
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

On adopting Content-Based Routing in service-oriented architectures

Gianpaolo Cugola, Elisabetta Di Nitto *

Politecnico di Milano, Dip. di Elettronica e Informazione, via Golgi 40, 20133 Milano, Italy

Available online 16 October 2007

Abstract

Two requirements of SOAs are the need for a global discovery agency, which assists requesters in finding their required services, and
the need for new interaction paradigms, which overcome the limitations of the usual request/reply style. Content-Based Routing (CBR)
holds the promise of addressing both these aspects with a single technology and a single routing infrastructure. To provide arguments for
our hypothesis, we review the on going efforts for service retrieval and asynchronous communication in SOAs, identify their limitations
and the advantages, and discuss how incorporating CBR into SOAs allows to solve most limitations, but also poses some interesting
challenges.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Service-oriented architectures; Content-Based Routing; Publish–subscribe; Query–advertise

1. Introduction

In our previous work [22] we discussed about the usage
of publish–subscribe to develop a complex application (i.e.,
a workflow management system). In this paper we study
how a generalization of publish–subscribe, Content-Based
Routing, can help in the development of Service-Oriented
Architectures (SOAs).

SOAs are attracting more and more interest by research-
ers and practitioners thanks to their ability to dramatically
increase the interoperability among different software sys-
tems. The main roles of SOAs are services that provide
operations to the external world and requesters that exploit
these services. The two are usually decoupled from each
other and can even be played by components owned by dif-
ferent organizations. Thanks to the technological stack
behind SOAs, in fact, service requests are designed to pass
across the boundaries of single organizations, thus
enabling the realization of open software systems [8], where
the various actors can cooperate in a large scale, loosely
coupled environment. In this scenario, a third important
actor is the discovery agency. It supports services and

requesters in meeting each other: services publish their
description, thus making available to requesters the infor-
mation needed to access them, while, in turn, requesters
exploit discovery agencies to find those services that satisfy
their needs. Such a discovery of services and the subsequent
binding to some of them does not necessarily happen at
design time. It can be performed even at run-time on the
basis of the specific needs the requester has at the time it
performs its request.

In principle, all the aforementioned aspects enable the
realization of a global and open market of services where
each service provider can offer its services and each reques-
ter can find what it needs at design but also at run-time. In
this paper we focus on two key aspects for the realization
of this vision:

• the need for a global discovery agency to allow request-
ers to find proper services on an Internet scale, and

• the need for new styles of interaction among services
that could: (a) extend the adoption of SOAs to applica-
tion domains requiring not only a purely proactive,
request/reply interaction style, but also more asynchro-
nous, reactive approaches, and (b) reduce the coupling
among services, enabling the realization of applications
capable of adapting to the changes that frequently hap-
pen in a global, open world.

0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2007.10.004

* Corresponding author. Tel.: +39 0223991; fax: +39 0223993574.
E-mail addresses: cugola@elet.polimi.it (G. Cugola), dinitto@elet.

polimi.it (E. Di Nitto).

www.elsevier.com/locate/infsof

Available online at www.sciencedirect.com

Information and Software Technology 50 (2008) 22–35



Author's personal copy

In particular, we argue that Content-Based Routing

(CBR) has the potential of becoming the technology to
address both aspects, enabling global service retrieval and
large-scale asynchronous interaction in SOAs, with a single
technology and a single routing infrastructure.

CBR differs from classical routing in that messages are
addressed based on their content instead of their destina-
tion. In conventional systems the sender explicitly specifies
the intended message recipients using a unicast or multicast
address, while in CBR the sender simply injects the message
in the network, which determines how to route it according
to its content. CBR is at the core of many classes of systems
and two of them are relevant here: query–advertise and pub-

lish–subscribe. The former allows large bodies of data to be
searched and retrieved. This is usually obtained by exploit-
ing the actual content of queries to route them only toward
those stores potentially holding matching data. Similarly,
the components of a publish–subscribe application publish
messages that are routed, based on their content, only
toward those that subscribed to receive them.

