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Abstract—Service Oriented Computing enables distributed
applications that orchestrate existing services exported by remote
providers. This paradigm requires to explicitly handle possible
changes that may affect the orchestration. They include changes
that impact its functional behavior (e.g., services being retired by
their providers), but also changes in the non-functional behavior
of the orchestrated services (e.g., an increased execution time). In
the past we developed DSOL: it combines a declarative language
to model the orchestration with planning mechanisms to decide at
run-time the best flow of actions. In this paper we extend DSOL
to support QoS attributes and requirements. In particular, we
combine the DSOL planning techniques with a linear optimizer to
calculate the optimal plan w.r.t. the QoS requirements. Moreover,
we leverage the DSOL ability to adapt the orchestration flow at
run-time, to further optimize the QoS perceived by the end users
depending on the actual situations encountered.

I. INTRODUCTION

Service Oriented Architectures (SOAs) [19] are an im-
portant and widely adopted paradigm for building business
applications. SOAs refer to software systems built from unas-
sociated, loosely coupled units of functionality (i.e., services),
which are developed, deployed, and operated by independent
providers and composed together to provide new value-added
services for end-users. Composing (i.e., orchestrating) ser-
vices exported by remote providers brings new challenges to
Software Engineering. First, at design-time, engineers have to
effectively design the orchestration by selecting an appropriate
set of services such that the final system meets its functional
and non-functional requirements. Secondly, at run-time, the
orchestration should be able to cope with exceptional situa-
tions that result from the interaction with an environment (the
external services) controlled and managed by other entities.
As a consequence, dependable service compositions must be
supported by appropriate orchestration languages and run-time
systems providing effective mechanisms to design and execute
orchestrations able to cope with unexpected behaviors at run-
time, i.e., adaptable orchestrations.

In response to these challenges we designed DSOL [9]
an infrastructure aimed at supporting design and execution
of adaptable orchestrations. DSOL models the orchestration
declaratively, in terms of its goals and the primitive actions
potentially available to reach them. At run-time, it uses plan-
ning techniques to determine the actual flow of execution, i.e.,
which actions to execute and in which order. Even in presence
of changes in the external services available, its internal
Planner automatically builds alternative paths of execution
that circumvent the changes, avoiding faults and maximizing
the chances to reach the orchestration’s goals. In presence of

major changes, it allows service architects to easily modify the
orchestration model at run-time, e.g., by adding new actions or
changing the orchestration goals. This eases the job of building
“adaptable orchestrations” in the sense above.

However, unexpected changes in the orchestrated services
are not limited to their functional behavior but extend to qual-
ity of service (QoS) (e.g., response time, reliability, accuracy,
etc.). Indeed, changes in the non-functional profile of services
may affect the orchestration ability to satisfy its own QoS
requirements. In this paper we address this issue by extending
DSOL to support QoS.

Q-DSOL (QoS-aware DSOL) models the QoS attributes of
external services as part of the available actions, while the QoS
requirements of the whole orchestration are modeled as part
of its goals. At orchestration invocation, the Q-DSOL Engine
uses linear optimization techniques to search for an optimal
service binding that could satisfy the orchestration goals,
even in presence of conflicting non-functional requirements. In
addition, Q-DSOL supports two forms of run-time adaptation.
First, it modifies the initial service binding at to achieve further
optimization given the knowledge acquired during execution
(e.g., the fact that a service, originally considered non-fully
reliable, executed correctly). Second, it leverages the DSOL
re-planning techniques to optimize the orchestration QoS in
presence of faults, maximizing reliability. These forms of
optimization and adaptability applies both to pre-defined QoS
metrics (execution time and reliability), but also to user-
defined metrics, which allow service architects to express
domain specific, non-functional requirements.

The remainder of the paper is organized as follows. Sec-
tion II illustrates ProgrammableDinner, a real-world service
orchestration we use throughout the paper. Section III briefly
illustrates DSOL’s main features, while Section IV discusses
how we extended DSOL to support QoS, illustrating the opti-
mization and adaptive mechanisms offered by Q-DSOL. Sec-
tion V validates our proposal by providing some experimental
results of Q-DSOL. Finally, Section VI discusses related work,
while Section VII draws some concluding remarks.

