
Context-Aware Publish-Subscribe: Model, Implementation, and Evaluation

Gianpaolo Cugola, Alessandro Margara
Dip. di Elettronica e Informazione

Politecnico di Milano, Italy

Matteo Migliavacca
Department of Computing

Imperial College London, UK

Abstract

Complex communication patterns often need to take into
account the situation in which the information to be com-
municated is produced or consumed. Publish-subscribe, and
particularly its content-based incarnation, is often used to
convey this information by encoding the “context” of the
publisher into the published messages. In this paper we
claim that this approach is limiting and inefficient and
propose a context-aware publish-subscribe model of commu-
nication as a better alternative. We describe a protocol that
implements such model in a distributed publish-subscribe
middleware, and analyze how it performs w.r.t. traditional
content-based routing.

1. Introduction

During the decade, the publish-subscribe paradigm of
communication [1], and particularly its content-based incar-
nation [2], has shown its effectiveness in a large number
of domains. The ability to address messages based on their
content results in a strong decoupling among communicating
parties, which provides a great flexibility in adapting the
system architecture and the communication patterns to the
various situations that applications may encounter.

In most domains in which content-based publish-subscribe
finds its natural application, an effective communication
paradigm requires to take into account the situation in
which the information to be communicated is produced or
consumed. As an example, the users of a wireless sensor
network monitoring the temperature in a building could be
interested in receiving periodic readings from those sensors
whose battery is well-charged, while they could be satisfied
of receiving only fire alarms from those sensors being low on
batteries. Similarly, the announcement about a new product
has to specify different prices for the different countries in
which the interested receivers reside.

What these examples have in common is the fact that
not only the informative content of messages is relevant to
determine the information flow, but also the context in which
this information has been produced and its relationship with
the context of the consumer.

This need for context-awareness is so common in publish-
subscribe applications that it is not unusual to see the context

of the publisher encoded into the published messages, as
a way to implement context-aware interactions by taking
advantage of the expressiveness of content-based address-
ing. In this paper we argue that this approach leads to
strong inefficiencies in routing messages from publishers
to subscribers, particularly in those situation involving a
large number of communicating parties and consequently
a distributed dispatching system. Our claim is that it should
be replaced by the adoption of a context-aware publish-
subscribe model of communication.

In particular, in Section 2 we explain why content-based
addressing alone cannot entirely answer the need for context-
awareness typical of large-scale scenarios. In Section 3 we
describe a new publish-subscribe model that is both content
and context-based, together with a routing protocol to imple-
ment the new model in a distributed publish-subscribe sys-
tem. In Section 4 we evaluate such protocol, as implemented
in our publish-subscribe middleware REDS [3], measuring
its effectiveness w.r.t. traditional content-based routing. Fi-
nally, in Section 5 we survey related work, providing some
concluding remarks in Section 6.

2. Why a New Model

Consider a Fire Monitoring System (FMS) deployed in
a large building, which consists of smoke detectors, light
signals, and sprinklers. Whenever smoke is detected, an
alert message is published, causing sprinklers at the same
floor and within 30 meters from the smoke to automatically
activate. Meanwhile, a planner computes an evacuation plan
and publishes a message toward the signals at the east of the
detected fire to let them display an eastbound arrow towards
the eastern emergency exit. A similar message is published
toward the signals located in the area at the west of the fire
to direct people toward the western exit.

Despite its simplicity, this example highlights a charac-
teristics that is common to several publish-subscribe appli-
cations: both the subscribing and publishing of messages
are tied to the context in which producing and consuming
entities are. Once we accept this, we might wonder whether
a new communication paradigm that explicitly takes context
into account (and the middleware system implementing it)
is really required. Isn’t content-based addressing enough?



subscribe(msgType = Alert ^
sprinklers myPos:x� 30 � x � myPos:x+ 30 ^

myPos:y � 30 � y � myPos:y + 30)
smoke publish(msgType = Alert,
detectors x = myPos:x, y = myPos:y)
signals subscribe(msgType = Evacuate� ^

x = myPos:x ^ y = myPos:y)
subscribe(msgType = Alert)

planner publish(msgType = EvacuateL, x < fire:x)
publish(msgType = EvacuateR, x > fire:x)

Table 1. The FMS example using traditional API

Smoke detectors might publish their location as part
of the alarm message, while sprinklers might subscribe
to messages generated in an area close enough to them.
Similarly, light signals could include their location into the
subscription used to receive activation messages, while the
planner could publish activation messages that appropriately
filter the interested signals based on their location.