To support our claim about the potential of CBR, we
first describes the main aspects of SOAs and CBR (in Sec-
tion 2), then we carefully review the current state of the art
in supporting asynchronous, publish–subscribe interac-
tions among services and in large-scale service discovery
(in Sections 3 and 4, respectively), identifying the strengths
and limitations of current approaches. In Section 5 we
describe our approach on adopting CBR as the enabling
technology to support both large-scale service discovery
and publish–subscribe interactions in SOAs, and discuss
the opportunities and challenges that we derived from this
experience. Finally, in Section 6 we draw some conclusions
and present an agenda for future development.

2. Background in SOA and CBR

In this section we briefly describe service-oriented archi-
tectures and Content-Based Routing approaches, identify-
ing the main peculiarities of such technologies.

2.1. Service-oriented architectures

Service-Oriented Architectures have various incarna-
tions focusing on different application domains. Common
examples are OSGI (Open Grid Services Infrastructure)
[82], a platform supporting the development of grid ser-
vices; JXTA [79], a peer-to-peer middleware that allows
all connected devices on the network to collaborate and
communicate as peers; and Jini [77], a framework support-
ing the development of services in a pervasive environment.
However, the most known implementation of SOAs is
based on web services.1

W3C defines a web service as ‘‘a software system
designed to support interoperable machine-to-machine
interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner
prescribed by its description using SOAP messages, typi-
cally conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards’’ [12].

The main element that characterizes a service is the
explicit definition of its interface in WSDL (Web Service
Description Language) [19]. It allows designers to define
the syntactical interface of a web service in terms of the
set of operations it exports. Each operation can be invoked
by sending the corresponding message to the web service.
Standard operations (defined as in-out in [18]) produce
a result for the caller and should be invoked synchro-
nously, in a request/reply style of interaction, while others,
which do not produce any result, can be defined as in-
only and invoked asynchronously.

SOAP [38] is a protocol, based on XML, that defines the
way messages (operation calls) are actually exchanged
among web services. It is usually based on HTTP but other
transport protocols can be used (e.g., SMTP). It also
defines several types of message exchange patterns (like
one-way and request-response) that can be used to imple-
ment the different kind of interactions defined at the level
of the WSDL interface (e.g., in-out and in-only).

Besides WSDL and SOAP, the third standard that
appears to be essential for building applications based
on web services is the Universal Description Discovery
& Integration (UDDI) [20]. It focuses on the characteris-
tics that a discovery agency (called registry in the web ser-
vices jargon) should have and the operations it should
offer to support publication and discovery of services.
Fig. 1 shows the main concepts defined by UDDI. A
businessEntity owns or requires certain kinds of business-

Services that, in turn, are implemented by some concrete
services identified by one or more bindingTemplates that,
finally, can refer to some tModels that encapsulate any
kind of specific information about these services. A
UDDI registry holds information about such entities
allowing them to be efficiently searched by clients. As
for replication and distribution, UDDI defines the basic
mechanisms to replicate a single logical registry on differ-
ent nodes, mainly to increase fault tolerance. Moreover,
the last UDDI specification introduces the concept of pro-
motion, as the mechanism to explicitly copy entities from

1 From now on we will use the term SOA to refer mainly to its web
service-based implementation. Fig. 1. UDDI registries data structure (derived from [20]).

G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35 23



Author's personal copy

a registry to another. The specification suggests that to
make this happen in a safe way, registries should be orga-
nized in a hierarchy, where a root registry has the control
on key generation and the other registries, named affili-

ates, exploit such control. If this allows to publish the
description of a service on multiple registries, it does
not support a truly distributed registry. In particular,
UDDI does not define any mechanism to propagate dis-
covery queries toward the site where the corresponding
information is stored. Thus, the efficacy of queries
depends on the completeness of the information stored
on the registry that is being contacted (which can be
increased by a careful use of the promotion mechanism),
on the precision of the query, and also on the ability of
the requester to explicitly query different registries.

The real challenging aspect of SOAs in general and
web services in particular is the possibility of composing
services (that could have been identified through a regis-
try) to create complex applications, possibly exposing
themselves, again, as services. These compositions are
often developed by exploiting workflow languages allow-
ing the flow between calls to various services to be pre-
cisely defined. The main standard in this area is the
Business Process Execution Language (BPEL) [3]. It offers
all main constructs typical of workflow languages and
supports two main interaction paradigms with the compo-
nent services: request/reply and notifications. While
request/reply allows a service to invoke another under
the circumstances defined by the BPEL model, the notifi-
cation mechanism allows a branch of the workflow (start-
ing with a specific construct called pick) to be executed
on the receipt of a notification message from a component
service.