II. PROGRAMMABLE DINNER

ProgrammableDinner (PD) is the service orchestration we
use to illustrate the functionalities of Q-DSOL. PD orchestrates
external services to organize a social event by choosing a
restaurant, a movie, and inviting a group of friends. We
considered the following requirements:
• RQ1: The system shall initially ask the user to provide

the relevant data: the list of friends she wants to invite, the
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Fig. 1. ProgrammableDinner Orchestration Schema

location and a movie title used by the system to suggest
similar movies to watch.

• RQ2: Based on the indicated location, the system shall
provide the weather forecast for the following days, plus a
list of restaurants (including a set of reviews about each
of them) and a map showing their position. Based on
a movie title, the system shall suggest a list of movies
similar to the one indicated, including a set of reviews
about each of them.

• RQ3: Given the data presented to the user, she selects a
movie and a restaurant. The system shall provide the list
of theaters that play the movie at the requested date.

• RQ4: Based on the location of the selected restaurant and
theater, the system shall present the needed directions.

• RQ5: The indicated list of participants shall receive a
message indicating all the details concerning the orga-
nized event.

• RQ6: The overall system response time, not including
the user think time, shall be less than 1.5s and the overall
system reliability should be greater than 0.99.

• RQ7: The system should perform as fast as possible.
RQ1-5 represent the desired functional behavior of the

system, while RQ6 and RQ7 are non-functional requirements.
The overall goal – i.e., the union of all functional and non-
functional requirements – may be accomplished in several
ways, although there is some preferred (partial) ordering
among the different actions that build the orchestration, e.g.,
the choice of the movie has to precede the choice of the theater.
The UML Activity Diagram in Figure 1 (input activities in
grey), models these precedence relationships.

To implement PD we may exploit the set of existing,
publicly available Web services listed in Table I. In most cases
there are different alternatives for the same service that are
functionally equivalent, while in one case (the searchRestau-

TABLE I
PROGRAMMABLE DINNER SERVICES

Action Return Value Possible Providers
getMap A map of a location Google, Bing, MapQuest

getDirections Directions to a destination Google, MapQuest, Bing
getForecasts Weather forecast Wunderground, World Weather

search- List of restaurants Yahoo!, Google
Restaurant given a location CityGridMedia

search- List of theaters given a Google, Yahoo!,
Theater location and a movie CityGridMedia

getReviews Restaurant reviews Yelp, CityGridMedia
getSimilar− Similar Movies from Rotten Tomatoes,

Movies a movie title TasteKid
getMovie- Reviews of a list Rotten Tomatoes,
Reviews of movies NY Times Movie Reviews API

sendMessage None Nexmo, Hoiio

rant action) we have two alternatives that differ in their
parameters (i.e., coordinates or location name). Each service in
the table may be associated to QoS data like response time (T)
and reliability (R). These data may come from SLAs provided
by service providers (as for the Azure Service Bus which
reports in its SLA a reliability equal to 99.95%1), or they
may come from direct measurements and estimates (e.g., [3],
[11]). Next section recalls DSOL concepts and illustrates how
we modified its architecture to support such QoS attributes.

III. DSOL IN A NUTSHELL

In DSOL, a service orchestration is modeled declaratively
by listing its initial state, its goals, and the set of abstract
and concrete actions available in the domain of interest. At
runtime, the DSOL Engine – DEng uses planning techniques
to determine the actual flow of execution (i.e., which actions
to execute and in which order) to achieve the orchestration’s
goals from the initial state. More specifically (see Figure 2) the
DSOL infrastructure includes the elements described hereafter.

Abstract Actions. They are high-level descriptions of the
primitive actions available in a given domain. DSOL relies
on them at runtime as the building blocks to compose the
orchestration. They are modeled in an easy-to-use, logic-like
language, in terms of their signature, precondition, and post-
condition. Listing 1 illustrates some abstract actions present
in the ProgrammableDinner scenario. Notice how they closely
reflect the activities described in the application requirements,
leaving out all the implementation details, including the ex-
pected sequence of execution and the actual service binding.
action getForecast ( Locat ion )
pre : searchLocat ion ( Locat ion )
post : f o recas t ( f o recas t i n f o , Locat ion )

action searchRestaurants ( Locat ion )
pre : searchLocat ion ( Locat ion )
post : l i s t o f ( res tau ran ts )

action getReviews ( Places )
pre : l i s t o f ( Places )
post : reviewsIncludedTo ( Places )

action createMapWithMarkers ( Places )
pre : l i s t o f ( Places )
post : mapWithMarkers ( Places )