At first this approach, which is summarized in Table 1,
seems reasonable, but a closer look shows its weaknesses,
especially if we consider large enough scenarios to require
a distributed dispatching system.

Matching Inversion. In conventional content-based publish-
subscribe systems messages hold data (usually encoded as
key-value pairs), while subscriptions hold constraints on
these data. If we look at Table 1 we notice that our solution
to the FMS example violates this assumption. It requires
the subscribers (i.e., the signals) to specify their location
(a datum) into subscriptions, while the publisher (i.e., the
planner) adds a constraint into messages to reach some
signals and not others (see the last two rows of Table 1). This
means that both the data model and the matching semantics
of conventional publish-subscribe systems are unsuited for
the case under consideration. We need to invert the conven-
tional matching process to consider constraints embedded
into messages and data embedded into subscriptions1.

Efficiency. The second reason to add context into publish-
subscribe is the efficiency that this solution can bring when
a distributed dispatching system is used. Indeed, managing
context explicitly enables a dispatching strategy that limits
the spreading of subscriptions only to those areas of the
routing network where matching publishers exist (i.e., those
whose context satisfies the context filter specified by the
subscriber). This (i) reduces the overhead of the subscription
and unsubscription processes (saving bandwidth), and (ii)
reduces the time required to match messages, thanks to
smaller routing tables.

Separation of concerns. As a final issue, we observe that
usually the components in charge of publishing messages
and subscribing to them differ from those in charge of

1. The few content-based publish-subscribe systems that do not suffer of
this problem are those adopting a Turing-complete language to implement
filters, which however are hard to optimize [4]

subscribe(msgType = Alert;
sprinklers myPos:x� 30 � x � myPos:x+ 30 ^

myPos:y � 30 � y � myPos:y + 30)
smoke setContext(fx = myPos:x, y = myPos:yg),
detectors publish(fmsgType = Alert, x = myPos:x,

y = myPos:yg; ALL)
signals setContext(fx = myPos:x, y = myPos:yg),

subscribe(msgType = Evacuate�; ALL)
subscribe(msgType = Alert; ALL)

planner publish(fmsgType = EvacuateLg; x < fire:x)
publish(fmsgType = EvacuateRg; x > fire:x)

Table 2. The FMS example using Context-Aware API

detecting and communicating context changes. As an ex-
ample, a GPS controller could be in charge of notifying
the location of a mobile node (i.e., its context), while the
components in charge of subscribing and publishing are
those that implement the node’s application logic. Tying the
two concepts together might reduce the readability of code,
forcing complex interaction among parts of the application
that should be kept separate.

3. API and Routing

To overcome the limitations above, we propose to intro-
duce context as a first class element into the publish-subscri-
be API. In particular, we allow each node n to set its current
context by invoking the setContext(c) operation. Addition-
ally, n can subscribe to messages matching the content filter
fmsg and coming from publishers whose context matches the
context filter fctx through the subscribe(fmsg; fctx) opera-
tion, while the unsubscribe(fmsg; fctx) operation does the
opposite. Finally, n can publish messages for subscribers
whose context matches the context filter fctx by invoking
the publish(m; fctx) operation. Table 2 shows how the Fire
Monitoring System example can be easily implemented with
these context-aware publish-subscribe primitives.

3.1. The SPCF Protocol

To support large scale scenarios that involve hundreds of
nodes, we developed SPCF, a protocol defining how a set of
brokers connected in an overlay network should cooperate
in order to efficiently provide the context-aware publish-sub-
scribe service above to their clients (see Figure 2).

As its name suggests, SPCF adopts a Shortest Path Con-
text Forwarding approach: messages are forwarded along the
shortest path tree rooted at the publisher, using information
about the context and interests of downstream clients to
decide the branches to follow and those to prune.