Fig. 2 summarizes the main actors of a SOA and identi-
fies the most standards we have presented so far. Other
interesting standard proposals for web services are so
called WS* standards. These are being developed to
address a wide number of issues ranging from security
[51] to the definition of Service Level Agreements
(SLAs) [43].

2.2. Publish–subscribe, query–advertise, and Content-Based

Routing

Publish–subscribe is a popular style of interaction
among the components of a distributed application, which
are allowed to publish messages and to subscribe to the mes-
sages they are interested in. A special component of the
architecture, the dispatcher, is in charge of routing mes-
sages from publishers to the interested subscribers. The
popularity of such style is motivated by the strong decou-
pling among components that it provides, especially when
compared to more traditional approaches like client-server.
The publishers do not need to know the identity and num-
ber of the subscribers they interact with and vice versa.
This allows to easily change the architecture of the applica-
tion at run-time, by adding new components, removing
them, or even moving them from host to host. This flexibil-
ity justifies the popularity of the publish–subscribe model
and the recent introduction of a wealth of publish–sub-
scribe middleware, each interpreting the publish–subscribe
paradigm in a different way [14,29,49].

The first successful publish–subscribe infrastructures
adopted a centralized, topic-based dispatching approach.
The topic-based approach is quite simple: subscriptions
define the category —usually called topic, subject, or chan-
nel—of messages interesting for receivers. Messages have
any structure (or no structure at all) and are declared as
belonging to a certain category. They are dispatched to
those subscribers interested to the corresponding category.
These publish–subscribe systems demonstrated to be suit-
able for supporting enterprise-level development and inte-
gration of distributed applications. They, however, were
not suited to large scale scenarios due to the use of a cen-
tralized dispatcher and the lack of expressiveness of the
topic-based subscription language. To address these
aspects, commercial and academic efforts have focused on
distributed, content-based dispatchers.

A distributed dispatcher is implemented as a set of bro-
kers (see Fig. 3) interconnected in an overlay network,
which cooperatively route subscriptions and messages sent
by the application components connected to them. A con-
tent-based subscription language provides an increased
expressiveness by allowing subscribers to use expres-
sions—usually called filters—that permit sophisticated
matching on the entire message content. The format of

Fig. 2. The main elements that characterize SOAs built using web services. Fig. 3. A publish–subscribe application adopting a distributed dispatcher.

24 G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35



Author's personal copy

such filters depends on the format of messages. As an
example, in case of messages organized as a set of typed
fields, it is usually possible to express filters as predicates
on such fields, using the standard comparison operators
provided by programming languages. So, the filter:
[stockName="Acme’’ and price>100] would match
a message including a field stockName whose value equals
‘‘Acme’’ and a field price with a value greater than 100.

Query–advertise is another popular style of interaction
among the components of a distributed application, which
may advertise the data (or, more generically, the resources)
they want to share and query for the resources they need.
The routing infrastructure supporting this paradigm is in
charge of transporting queries only toward those compo-
nents potentially holding the relevant resources, forward-
ing their replies back. Query–advertise is at the basis of
every distributed data-sharing application and several mid-
dleware systems support this style of interaction. They
range from those, like the system presented in [40], that
adapt a publish–subscribe infrastructure to perform
query–advertise routing, to the most advanced Distributed
Hash Tables (DHTs), i.e., those offering not only the stan-
dard (for a DHT) identifier-based lookup mechanism, but
also more sophisticated filtering mechanisms to search for
data on the basis of its content.

An analysis of publish–subscribe and query–advertise
reveals that they represent the two sides of the same coin:
publications are routed based on subscriptions, while que-
ries are routed based on advertisements. Such routing is
multicast and it is not based on an explicit indication of
the recipients of a certain message, but, instead, it depends
on the content of such message and on some previously
defined association between this content and the interested
receivers. It is a Content-Based Routing (CBR). What is
interesting for us about CBR is that it holds the promise
of addressing, at the same time and with a single routing

infrastructure, the two issues we identified in SOAs: provid-
ing support to an asynchronous, publish–subscribe interac-
tion style, and enabling complex searches to be executed in
a completely distributed environment.