Listing 1. Abstract actions

1http://www.windowsazure.com/en-us/support/sla/



Concrete Actions. They are the executable counterpart of
abstract actions and model the concrete steps required to
implement them, e.g., by invoking an external service or
executing some code. They are modeled as Java methods,
using the ad-hoc annotation @Action to refer to the abstract
action they implement. In general, several concrete actions
may be bound to the same abstract action. The DSOL In-
terpreter uses them to improve reliability: if the first bound
concrete action fails, i.e., it returns an exception, it may try
the alternative ones to successfully complete the given abstract
action. Among concrete actions, DSOL distinguishes between
service and generic actions. Service actions are abstract Java
methods directly mapped to external services (e.g., see action
getForecastWithWunderground in Listing 2). Service actions
use the attribute service of the @Action annotation to reference
the external service they are linked to. Using just a mnemonic
label enables a loosely coupled model, where the details about
the service (e.g., its URI and operation) is specified externally
and can be changed at run-time.

@Action ( se rv i ce = ” wunderground ” )
public abstract WundergroundResults
getForecastWithWunderground ( S t r i n g l o c a t i o n ) ;

@Action ( se rv i ce = ” wor ldweatheron l ine ” )
public abstract WorldWeatherOnlineResults
getForecastWithWorldWeatherOnl ine ( S t r i n g l o c a t i o n ) ;

@Action (name = ” getForecast ” )
@ReturnValue ( ” f o r e c a s t i n f o ” )
public L i s t<Forecast>
WundergroundServiceWrapper ( S t r i n g l o c a t i o n ) {

WundergroundResults r e s u l t s = getForecastWithWunderground ( l o c a t i o n ) ;
L i s t<ForecastDay> r e s u l t = r e s u l t s . getForecast ( ) . ge tS imp le fo recas t ( ) . getForecastday ( ) ;
L i s t<Forecast> f o recas ts = new Ar rayL i s t<Forecast >();
for ( ForecastDay fo recas t : r e s u l t )

f o recas t s . add (new Forecast ( f o recas t . ge tCond i t ions ( ) ) ) ;
return f o recas ts ;

}

@Action (name = ” getForecast ” )
@ReturnValue ( ” f o r e c a s t i n f o ” )
public L i s t<Forecast>
WorldWeatherOnlineServiceWrapper ( S t r i n g l o c a t i o n ) {

WorldWeatherOnlineResults r e s u l t s = getForecastWithWorldWeatherOnl ine ( l o c a t i o n ) ;
L i s t<Weather> r e s u l t = r e s u l t s . getData ( ) . getWeather ( ) ;
L i s t<Forecast> f o recas ts = new Ar rayL i s t<Forecast >();
for ( Weather weather : r e s u l t )

f o recas t s . add (new Forecast ( weather . getWeatherDesc ( ) . get ( 0 ) . getValue ( ) ) ) ;
return f o recas ts ;

}

Listing 2. Concrete actions

Generic actions are ordinary Java methods to be used to
perform general operations, like retrieving information from
a database or pre/post-processing data between service invo-
cations. As an example, actions WundergroundServiceWrapper
and WorldWeatherOnlineServiceWrapper in Listing 2, rep-
resent two alternatives for the abstract action getForecast,
each invoking a different external service (through concrete
actions getForecastWithWunderground and getForecastWith-
WorldWeatherOnline) and adapting their results to a common
interface, i.e., a list of Forecast objects, a concept that is part
of the orchestration domain and not specific of any service.

Orchestration Interface, Initial State, and Goal. The orches-
tration interface formalizes how the orchestration is exposed
as a web service, including the expected parameters and the
returned object. The initial state models the set of facts that
one can assume to be true at orchestration’s invocation time.
Finally, the goal is the set of facts that represent the expected
state of the world after executing the orchestration. Listing 3
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Fig. 2. The DSOL Architecture

illustrates the initial state and part of the orchestration goal
for the ProgrammableDinner example.
s ta r t searchLocat ion ( userDef inedLocat ion )
goal f o recas t ( f o recas t i n f o , userDef inedLocat ion ) and

l i s t o f ( res tau ran ts ) and reviewsIncludedTo ( res tau ran ts ) and
mapWithMarkers ( res tau ran ts )

Listing 3. Initial state and goal

Execution. At the time a DSOL orchestration is invoked, its
goal, initial state, and abstract actions are used by an internal
Planner to build an abstract plan of execution. Listing 4
illustrates an execution plan for the goal expressed in Listing 3.
It includes a list of abstract actions that leads the execution
from the initial state to a state that satisfies the orchestration
goal. In presence of multiple alternatives to reach the goal, the
DSOL original Planner chooses one non-deterministically.
getForecast ( userDef inedLocat ion )
searchRestaurants ( userDef inedLocat ion )
addReviewsTo ( res tau ran ts )
createMapWithMarkers ( res tau ran ts )

