) although the plan is described as
a sequence of actions, the middleware is free to execute them in parallel, as soon
as the respective precondition becomes true.

Concrete Actions. Concrete actions are the executable counterpart of abstract
actions. Currently, concrete actions are implemented through Java methods. We
use the annotation @Action to refer to the abstract actions they implement. In
general, several concrete actions may be bound to the same abstract action. This
way, if the currently bound concrete action fails (i.e., it returns an exception) the
SelfMotion middleware has other options to accomplish the app’s step specified
by the failed abstract action. For example, the getProdName abstract action may
have two concrete actions: one which exploits a Web service (e.g., searchupc.
com) to map the barcode value to the product name, and another which asks it to
the user. Listing 1.5 reports the code used to define the concrete actions. Notice
that, in presence of multiple concrete actions for the same abstract action, it is
possible to specify a preferred ordering through the priority attribute.

3.2 Advantages of the SelfMotion Approach

Decoupled Design. SelfMotion achieves a clear separation among different
aspects of the app: from the more abstract ones, captured by goals, initial state,
and abstract actions, to those closer to the implementation, captured by concrete
actions. In defining abstract actions developers may focus on the features they
want to introduce in the app, ignoring how they are implemented (e.g., ad-hoc
developed components, services, or third party apps). This choice is delayed until
run-time binding. Consider the GetProductName component of the SR app. In
the inception phase of the app, developers only focus on the features it requires
– the preconditions – and the features it provides – the postconditions. Later on,
they can implement a first prototype that leverages an ad-hoc component (i.e.,
manual input of the product name). This solution may gradually evolved, by
adding other alternative concrete actions.

Enable Transparent Adaptation. By separating abstract and concrete ac-
tions and supporting one-to-many mappings we solve two typical problems of
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mobile apps: (1) how to adapt to the plethora of devices available, and (2) how to
cope with failures happening at run-time. As an example of problem (1), consider
the implementation of component GetPosition of Listing 1.1 with its SelfMo-
tion counterpart, which relies on several abstract actions with different precon-
ditions (see Listing 1.2). The former requires to explicitly hard-code the various
alternatives (e.g., to handle the potentially missing GPS), and any new op-
tion introduced by new devices would increase the number of possible branches.
Conversely, SelfMotion just requires a separate abstract (or concrete) action for
each option, leaving to the middleware the duty of selecting the most appropri-
ate ones, considering the current device capabilities and the order of preference
provided by the app’s designer. As for problem (2), consider the example of
GetProductName, which is implemented in SelfMotion by a single abstract ac-
tion mapped to two different concrete actions (Listing 1.5). The middleware
initially tries the first concrete action that invokes an external service: if this
returns an exception, the second concrete action is automatically tried. Further-
more, if none of the available concrete actions succeeds, SelfMotion may rely on
its re-planning mechanism to build an alternative plan at run-time. As an ex-
ample, consider the case in which the middleware is executing the plan reported
in Listing 1.4 and assume that the GPS sensor fails to retrieve the user location,
throwing an exception. The middleware automatically catches the exception and
recognizes the getPosWithGPS as faulty, which has no alternative concrete ac-
tions. Thus, the Planner is invoked to generate a new plan that avoids the faulty
step. The new plan would include the getPosManually abstract action.

Improve Code Quality. SelfMotion promotes a clean modularization of the
app’s functionality into a set of abstract actions and their concrete counterparts
and avoids contorted code through cascaded if-elses and exception handling con-
structs. As a result, code is easy to read, maintain, and evolve. By encapsulating
all the features in independent actions and by letting the actual flow of execution
to be automatically built at run-time by the middleware, SelfMotion increases
reusability, since the same actions can be reused across different apps.

4 Related Work

Many existing works focus on the effective and efficient development of mobile
applications, as summarized in [5,11]. They cover a wide range of approaches:
from how to achieve context-aware behavior (e.g., [6]) to how to apply agile
methods in the mobile domain (e.g., [1]).

Context-aware frameworks aim at supporting the development of mobile ap-
plications that are sensitive to their deployment context (e.g., the specific hard-
ware platform) and their execution context (e.g., user location). For example,
the EgoSpaces middleware [6] can be used to provide context information ex-
tracted from data-rich environments to applications. Another approach to mobile
computing middleware is presented in [3], which exploits the principle of reflec-
tion to support adaptive and context-aware mobile capabilities. In general these
approaches provide developers with abstractions to query the current context
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and detect context changes; i.e., they directly support context-dependent behav-
ior as first-class concept. In the same direction, approaches like [2,10] provide
specific context-aware extensions to the Android platform. The aforementioned
approaches do not directly compete with ours, but rather they can be viewed
as orthogonal. SelfMotion may benefit from their ability to detect context in-
formation, for example, to generate plans whose initial state depends on the
surrounding context. The added value of SelfMotion is instead its ability to au-
tomatically build an execution flow based on the context and the overall design
approach it promotes. Last, we would like to mention the foundational work on a
three-layer architecture for software adaptation, described in [7,9], which shares
with our work the motivation to provide sound architectural principles to the
development of adaptive systems.

5 Conclusions and Future Work

SelfMotion is part of a long running research stream on declarative languages [4].
Future work includes building an IDE, possibly integrated in a widely adopted
tool such as Eclipse, to further simplify the definition of abstract/concrete ac-
tions and goals. As for the SelfMotion middleware, while the current prototype
is operational and publicly available, there is still space to further improve per-
formance and robustness.
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