3. Asynchronous interactions in SOAs: State of the art

The form of interaction typically adopted in SOAs, par-
ticularly using web services, is synchronous, point-to-point
request/reply. This is a simple, natural, and effective model
to build distributed applications. It is well known, however,
that modern distributed applications also require other
interaction styles. In particular, an asynchronous, multicast
interaction model, like that enabled by publish–subscribe,
is often required. For instance, in a VoIP application sev-
eral components (e.g., the call control and the accounting
services) must be notified when a phone call is terminated.
Similarly, in location-based applications there are often
several components interested in knowing when some user
has entered a certain area. In similar situations, the polling

approach suggested by a request/reply interaction style
may become very inefficient.

This is something that has recently become clear among
SOA experts. As a result, starting from 2003 several com-
panies focused on developing a specification to introduce
asynchronous notifications among web services. The result
were two competing proposals: WS-Eventing [13] and WS-
Notification [37]. While quite different at the beginning,
currently they have a lot in common. In particular, WS-
Eventing is very similar to the portion of WS-Notification
that defines the interfaces between producers and consum-
ers of events, i.e., WS-Base Notification [35]. The remain-
ing parts of WS-Notification are WS-Brokered
Notification [17] and WS-Topics [71].

WS-Base Notification defines the core roles of notification

producer, subscription manager, subscriber, and notification

consumer. To create a subscription a subscriber sends specific
information to a notification producer including:

• the consumer’s reference to which the producer must
send matching notifications;

• the topic expression that identifies the topics the con-
sumer is interested in (see below);

• an optional selector, which allows filtering on the con-
tent of notifications.

In response, the notification producer returns the identi-
fier of the newly created subscription and a reference to the
subscription manager in charge of managing it. Through
the subscription manager, the subscriber may temporarily
pause and resume subscriptions or definitely cancel them.

WS-Topics describes the format of topics, which are
organized in trees. This allows components to subscribe
to a ‘‘super-topic’’ to match several topics at once. Differ-
ent languages can be adopted to define topic expressions,
including a simple one that allows only root topics to be
used and a full one that uses XPath [10] expressions to pre-
cisely define the topics of interest. The same happens for
the selector. The result is a specification that can support
both topic-based and content-based interactions, offering
various levels of expressive power for the description of
topics and selectors.

The architecture defined by WS-Base Notification in
which producers send notification messages directly to con-
sumers can be acceptable in a small, closed world, in which
subscribers know publishers and vice versa, but it does not
scale to a global, open-world of services. This weakness is
removed by the WS-Brokered Notification, which intro-
duces the concept of notification broker. It implements both
the notification producer and notification consumer inter-
faces, thus acting as an intermediary that decouples pub-
lishers from subscribers taking care of routing
notifications. Moreover, a broker can subscribe to another.
This way it is possible to create a network of brokers sim-
ilar to those that compose the dispatcher of a distributed,
publish–subscribe middleware, as defined in Section 2.2.
Currently, several systems exist that implement the

G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35 25



Author's personal copy

WS-Notification specification. These include the Web-
Sphere Application Server V6.1 [84], WSRF.NET V3.0
[42], the Globus Toolkit V4 [32], and Apache Muse V2.2
[81]. While WebSphere implements the specification
entirely and provides a full fledged broker for WS-Notifica-
tion, WSRF.NET focuses on the WS-Resource Framework
[36] and implements WS-Notification as a way to notify
changes in resources. Similarly, the Globus Toolkit and
Apache Muse only support WS-Base Notification and
WS-Topics.

WS-Messenger [41] is a research prototype, which sup-
ports both WS-Notification and WS-Eventing, thus allow-
ing interoperability between the two. On the other hand,
what is interesting for us about WS-Messenger, is the fact
that it is implemented as a thin software layer using an
existing publish–subscribe middleware for message routing.
In particular, it can integrate every JMS [78] compliant
middleware, thus providing a first solution to integrate
existing publish–subscribe solutions in a SOA infrastruc-
ture. A similar, while less general, approach is presented
in [60], which describes an implementation of WS-Notifica-
tion based on Meteor [52], a pre-existing publish–subscribe
middleware. Similarly, NaradaBrokering [33] is a distrib-
uted publish–subscribe middleware whose recent versions
support web service interactions by implementing the
WS-Eventing specification.