More specifically, each broker runs a link state proto-
col [5] to build its own view of the dispatching network2 and
calculates, using a local algorithm like Dijkstra or Floyd-
Warshall, the shortest path trees (SPTs) rooted at each

2. Not considering the clients, which are not relevant in this phase.



Context table
broker id fc1; :::; cng

Content table
broker id context neighbor id f(fmsg1 ; c1); :::; (fmsgn ; cn)g

Figure 1. Tables kept by each broker.

Figure 2. A dispatching network with eight brokers (the
circles) and four clients (the squares).

broker in the network. Message forwarding uses these trees
together with two tables, which are kept by each broker (see
Figure 1): a context table and a content table. The former
maps brokers (i.e., their identifiers) to the set of contexts
of their clients. The latter stores, for each other broker Bp,
each context cp among those of the clients attached to Bp,
and each neighbor N , the set of content filters and contexts
coming from clients attached to brokers that are downstream
along N in the SPT rooted at Bp.

3.1.1. Forwarding. To explain how SPTs plus context and
content tables are used to forward messages, we use the
example in Figure 2. It shows a publish-subscribe network
with eight brokers and four clients, among which only clients
9, 10, and 11 subscribed, each issuing a single subscription.
The cost of links connecting brokers is shown when greater
than one, while the SPT rooted at broker 8 is shown using
thick lines. Finally, the figure shows part of the content tables
of brokers 2 and 4: the part concerning broker 8.

When client 12 with context c12 invokes the publi-
sh(m; fctx) operation, broker 8 matches the context filter
fctx against the different contexts that are part of its context
table and encodes the matching ones in a bloom filter b.
Afterwards, broker 8 builds a packet (8; c12;m; fctx; b) and
routes it along its own SPT. When the packet reaches broker
2, the first two fields are used to isolate the relevant part of
the content table (the part shown in figure), then a “standard”

content matching is performed to find the neighbors that
have to receive the packet. At this step, the bloom filter b is
used to reduce the number of content filters to consider, i.e.,
only those associated with contexts that are part of the bloom
filter. As an example, if we suppose that m matches both
f9 and f10 while b includes c10 but not c9 (i.e., at broker 8
fctx has matched c10 but not c9) then the packet is forwarded
only toward broker 4. There the message is first forwarded
to the local client 103, then the same forwarding algorithm
above is run. In particular, if we suppose that either f11 does
not match m or c11 is not part of b the forwarding stops,
otherwise the packet is sent to broker 5.

3.1.2. Routing. We describe here how the context and
content tables are built and maintained. To do so we start
describing how subscriptions are managed.

When a client s with context cs invokes the subscri-
be(fmsgs ; fctxs) operation, the broker Bs it is attached to
operates as follow:

1) it records the subscription in a client table (omitted in
the discussion so far since it is used only to deliver
messages to clients at the last hop);

2) it determines the set D of brokers that must receive the
subscription by matching fctxs against the contexts in
its context table;

3) for each neighbor N , it calculates the subset DN of
D that includes only those brokers whose SPT has N
as the parent node of Bs;

4) if DN 6= ; it forwards a packet (Bs; cs; fmsgs ; fctxs ;

DN ) toward N .
When a broker N receives such packet it updates its content
table by adding the pair hfmsgs ; csi to all the rows tagged
as (Bx; cx; Nx) where Bx 2 DN , cx is one of the contexts
associated with Bx that also matches fctxs , and Nx is the
broker from which the packet arrived (i.e., Bs at the first
hop). Then N forwards the packet by repeating the steps
3 and 4 above (this time using DN as the initial set to
partition).

Unsubscriptions are managed similarly, with the only
difference that content filters are removed from instead of
being added to the content tables.

The last point to describe is how context changes are
managed. When a client n attached to Bn changes its context
from cn to c0n by invoking the operation setContext(c0n),
two things must happen: (i) the subscriptions of n stored
in the various content tables must be changed since they
recorded the “old” context; and (ii) the set of contexts
associated with Bn in the context tables around the network
must be changed, possibly attracting new subscriptions and
removing existing ones.

3. To avoid the false positives potentially resulting from the use of bloom
filters, at this step the context of clients potentially interested in the message
is actually matched against the context filter fctx issued by the publisher.