Listing 4. A possible execution plan

This plan is taken and enacted by associating each step
(i.e., each abstract action) with a concrete action (chosen non-
deterministically among those available), which is executed
by the Interpreter, possibly invoking external services. To
properly execute the plan, the Interpreter keeps a map, called
Instance Session, between the abstract objects part of the
plan and the actual Java objects processed at runtime. The
Instance Session is initialized with the arguments sent by the
client while invoking the composite service and it can be
changed while the plan is executed (e.g., see the @ReturnValue
annotation in Listing 2). It is also important to note that while
the plan is described as a sequence of actions, the Interpreter
parallelizes execution as much as possible, by invoking each
action as soon as its precondition is satisfied.

Re-Binding and Re-Planning. If something goes wrong dur-
ing execution (e.g., an external service is faulty or unavailable),



first a different concrete action for the failing abstract action
is tried (if any), then, if this does not allow to get around
the problem, the Planner is invoked again to find a different
course of actions that could skip the failed step. By comparing
the old and the new plan, considering the current state of
execution, the system computes the set of actions that need
to be compensated as they have already been executed but are
not part of the new plan. Ad-hoc compensation actions are
defined in DSOL as special concrete actions.

IV. DYNAMIC SERVICE ORCHESTRATION WITH Q-DSOL

A. Adding QoS to DSOL

QoS-aware orchestration infrastructures must consider non-
functional aspects in: (1) choosing the best services to be in-
cluded in the orchestration, and (2) designing the orchestration
structure. To achieve this objective, we had to change both
DSOL language and run-time system. Concerning the former,
Q-DSOL adds QoS profiles to concrete actions using the
@QoSProfile annotation, while it extends the goal definition to
include the non-functional requirements of the orchestration.
For example, Listing 5 shows the first concrete action of
Listing 4 augmented with information about its expected
reliability and response time. These data are provided by the
orchestration designer and, as previously mentioned, they may
be obtained by direct measurements or SLAs.
@Action ( se rv i ce = ” wunderground ” )
@QoSProfile ( met r i cs={” r e l i a b i l i t y ” , ” response time ”} , values ={0.995 ,300})
public abstract WundergroundResults
getWeatherForecastWithWunderground ( S t r i n g l o c a t i o n ) ;

Listing 5. Concrete actions with QoS Profile

Similarly, Listing 6 illustrates the goal definition corre-
sponding to requirements R6 and R7. Notice that to cope with
conflicting QoS requirements, we may specify both desired
bounds and preferred optimizations. Depending on the QoS
metric, the desired bounds represent the lower (e.g., for reli-
ability) or upper (e.g., for time) bounds that the orchestration
must meet. In our example, according to R6, we want a
reliability of at least 0.99 and a response time of at most
1.5s. Since different configurations could meet these bounds,
we may also ask to optimize against a specific metric by using
the min and max keywords. In our example, according to R7,
we ask to minimize the response time.
goal RQ1 and RQ2 . . . RQ5
and desired ( r e l i a b i l i t y , 0 .99) and desired ( response time , 1500)
and min ( response time )

Listing 6. Goal Definition Including QoS Requirements

These changes in the modeling language reflect to changes
in the run-time system. Indeed, the original DSOL Planner
(see Section III) generates all possible plans that satisfy the
functional requirements of the orchestration, while the Inter-
preter chooses non-deterministically one of them and executes
it, binding each abstract action to one among the available
concrete actions. Q-DSOL has to change this behaviour to
consider QoS, since (1) the plan to be executed and (2) its
bindings to concrete actions are relevant for QoS. In particular,
Q-DSOL formalizes the problem of finding the plan to run and

the concrete actions to bind as an optimization problem, and
it exploits linear programming techniques [10] to solve it.

The optimization problem includes:
• A set of abstract actions A = {a1, . . . , an} where n ≥ 1.
• For each abstract action ai, a set of concrete actions Ci =
{ci,1, . . . , ci,mi

} where mi ≥ 1. Each concrete action
ci,j is characterized by a response time ti,j > 0 and a
reliability ri,j ∈ [0, 1].

• A set of plans P = {P1, . . . , Pl} where l ≥ 1, each
modeled as a set of abstract actions.