Another sign of the importance of asynchronous inter-
actions among web services was the recent introduction
of a new technology to ease service integration and compo-
sition: Event Service Buses (ESBs) [16]. These aim at
becoming the main backbone for SOAs by offering support
to the life cycle of services, their deployment, and their
composition. In terms of the service interaction paradigm,
they usually support the coexistence of both synchronous
and asynchronous mechanisms. Asynchronous mecha-
nisms, in particular, are thought as the way to support
loosely coupled integration in a business-to-business con-
text that crosses the boundaries of a single organization.
Messages in the ESB can follow itineraries, i.e., paths
between the sender and the recipients, that are computed
by so called CBR services. These services act as intermedi-
aries. They receive the messages and perform a limited
form of Content-Based Routing in the sense that they
can inspect a message and route it depending on some pre-
defined rules they encapsulate. Such rules can, for instance,
dictate that the message cannot be routed until a different
message is not received, or they can modify the message
before forwarding it to the receiver. A message can pass
across various CBR Services before reaching its final desti-
nation. A Message-Oriented Middleware (MOM) is usually
adopted to move messages through their itineraries (and
the corresponding CBR Services). Such middleware either
works as a topic-based publish–subscribe middleware or
as a message queue, where messages are stored until receiv-
ers extract them. Examples of existing ESB are the open
source Mule [80] and the well known IBM WebSphere
Message Broker [76].

This large body of initiatives shows that the issue of
asynchronous interaction in SOAs is recognized as being
very important. The proposals based on some form of dis-
tributed, publish–subscribe routing infrastructure, seem to
address the main concern about scalability that reduces the
applicability of centralized solutions in the global scenario
we focus. On the other hand, as it has been recently dis-
cussed in [47], currently available standards, products,
and prototypes still lack the ability of addressing various
QoS concerns. As we discuss in the concluding remarks,
this will be one of the challenges of the next few years for
publish–subscribe and CBR routing in particular.

4. Large-scale service discovery in SOAs: State of the art

The challenge of SOAs and web service technology is the
possibility to create systems that exploit services residing
far away from each other and run under the control of dif-
ferent organizations. To make this vision possible, proper
mechanisms to support discovery of services on a global,
Internet scale have to be provided. The UDDI approach
that we introduced in Section 2.1 does not meet this objec-
tive. As a matter of fact, in [4,5] authors surveyed three
approaches for web service discovery: UBR, the global,
root UDDI registry available on the Internet, some web
services portals, and some standard search engines. From
their analysis it emerged that a search engine, namely Goo-
gle, by allowing the indexing even of those web services
that have not explicitly published, provided the best cover-
age in terms of number of services found, even if with lim-
ited precision. On one end this shows the failure of UDDI
on a global scale,2 on the other hand it shows that much
has still to be done in the area.

In particular, several aspects need to be improved. The
first concerns the need for defining precise service descrip-
tions that enable the usage of sophisticated querying
approaches that would enhance the precision of results.
The second concerns the need for adopting appropriate
querying algorithms. The third concerns the possibility
for requesters to find services distributed on a large scale,
independently of where and when they have been
published.

As for the first and the second issues, various
approaches have been defined, both in the semantic web
and in the service engineering communities. WSMO [85]
and OWL-S [48] leverage the semantic web to allow provid-
ers to describe their services by exploiting the concepts
defined in proper ontologies. Such enhanced descriptions
can be searched through specific discovery mechanisms
that provide good performance for small to medium scale
scenarios [1]. The interest for this kind of approaches is
highlighted by the establishment of a standardization
working group called SAWSDL (Semantic Annotations
for WSDL) which, at the beginning of 2007, has released

2 The UBR registry has been shut down at the beginning of 2006.

26 G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35



Author's personal copy

a first recommendation on a language that extends WSDL
to include also semantic information [30].