The first step is easily managed by letting Bn unsubscribe
from all the subscriptions previously issued by its client n
and resubscribing with the new context. In practice, this can
be done by repeating the protocol described above.

The second step is more complex and requires a new
protocol. In particular, when n changes its context from cn to
c0n three cases may happen: (i) the set of contexts associated
with the broker Bn remains the same; (ii) c0n must be added
to the set of contexts associated with Bn and cn be removed
(because no other Bn client has cn as its context); (iii) c0n
must be added and cn must not be removed. This suggests
to separately manage the actions of adding a new context
and that of removing an existing one.

Removing a context cn from the set of contexts associated
with a broker Bn is simple: Bn builds a packet holding its
identifier and the context cn and routes it along its own SPT.
Each broker processes this packet by updating the context
table (removing cn from the set of contexts associated with
Bn) and removing the entries of the content table labelled
with the pair (Bn; cn). Indeed, these are subscriptions that
reached Bn because of cn and must be removed.

Adding a new context c0n requires a similar processing,
complicated by the fact that the new context must “attract”
matching subscriptions that were not forwarded before. Each
broker along the SPT rooted at Bn processes the packet to
add the new context c0n by updating the context table and
reissuing those subscriptions previously sent by one of its
clients, whose context filter matches c0n.

As for the format of messages, contexts, and filters we
notice that in principle the SPCF protocol is independent
of them. On the other hand, to implement SPCF in a real
middleware we had to choose one and in fact we adopted the
most common in publish-subscribe middleware, which also
allows for fast matching. It uses key-value pairs for messages
and context descriptors and boolean predicates for filters.

4. Evaluation

To test the effectiveness of the SPCF protocol in real
world scenarios we implemented it into the new version
2.0 of our middleware REDS [3] and used the Emulab [6]
facility to test it. Since we were interested in comparing
SPCF with traditional content-based routing protocols, we
choose two of them and implemented both in REDS:

ASF (Acyclic Subscription Forwarding) performs con-
tent-based routing on an acyclic topology by flood-
ing subscriptions and routing messages only to-
ward the interested clients. It is probably the most
common approach adopted by distributed publish-
subscribe middleware (e.g., see Siena [7]);

GSF (Graph Subscription Forwarding) forwards mes-
sages along the SPT of the publisher, pruned by
using subscriptions as done by SPCF. This ap-
proach is used by some advanced publish-subscribe

systems like XNet [8] as it better exploits the
network topology.

To encode our context-aware model in a purely content-
based protocol, we used the approach suggested in Table 1.
To solve the “matching inversion” problem we used the con-
tent-based routing protocol to transport messages ignoring
the context filter specified by the publisher, matching it at
the last broker only.

We consider a network composed of 20 brokers, each run-
ning on a different Emulab node. The overlay connects each
broker with six others. 100 clients run on separate nodes and
connect to brokers. Each client has 30 subscriptions each
composed of several constraints on different attributes, for
a total of about 10000 different constraints populating our
tables (the number changes in the different scenarios we
considered).

4.1. Forwarding

To study the impact of performing context-matching while
forwarding messages we measured the throughput of the
different systems, separately evaluating the impact of adding
context filters in subscriptions from that of adding them in
messages.

To investigate how SPCF behaves while changing the
selectivity of filters (i.e. the percentage of clients a message
has to be delivered to), we built up two different scenarios.
The first maintains a fixed selectivity (of about 10%) for the
overall system, decreasing the selectivity of context filters
while correspondingly increasing that of content filters. The
second keeps the selectivity of content filters fixed (at about
10%) while decreasing the selectivity of context filters. All
experiments were performed using 100 clients (each with its
own context) equally distributed between brokers.

4.1.1. Context Filters in Subscriptions. As mentioned in
Section 2, adding context filters to subscriptions does not
add expressiveness to the model, but it allows for a more
efficient forwarding since subscription tables are smaller and
they include the content-filters only. This is confirmed by
our tests, whose results are presented in Figure 3. SPCF
has a much better throughput w.r.t. ASF and GSF in all
scenarios. As expected, when the selectivity of context filters
is low (i.e., each of them selects a large fraction of clients –
around 80% in our tests) the differences between the three
protocols decrease, with SPCF’s subscription tables growing
and approaching in size those of the other two protocols.