We define a binding variable si,j,x ∈ {0, 1} (where i ∈
[1, n], j ∈ [1,mi], and x ∈ [1, l]) to indicate if the concrete
action ci,j is bound to the abstract action ai in plan Px (i.e.,
si,j,x = 1) or vice versa (i.e., si,j,x = 0). This assignment
must meet the following constraints:

(∀x, i|ai ∈ Px)
∑

0<j≤mi

si,j,x ≤ 1 (1)

(∀x, i|ai 6∈ Px)
∑

0<j≤mi

si,j,x = 0 (2)

(∀x, i, j|si,j,x 6= 0)→ (∀x′, i′, j′|x′ 6= x) si′,j′,x′ = 0 (3)

Equation 1 and 2 together indicate that we bind at most one
concrete action to every abstract action part of a plan, while
we leave unbound those abstract actions that are not part of a
plan. Equation 3 indicates that if we bind a concrete action in
a plan x, we cannot bind any action in plans different from x.
In other words we bind one and only one plan. Accordingly,
a valid assignment to binding variables si,j,x returns a single
plan bound to a set of concrete actions.

Given these definitions, our optimization problem boils
down to find the optimal assignment to si,j,x, i.e., the as-
signment corresponding to a bound plan that satisfies QoS
requirements. This can be formalized by introducing two
aggregation functions fR and fT , for reliability and response
time, respectively2. In particular, fT is the sum of all ti,j of
each concrete action such that si,j,x is set to one3:

fT =
∑
∀i,j,x

si,j,x × ti,j

Similarly, fR aggregates reliability by multiplying ri,j to the
power of si,j,x:

fR =
∏
∀i,j,x

r
si,j,x
i,j

Given these two aggregation functions and indicating with
G the set of all possible assignments to binding variables si,j,x,
we may define the optimization problem looking at the goal
definition. For example, recalling Listing 6, we have that the
optimal assignment is defined as follows:

minimize:
∀g∈G

fT ,

subject to: fT < 1500ms

fR > 0.99

2In presence of other, user defined metrics, we add similar functions.
3For parallel actions, Q-DSOL considers only the slowest one.
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Since fR is non linear with respect to the optimization
variables si,j,x, we linearize it using a typical technique [10],
which applies the logarithm to both sides of the equation:
log(fR) > log(0.99).

The optimization problem above is solved by the Optimizer,
an ad-hoc component of the run-time system of Q-DSOL,
which internally relies on AMPL [12] to find the optimal
assignment to si,j,x, i.e., to choose the plan to execute and how
to bind concrete actions to abstract ones. The architecture of
Q-DSOL is reported in Figure 3. At run-time, Q-DSOL applies
two additional mechanisms: (1) Adaptive Re-Binding and (2)
Adaptive Re-Planning, to further optimize the QoS perceived
by the end user based on the actual situations encountered.
Next paragraphs illustrate these two mechanisms referring to
the PD example.

B. Maximizing Performance via Adaptive Re-binding

If the orchestration goals specify that the response time must
be minimized, the Q-DSOL engine does not limit to blindly
execute the plan returned by the Optimizer, but it applies an
Adaptive Re-Binding strategy. With this term we indicate the
fact that it evaluates, at every step of execution, alternative
bindings to abstract actions that could decrease the expected
response time of the orchestration. If a better alternative (i.e., a
faster concrete action) is found, the engine re-binds the current
action automatically.

Notice that better alternative actions may be actually found
since, even if the condition of optimality concerning the
bindings produced by the Optimizer holds before starting the
execution of the plan, it may not hold anymore during its
execution. Indeed, during execution, the QoS values associated
to concrete actions can be updated. In particular, the reliability
of actions already performed can be set to one4. Increasing the
reliability of certain actions implies that other concrete actions,
initially discarded by the Optimizer because too unreliable
to reach the specified bound, may now become eligible for
execution, and they could be actually chosen if lead to a lower
response time. In other words, their high probability of failure

4If a concrete action appears more then once in a plan, we set reliability
equal to one only for the invocations already occurred.
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Fig. 4. Adaptive Re-Binding Example

was compensated by the already successfully run actions, and
they can now be taken into consideration.