The SeCSE project [83] advocates an approach based on
facets, which describe various aspects of a service, ranging
from its behavior (expressed through state machines or
BPEL fragments), to its QoS characteristics, to the use
cases it is able to fulfill, to the test cases it has passed
[73]. Thanks to this rich information, various coexisting
discovery approaches have been identified that are applica-
ble in the different phases of the life cycle of a service-based
system. In particular, it is possible to match service descrip-
tions with use cases defining the high level requirements of
users [28]. Similarly, by exploiting the behavioral informa-
tion about services, it is possible to allow a designer to find
those that best suit the architecture she is defining [45].
Finally, at runtime, it is possible to find services that are
fully compliant to the structure of the BPEL process in
which they have to be exploited [66].

As for the third issue (large scale distribution) we
already mentioned how the UDDI approach, at least in
its centralized incarnation, is inadequate. A first attempt
to overcome this limitations is represented by the WS-Dis-
covery proposal [9]. It is based on the idea of using a pro-
tocol based on IP-multicast for service discovery. Clients
may send multicast messages to find services by type,
scope, or name. While not centralized, this approach is
not suited to large scale scenarios and works only on a
LAN due to the inherent limitations of IP-multicast.

Large scale scenarios are instead addressed in [62],
where a flooding approach is exploited to manage propaga-
tion of queries to a network of UDDI registries. This
approach can be seen as complementary to the one advo-
cated by the UDDI standard, where the service descrip-
tions can be replicated (i.e., promoted) on different
registries. However, even this approach has some limita-
tions coming from the use of flooding and from the need
of connecting registries in an explicit overlay network,
which has to be configured and maintained by some
administrator.

The work presented in [63] describes a platform, part of
the WSMO research effort, which try to overcome the lim-
itations above by using a tuple space to share information
among registries. While the idea is interesting, we feel that
the centralized implementation of the tuple space will
quickly become a bottleneck for the system.

A really distributed approach is taken by the Meteor-S
project. In this case a peer-to-peer network of UDDI regis-
tries, called MWSDI [72], is built by exploiting JXTA as a
middleware [79]. From the logical viewpoint, registries are
grouped through a registries ontology. Each time a new reg-
istry connects to the network, it has to identify in such
ontology a domain it wants to connect to or it has to create
a new domain. Whenever a new service description has to
be published, the publishing client identifies a domain
and declares its intention to publish the description on that
domain. The description is then published on one of the
registries belonging to that domain. Discovery happens in

a similar way, starting from the selection of a domain
and distributing the query to all the registries that belong
to that domain.

DIRE [7], the publication infrastructure developed
within SeCSE, follows a different philosophy. In this case
the basic assumption is that registries are operated by dif-
ferent organizations, each one desiring to publish its own
services on the registry it operates. Thus, differently from
the Meteor-S case, all registries can host any kind of service
descriptions, regardless of their content. To allow queries
spanning multiple organizations, registries are connected
by REDS (see Section 5.2.1) and exploit the subscription
and publication mechanisms made available by this mid-
dleware to replicate service descriptions on the network
of registries. More specifically, registries can decide to join
a topic (by subscribing to it). All registries joining the same
topic define, implicitly, a federation sharing the same ser-
vice descriptions. Indeed, when a service description is pub-
lished on a registry, it is propagated by REDS to the other
registries that have subscribed to the same topic. These, in
turn, store the service description for a certain time and
then discard it (unless it is explicitly renewed). Orthogo-
nally to federations, it is always possible for registries,
and for clients, to issue declarations of interest for some
content in a service description (this is performed by
exploiting REDS content-based subscriptions). In this case,
they will receive all newly published descriptions fulfilling
their requirements.

The approach presented in [46] can be seen as comple-
mentary to both METEOR-S and DIRE. Indeed, it allows
service consumers to be notified when a service that respect
their expectations is published or modified. This is obtained
by leveraging the routing mechanisms provided by Siena, a
distributed publish–subscribe middleware, whose subscrip-
tion language is extended with semantic-enabling concepts.
This approach does not explicitly support the execution of
specific queries proactively defined by the user, while it can
be used as a mechanism to refresh some existing knowledge
that the consumer already owns about some services.