4.1.2. Context Filters in Publications. Adding context
filters in publications allows publishers to filter out some
subscribers and not others. Pure content-based protocols,
like ASF and GSF, may perform such filtering at the last
broker only, just before delivering messages to clients. This
approach may result in misrouting messages toward areas



0 

0,5 

1 

1,5 

2 

2,5 

3 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

High context selectivity

0 

0,5 

1 

1,5 

2 

2,5 

3 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Medium context selectivity

0 

0,5 

1 

1,5 

2 

2,5 

3 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Low context selectivity
(a) Overall selectivity fixed

0 

0,2 

0,4 

0,6 

0,8 

1 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

High context selectivity

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Medium context selectivity

0 

2 

4 

6 

8 

10 

12 

14 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Low context selectivity
(b) Content selectivity fixed

Figure 3. Forwarding performance: Context filters in subscriptions

0 

5 

10 

15 

20 

25 

0  20  40  60  80  100 

N
um

be
r 
of
 P
ac
ke
ts
 

Context Filter Selec7vity (%) 

(a) subscribe

0 

2 

4 

6 

8 

10 

0  20  40  60  80  100 

N
um

be
r 
of
 P
ac
ke
ts
 (H

un
dr
ed

s)
 

Context Filter Selec;vity (%) 

(b) setContext

Figure 5. Cost of routing

of the network where the only subscribers are those whose
context does not match the context filter specified by the
publisher. SPCF does not suffer of this problem since it
performs context filtering while routing. At the same time,
this filtering has a cost that may reduce the advantage
coming from not having misrouted messages. Figure 4 shows
exactly this phenomenon, SPCF always performs better than
traditional content-based routing but its advantage decreases
as the selectivity of context filters becomes lower.

4.2. Routing

To analyze the cost of routing for SPCF we took our test
network and measured the traffic generated by a single call
to the subscribe and setContext operations4 for different
selectivity of the context filters, measured as the (average)
number of contexts matched by each context filter.

Figure 5(a) shows the cost for propagating a single
subscription, which is lower when the context filters are very

4. The unsubscribe performs similarly to the subscribe.

selective and consequently SPCF may propagate subscrip-
tions to a smaller part of the dispatching network. When
selectivity decreases (i.e. the percentage of selected contexts
increases) SPCF approaches the behavior of ASF and GSF,
which require 20 packets to flood the entire network.

Figure 5(b) analyzes what happens in our test network,
with around 3000 subscriptions already deployed (30 for
each of the 100 clients running), when a new client invokes
the setContext operation. As we explained in Section 3,
the new context has to attract, toward the invoking client,
all the matching subscriptions that had been filtered out
before. The resulting traffic is low when the selectivity of
context filters is high (a few subscriptions match the new
context), then increases up to a certain point, to decrease
again when context filters become less selective. In the latter
case, indeed, even if a lot of subscriptions match the new
context there are good chances that they also matched an
already existing context, having already travelled up to the
broker close to the new client. When the selectivity is null
(context filters match 100% of the contexts) SPCF performs
as ASF and GSF apart from the cost of routing context
information (20 packets).

4.3. Summing Up

Overall, all the tests we run (including those we could not
report here due to the limited space available) confirm that
the context forwarding approach taken by SPCF provides
the best results when: (i) the selectivity of context filters is
high; and (ii) the information about the contexts of clients
remains stable w.r.t. the changes that occur to their interests
(i.e., the number of setContext is lower than the number
of subscribe and unsubscribe).