Let us illustrates this scenario by recalling our Pro-
grammableDinner example. Let us imagine that the Q-DSOL
engine has already executed part of the plan: the next action
to execute is the searchTheater operation. As reported in
Table I we have three alternatives to implement this step and
let us assume Google was the concrete action chosen by the
Optimizer. We can decompose the overall reliability of the
plan in three contributes. The first regards actions already
performed, the second is the reliability of the concrete action
currently bound to searchTheater (i.e., Google), and the third
is the expected reliability of concrete actions to be executed
after searchTheater. If the first contribute was equal to 0.998
at optimization time (see Figure 4), now (i.e., at run-time)
we may assume it being one. This enables the CityMediaGrid
concrete action: it has a lower reliability than Google, but now
that we updated the reliability of the preceding actions it is
reliable enough to reach RQ6. Being faster than Google it
becomes the best choice to minimize the response time, i.e.,
to satisfy RQ7.

This kind of reasoning is performed by Q-DSOL at every
step of the plan. Indeed, this is a fast search (we proceed
incrementally, focusing only on the next abstract action to
execute) that may considerably improve the overall response
time of the orchestration, especially in presence of very
efficient but unreliable services.

C. Maximizing Reliability in Presence of Failures
If we focus on reliability, we may observe that in defining

our optimization problem we did not take into consideration
the DSOL ability to adapt the orchestration at run-time, re-
binding faulty actions to alternative services and, if this was
not enough, re-building the entire plan to circumvent multiple
failures. This choice is motivated by the impossibility to
correctly estimate and account how this re-binding and re-
planning mechanisms (to improve reliability) may impact
response time5. This means that the optimal plan initially
found by the Optimizer, including the mapping to concrete
actions, is expected to provide the desired reliability by itself.
In our ProgrammableDinner example, the optimal plan coming
from the Optimizer will succeed 99% of the times (RQ6).

5Indeed, re-planning and re-binding may require compensating one or more
actions, which further impact execution time.



On the other hand, the adaptive features of DSOL are there,
and they can be used to improve the reliability perceived by the
end-user. In practice, in presence of a faulty service, Q-DSOL
re-binds the corresponding abstract action to an alternative
concrete action. This way, an invocation that should fail can
be saved and terminate correctly, contributing to increase the
overall reliability.

Moreover, if all alternatives fails, Q-DSOL builds an alterna-
tive plan that skips the failed action (eventually compensating
already performed actions that are not part of the new plan),
thus enabling new opportunities to end the orchestration cor-
rectly. In this re-planning case, the Optimizer is invoked again
to choose the new optimal plan among the alternative ones.

It is important to notice that in all these cases response
time requirements are not guaranteed anymore. The engine is
doing its best to overcome a failure and the completion of
the orchestration is the current priority. On the other hand,
we do not ignore response time. At re-binding time Q-DSOL
chooses alternative actions ordered by response time, while at
re-planning time, it runs the Optimizer to choose the best plan
also considering response time.

Finally, it is important to notice that Q-DSOL updates
automatically the QoS attributes of concrete actions based on
their observed behaviour. This implies that two subsequent
invocations to the same orchestration may be served by
different services or different plans if the conditions change
between the first and the second invocation.

D. Domain Specific QoS Metrics

So far we only considered reliability and response time as
QoS metrics. However, orchestration designers may need to
consider other QoS aspects, such as costs or availability, to
model domain specific requirements. To cover these scenarios,
Q-DSOL allows domain specific QoS metrics to be easily
defined.

Domain Specific QoS Metrics (DSQM) are characterized
by their name (e.g., “cost” or “availability”) and by two
aggregation operators: 〈s, p〉, which are used by Q-DSOL to
calculate the DSQM value for an entire plan starting from the
DSQM value of each action. In particular, both s and p can be
algebraic operators (+,−,×, /) or simple functions (min, max,
abs, avg). Operator s indicates to Q-DSOL how to aggregate
the value of actions executed in sequence, while operator p
indicates how to aggregate parallel actions. As an example,
〈+,max〉 are the operators for the pre-defined response time
metric, while 〈×,×〉 are those for reliability. The definition
of DSQM is characterized also by the metric limit which may
be upper or lower. The former indicates that the optimal plan
should have at least the desired value expressed by the goal
definition, vice-versa the latter indicates that the desired value
will be considered as a maximum limit for the DSQM.

The introduction of DSQM affects both Q-DSOL language
and run-time system. Let us start from the language with an
example that extends the ProgrammableDinner orchestration
adding the following requirement:

• RQ8: The total cost for executing the orchestration
should not exceed 3$.