An approach that could complement all the others is the
one realized in WSRB [2]. It follows the Google philosophy
by offering a crawler that collects information from multi-
ple registries, indexing and storing them on a centralized
repository. Such an approach, even if promising to ensure
that the demand properly meet the offer of services, raises
critical concerns in terms of scalability. Google has proven
that this limitation can be removed but this has a cost that
must be carefully evaluated.

Fig. 4 summarizes the main characteristics of the
approaches and infrastructures in terms of the three aspects
that we claim are important: languages for service descrip-
tions, approaches for querying, and large scale distribution.
As for this last aspect, we notice that the various
approaches address it in various ways. Some of them
assume that service descriptions are more or less explicitly
replicated on various registries, some others that queries
are propagated within the network of registries. Again,

G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35 27



Author's personal copy

such propagation can either we performed explicitly by the
user or executed by the platform depending on some crite-
ria. Also, one of the approaches allows users to subscribe
for the publication of new descriptions (or updated descrip-
tions) that follow a certain structure. This enables users
that have already explored the domain to be informed
about updates. Finally, the last approach advocates the
use of crawlers ‘‘a la Google’’ to concentrate all the rele-
vant pieces of information in a single place.

Of course all the mentioned approaches offer interesting
solutions to the problem. Given the potential high distribu-
tion of registries and of users, however, most of them
require proper middleware support to ensure that propaga-
tion of information (service descriptions, queries, notifica-
tions of changes) occur in a scalable and dependable way.
As we will discuss in the next section, a CBR infrastructure
may enable all the aforementioned propagation models still
holding the promise of being scalable if not dependable.

5. The role of CBR in SOA: Opportunities, first experiences,

challenges, and open issues

5.1. Opportunities

As mentioned in the introduction, SOAs propose a
vision of distributed applications and related markets

that is both ‘‘global’’ and ‘‘open’’ [8]. Service providers
are expected to offer their products in a global market-
place, accessed by developers at design-time to search
for the components they need. If this was not enough,
the SOA’s vision also promotes dynamism at run-time,
with applications capable of self-organizing by accessing
the global marketplace of services at run-time to choose
those that better fit the situations they encounter, thus
dynamically adapting to changes in the external environ-
ment. We argued that the vision above requires an effi-
cient and scalable service discovery infrastructure to
allow different organizations to offer and access services
globally, complemented by a publish–subscribe infra-
structure to suit the needs of those systems that have a
inherently asynchronous behavior and to enable the abil-
ity of monitoring the environment and reacting to its
changes by reorganizing the structure of the application
at run-time.

Many application domains could benefit from the afore-
mentioned aspects, including:

• Grid computing, where the need for efficient discovery
of services and resources is of paramount importance.

• Business-to-business interaction, which usually concerns
the execution of complex workflows, whose natural style
is asynchronous and reactive.

Fig. 4. Summary of the presented discovery approaches.

28 G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35



Author's personal copy

• Pervasive systems, where different living environments
encapsulate services that could range from controllers
of the temperature in a room to locators of objects
and people, etc. In many of these cases there is a need
for flexible discovery approaches, which not only allow
for distributing queries on a large scale, but also for dis-
tributing queries depending on the context. For exam-
ple, in some application there might be no interest in
knowing the temperature of a room where the user is
not located at the moment, while there might be an
interest in accessing all the location services worldwide
to look for some person who has lost the contact with
his/her relatives.

This is exactly where CBR may enter the picture by
holding the promise of addressing, with a single technology
and a single routing infrastructure, the scalability and
expressiveness requirements of service discovery and pub-
lish–subscribe interaction among services.

5.2. First experiences

To provide an initial assessment of the claim above, we
adopted the layered approach depicted in Fig. 5, by using
REDS [25], a CBR middleware developed at Politecnico
di Milano, to implement both a WS-Notification compliant
publish–subscribe infrastructure and a distributed UDDI
registry.

5.2.1. REDS

Born from the ashes of Jedi (the publish–subscribe mid-
dleware presented in our previous paper [22]) as a distrib-
uted, content-based, publish–subscribe middleware,
REDS is more than that. It is a framework (in the
object-oriented sense) of Java classes to easily build a mod-
ular CBR infrastructure.