0 

1 

2 

3 

4 

5 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

High context selectivity

0 

1 

2 

3 

4 

5 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Medium context selectivity

0 

1 

2 

3 

4 

5 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Low context selectivity
(a) Total selectivity fixed

0 

0,5 

1 

1,5 

2 

2,5 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

High context selectivity

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Medium context selectivity

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

0  50  100  150  200  250 

To
ta
l t
hr
ou

gh
pu

t 
(k
m
sg
 /
 s
) 

Messages sent (msg / s per broker) 

SPCF 
GSF 
ASF 

Low context selectivity
(b) Content selectivity fixed

Figure 4. Forwarding performance: Context filters in publications

As a final remark, we also observe that these results where
obtained in the worst possible situation for SPCF, in which
context filters select clients uniformly w.r.t. the network
topology (i.e., there is no “locality” in the system). In real
scenarios we may expect that clients with a similar context
tend to be co-located and thus attach to the same broker or to
close ones. In this case, the possibility of leveraging context
information to reduce the areas of the network reached by
subscriptions has an impact even greater than the (already
very good one) we were able to measure.

5. Related work

The last ten years have seen the development of a large
number of content-based publish-subscribe systems [1], [2],
[9], [10] first exploiting a centralized dispatcher, then mov-
ing to distributed solutions for improved scalability.

Besides their differences, most of the systems available
today share the same model of communication. In partic-
ular, all of them put the filtering ability in the hands of
subscribers, while publishers do not have any possibility
of adding “filters” into their messages. This results in the
inversion of matching problem we identified in Section 2,
which limits the expressiveness of the system, making it
impossible to implement the model of communication we
have in mind on top of them. The only systems that do not
have this limitation are those (e.g., see [3] and [11]), which
allow content filters to be expressed as executable code. On
the other hand, executable code is not widely used in practice
because the resulting filters are hard to optimize.

A first approach that goes in the direction of our model
is the intentional naming system proposed in [12]. In this
model a server announces its services with an “intentional”

name, which encodes its properties, while a client addresses
a message to a server with a query that species the desired
properties of the services he is interested in. This approach
can be seen as the reverse of publish-subscribe, in that it is
the subscriber (i.e., the server) who specifies some piece of
data, which is then matched by the filter provided by the
publisher (i.e., the client). This results in a kind of inversion
of matching problem that is specular to that found in publish-
subscribe systems, if we were trying to use an intentional
naming system to implement our model.

A nice step in the direction of our context-aware
model is represented by the “symmetric” publish-subscri-
be model [13]. This work breaks the asymmetry of both
traditional content-based publish-subscribe and intentional
naming systems by merging them together. Indeed, both
messages and subscriptions in symmetric publish-subscribe
are specified through constraints, a matching being an “in-
tersection” between the two. While elegant, this approach
mix context and content parts, which makes it impossible to
exploit the kind of optimizations put forth in this paper.

While symmetric publish-subscribe is more general, scop-
ing [14] can instead be seen as a special case of context-
aware publish-subscribe; however the authors concentrate on
the model, without tackling efficiency issues.

A different path toward context-aware publish-subscribe
system is represented by those systems that implement
some form of location-aware publish-subscribe, e.g. see [15]
which also contains a survey of previous work, the coeval
[16] and the more recent [17]. These proposals, allowing
subscriptions to filter messages based on the location of
the publisher can also be seen as a special case of our
model. Accordingly, not only their model focuses on location
aspects but also their implementation mechanisms do, thus



being inapplicable to our general case.
Interestingly [17] present instead a generic context-aware

publish-subscribe model, which is a superset of the one
hereby presented, featuring, in addition to filters on pub-
lisher’s and subscriber’s context, (called publication and sub-
scription domains), a “context of relevance” for publications
and a “context of interest” for subscriptions which match
positively when they overlap (analogously to symmetric pub-
lish subscribe). However the actual protocol implementation
of the model is grounded in a location interpretation of the
context, focusing on computing efficiently, by geocasting,
the relevance-interest intersection in a mobile MANET set-
ting, which is the target of that work.

6. Conclusion

In most scenarios in which publish-subscribe is used,
the context, being that of the publisher or that of the
subscriber, would be a useful information, if available, to
limit the scope of communication. Content-based publish-
subscribe is a very expressive model of communication but
it cannot entirely capture truly context-aware communica-
tions patterns. To overcome this limitation, we proposed
a context-aware extension to the publish-subscribe model
and a protocol to efficiently implement it in a distributed
publish-subscribe system. Our tests with a publish-subscribe
middleware that implements such protocols shows that it
outperforms traditional content-based routing approaches.