Imagine that both the sendMessage and getForecast services
charge a small fee for each invocation, the exact amount
depending from the service provider. To satisfy RQ8 we define
the DSQM “cost” (C) as reported in Listing 7. It uses the sum
as aggregate operator both for sequential and parallel actions.
define ( cost , aggregation<+, +>, l im i t<upper>)
goal RQ1 and RQ2 . . . RQ5
and desired ( r e l i a b i l i t y , 0 .999) and desired ( response time , 1500)
and desired ( cost , 3) and min ( response time )

Listing 7. DSQM Definition

Given a DSQM, at run-time Q-DSOL behaves as explained
in the previous sections except for the optimization problem,
which now includes additional aggregation functions, similar
to fR and fT and defined using the respective aggregation
operators. For the cost example, this means adding the aggre-
gation function fC , defined using the sum to aggregate both
sequential and parallel actions. We use it, together with the
definition of the metric limit, to define an additional constraint
fC < 3 starting from the goal in Listing 7.

V. Q-DSOL AT WORK

This section discusses the validation of Q-DSOL with a two
step approach. First, it evaluates the overhead of Q-DSOL6.
Secondly, it investigates the potential speed-up it provides. All
the data illustrated in this section has been obtained using
our Q-DSOL implementation, an open source tool publicly
available at http://www.dsol-lang.net/. Due to the lack of space
we cannot provide the full set of experiments, but we only
report the most significant results.

Our experiments were carried out in an local server config-
ured to emulate a typical application server used to deploy
service-based applications. Such server had the following
configuration: Intel Core i5 processor, 4GB RAM and Ubuntu
Linux (version 11.10) operating system.

Q-DSOL Overhead: Determining the optimal plan given the
set of available actions and the orchestration goal, introduces
an overhead at execution time, which we measured as follows.
First of all we measured the overhead considering plans of
variable dimensions in terms of the number of abstract actions
considered. Figure 5(a) reports the optimization time for plans
composed by an increasing number of abstract actions. In this
experiment, each abstract action has three alternative concrete
actions. The measured optimization time account for less than
12ms for a plan comprising fifty abstract actions, which is a
perfectly acceptable overhead considering that the resulting
orchestration would probably involve a number of service
invocations close to fifty7, which needs seconds to execute.

The second experiment we made kept constant the number
of abstract actions (i.e., the plan length) increasing the number
of concrete alternatives associated to each abstract actions.

6This overhead does not include the time required to find the possible plans,
as such time is strongly related to the abstract actions domain. For further
details we refer to [9].

7Most Q-DSOL actions results in invoking an external service.
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Fig. 5. Q-DSOL Validation

Figure 5(b) reports the results obtained with a plan composed
of twenty abstract actions. Even in this case the optimization
time is negligible w.r.t. the plan execution time: less than
9ms in the worst case of four concrete alternatives for each
abstract action. Note that, in practice, the number of alternative
concrete actions that can be found for each abstract action is
typically small, for example, in our ProgrammableDinner or-
chestration we was not able to find more than three alternatives
for each action.

Q-DSOL Speed-Up: Once we verified that our general
optimization strategy introduces a negligible overhead w.r.t.
a non optimized solution, we were interested in measuring the
impact on performance of our mechanisms.

We started measuring the speed-up gained through the
adaptive re-binding mechanism described in Section IV-B. We
considered a plan composed by twenty abstract actions with
two concrete actions each. The first is selected at optimization
time while the second becomes the more convenient option at
execution time because it has a response time 20% faster and
its lower reliability is compensated by the already executed

actions. In absence of re-binding we measured an average
execution time for the orchestration of 4.069s. Then we
activated the re-binding mechanism and let it run a growing
number of times, from one to 19 (we have a total of 20
actions). The results we measured are reported in Figure 5(c).
We notice that we gain a linear speedup which is maximum
when we let Q-DSOL re-bind every possible action. The
speedup we measure in this case is 18.62%. This is very
close to 20%, which is the maximum theoretical speedup we
could obtain under this scenario. This demonstrates that the
advantages of the re-binding mechanism come at a negligible
cost: the difference between 18.62% and 20%, which is the
overhead of finding the best alternative and re-binding it.

The last test we performed was to measure the overall speed-
up of Q-DSOL w.r.t. a non optimizing solution. To do so,
we took our ProgrammableDinner example and measured the
actual (average) execution time of all the alternative services
that can be used to compose the orchestration. In absence of
an optimizer like the one integrated in Q-DSOL, we could
expect that a standard engine (like DSOL) takes a random plan,
so we measured the average execution time of all possible
plans: it takes 2s to complete. Than we let Q-DSOL run the
orchestration asking it to minimize the execution time. The
result we measured was 1.2s, which corresponds to a speed-
up of 40%.