Acknowledgments

This work was partially supported by the European
Commission, Programme IDEAS-ERC, Project 227977-
SMScom; and by the Italian Government under the projects
FIRB INSYEME and PRIN D-ASAP.

References

[1] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event-Based
Systems. Springer, 2006.

[2] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Sur-
veys, vol. 2, no. 35, June 2003.

[3] G. Cugola and G. Picco, “REDS: A Reconfigurable Dispatch-
ing System,” in Proc. of the 6th Int. Workshop on Softw. Eng.
and Middleware. (SEM06). Portland: ACM Press, nov 2006,
pp. 9—16, available at www.elet.polimi.it/upload/cugola.

[4] G. Mühl and L. Fiege, “Supporting covering and merging in
content-based publish/subscribe systems: Beyond name/value
pairs,” IEEE Distributed Syst. Online (DSOnline), vol. 2,
no. 7, 2001.

[5] J. McQuillan, I. Richer, and E. Rosen, “The new routing
algorithm for the arpanet,” IEEE Trans. on Comm., vol. 28,
no. 5, pp. 711–719, 1980.

[6] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An
integrated experimental environment for distributed systems
and networks,” in Proc. of the Fifth Symposium on Operating
Systems Design and Implementation. Boston, MA: USENIX
Association, Dec. 2002, pp. 255–270.

[7] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM
Trans. on Comp. Syst., vol. 19, no. 3, pp. 332–383, 2001.
[Online]. Available: citeseer.nj.nec.com/482106.html

[8] R. Chand and P. Felber, “A scalable protocol for content-
based routing in overlay networks,” in Proc. of the 2nd IEEE
Int. Symp. on Netw. Comput. and Appl. Cambridge, MA:
IEEE Computer Society, April 2003, pp. 123–130.

[9] R. Baldoni and A. Virgillito, “Distributed event routing in
publish/subscribe communication systems: a survey,” DIS,
Università di Roma ”La Sapienza”, Tech. Rep., 2005.

[10] G. Mühl, L. Fiege, F. Gartner, and A. Buchmann, “Eval-
uating advanced routing algorithms for content-based pub-
lish/subscribe systems,” in Proc. of the 10

th IEEE Int.
Symp. on Modeling, Analysis, and Simulation of Comput. and
Telecommunications Syst. (MASCOTS02), 2002.

[11] P.Eugster and R. Guerraoui, “Content-based publish/subscribe
with structural reflection,” in Proc. of the 6th Usenix Conf.
on Object-Oriented Technol. and Syst. (COOTS01). San
Antonio, Texas: USENIX Association, 2001.

[12] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley,
“The design and implementation of an intentional naming
system,” in Proc. of the 17th ACM Symp. on Operating Syst.
Principles (SOSP99). ACM Press, Dec 1999, pp. 186–201.

[13] W. Rjaibi, K. Dittrich, and D. Jaepel, “Event matching in
symmetric subscription systems,” in Proc. of the 2002 Conf.
of the Centre for Adv. Studies on Collaborative Research.
Toronto, Ontario, Canada: IBM Press, 2002.

[14] L. Fiege, M. Mezini, G. Mühl, and A. Buchmann, “Engi-
neering Event-based Systems with Scopes,” in Proc. of the
16th Europ. Conf. on Object-Orient. Prog. (ECOOP02), ser.
LNCS, vol. 2374. Springer, June 2002, pp. 309–333.

[15] G. Cugola and J. M. de Cote, “On introducing location
awareness in publish-subscribe middleware,” in Proc. of the
4th Int. Workshop on Distributed Event-Based Systems, June,
Ed., Columbus, Ohio, USA 2005.

[16] T. Sivaharan, G. Blair, and G. Coulson, “Green: A con-
figurable and re-configurable publish-subscribe middleware
for pervasive computing,” in OTM 2005: CoopIS, DOA, and
ODBASE, ser. LNCS 3760. Springer, 2005, pp. 732–749.

[17] D. Frey and G.-C. Roman, “Context-aware publish subscribe
in mobile ad hoc networks,” in Proc. of the 9th Int. Conf. on
Coord. Models and Lang., ser. LNCS, vol. 4467. Springer,
2007, pp. 37–55.