In general, those results demonstrate that the optimization
problem solved by Q-DSOL and the adaptive re-binding
mechanism it implements, introduce a limited and negligible
overhead with respect to the execution of the entire orchestra-
tion, while providing a significant potential speed-up in terms
of response time (not to mention the advantages in terms of
reliability and the fact that it provides a guaranteed QoS as
specified by the user in the goal).

VI. RELATED WORK

DSOL was designed as an alternative to traditional or-
chestration languages such as BPEL, BPMN, Jolie [17] and
JOpera [20]. Indeed DSOL has been designed as a declarative
approach to support the definition of flexible and self-adaptive
service orchestrations able to cope with unexpected behaviors
at run- time. We refer to [9] for a complete comparison among
DSOL w.r.t. to existing orchestration languages and, hereafter,
we focus on approaches related to QoS.

Many existing approaches have an explicit support for
QoS with different levels of abstractions and leveraging on
a plethora of different techniques. For example, Menascé
[16] discusses QoS in the domain of services, introducing
the response times, availability, security, and throughput as
QoS parameters. His paper also discusses the need of SLAs
without advocating any specific model to manage, aggregate
and optimize QoS behaviors of service orchestrations.

In particular, concerning optimization, many approaches
exploit linear programming to manage QoS for orchestrations.
For example, Aggrawal et al. [1] view QoS-based composition
as a constraint satisfaction/optimization problem and find an
optimal solution by applying integer linear programming. Zeng



et al. [22] present comprehensive research about QoS model-
ing and QoS-aware compositions. In particular, they use stat-
echarts to model orchestrations in which services are selected
from a pool of alternative services using linear programming
techniques such that it optimizes a local as well as global
QoS criteria. Alternatively to linear programming, in [18], the
authors leverage on fuzzy distributed constraint satisfaction
techniques for finding the optimal orchestration. All these
approaches differs from our proposal in many aspects. First we
do not consider only alternative bindings in finding the optimal
orchestration but we also consider structural alternatives (i.e.
plans) in finding the optimal solution. Secondly, we support
domain specific metrics and adaptivity in terms of adaptive
re-binding and re-planning.

Concerning the aggregation functions for QoS metrics,
other existing approaches propose similar techniques aimed
at aggregating metrics (e.g., [4], [14], [21]). For example,
Cardoso et al. [21] compute aggregate QoS by applying a
set of reduction rules to the workflow until one atomic task
is obtained. In addition, other approaches support custom
specific metrics (i.e., DSQM) such as [4], [15]. However, all
these approaches may not guarantee the optimal solution with
respect to QoS even if they may be suitable where optimality
is not mandatory and execution efficiency is preferred. Among
these works let us mention the approaches based on genetic
programming such as [5], [7] or on heuristics (e.g., [2]).

Finally, concerning specifically adaptivity and re-planning
we may mention respectively [8], [13] and [6]. The first two
approaches do not focus on QoS, conversely the third one
provides an efficient re-planning technique that, however, do
not guarantees the optimal solution. Summing up, none of the
existing approaches, at the best of our knowledge, mix together
an optimal solution, custom specific metrics and adaptive
capabilities as Q-DSOL with the adaptivity techniques of re-
binding and re-planning. In addition, this is the first approach
that combines planning together with optimization which allow
the easy of use of declarative languages with the guarantee of
optimality.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we extended our previous work, DSOL, to
support quality requirements and adaptivity. We introduced
an optimizer which generates an optimal solution in terms of
execution plan and bindings. We discussed all these features
relying on a service orchestration built out of real publicly
available services. Furthermore, we measured the overhead of
the approach and the potential speed-up to demonstrate the
pro and cons of our solution. The contribution of the paper
is twofold. First of all, to the best of our knowledge this is
the first approach that relies on planning techniques together
with linear optimization integrated by a unifying declarative
language. Secondly, we provided a novel solution that further
optimizes response time and reliability via adaptive re-binding
and re-planning. Q-DSOL is part of a long running research
stream and its future work includes building a IDE, possibly
integrated in a widely adopted tool such as Eclipse, to further

simplify the definition of abstract actions, goals, and orches-
tration interfaces. As for the Q-DSOL run-time system, while
the current prototype is operational–and downloadable–there
is still space to further improve performance and robustness.
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