The first peculiarity of REDS is the possibility it offers
to system programmers of defining their own filters and

messages by implementing the Filter and Message

interfaces, respectively. This way REDS can operate as a
publish–subscribe middleware, using filters to encode the
interests of components (subscriptions) and messages to
notify relevant events; but also as a query–advertise mid-
dleware, using filters to specify the resources held by each
component (advertisements) and messages to encode que-
ries. Moreover, REDS, differently from the other similar
middleware, natively offers the possibility of replying to
messages [34]. This feature can be very useful to transfer
the result of a query from the resource owner to the reques-
ter, thus completely addressing the requirements of query–
advertise.

Another key feature of REDS is the internal structure of
its brokers, which are organized as a set of modules that
implement well-defined interfaces and encapsulate the
major aspects of CBR (see Fig. 6). By choosing the right
implementation for each module, developers may adapt
the REDS behavior to their needs. In particular, the
RoutingStrategy can be changed to adapt to different
scenarios, from small to large scale. Similarly, the Sub-

scriptionTable can be changed to implement different
algorithms to store filters and match them against incom-
ing messages, e.g., to optimize routing of different type of
messages and filters, from the simplest to the most complex
ones (like those based on XML and XPath, which are
required in the web services world).

The last feature of REDS is its ability of reconfiguring
the topology of the routing network at run-time. In partic-
ular, the TopologyManager encapsulates the strategy
and protocol used to maintain the overlay network of
REDS brokers. It answers the requests coming from the
application layer to add or remove brokers and reacts to
changes in the networking environment (e.g., failing links)
and to failures occurring in the REDS network itself (e.g.,
failing brokers). Analogously, the Reconfigurator is
the component in charge of restoring subscription informa-
tion and recovering lost messages when the topology of the

Fig. 5. Using a CBR infrastructure for discovery and publish–subscribe interaction.

G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35 29



Author's personal copy

REDS network changes, thus ensuring correct routing of
messages during reconfiguration. By choosing the right
implementation for these two modules, system developers
may adapt REDS to different environments, from the very
static to the most dynamic ones, including those involving
mobile nodes and wireless connections [24].

5.2.2. WS-notification with REDS

Implementing the WS-Notification specification in
REDS was a relatively simple task. We started by realizing
a XMLMessage and a XPathFilter implementing the
REDS Message and Filter interfaces, respectively.
They allow REDS to correctly manage the data structures
used by WS-Notification.

To translate between the WS-Notification and the
REDS interface, we built a RedsNotificationBroker.
It implements the WS-Brokered Notification specification,
while at the same time it acts as a REDS client, connected
to a broker to access the CBR services provided by REDS.
Indeed, as shown in Fig. 7, to provide a fully distributed
and scalable WS-Notification service, we instantiate several
RedsNotificationBroker instances, one for each
REDS broker that wants also to act as a WS-Notification
entry point.

When a web service acting as a subscriber connects to a
RedsNotificationBroker and issues a subscription,
the RedsNotificationBroker subscribes to the REDS
dispatching infrastructure by specifying a XPathFilter

that encodes the interests of the subscriber. Similarly, a

notification producer (in the WS-Notification jargon)
may access a RedsNotificationBroker connected to
the other side of the REDS network to notify events. When
this happens a XMLMessage is created encoding the noti-
fication and it is routed by REDS toward the subscribed
web services. This provides an elegant and efficient imple-
mentation of the WS-Notification specification, which
builds upon the characteristics of REDS to support large-
scale, dynamic scenarios, including those involving mobile
nodes.

Finally, the resulting system allows designers to build
hybrid systems where services following the WS-* stan-
dards may coexist with others that are compatible with
the REDS default protocol.

5.2.3. Dynamic service discovery with REDS
To implement a scalable and flexible service discovery

infrastructure for web services we followed a very similar
route, but this time we used REDS as a query–advertise
infrastructure. More specifically, we extended the work
described in [7], leaving behind the idea of federating a
set of existing UDDI registries, to implement a single, fully
distributed, UDDI registry, potentially capable of support-
ing global service discovery.

As before, we started by building a XMLFilter that
implements the REDS Filter interface, plus a UDDIIn-
quiryMessage and a XMLMessage, both implementing
the REDS Message interface. They are used, respectively,
to encode in REDS the advertisements about new services
(expressed in XML using the UDDI schemas), the queries
issued by service browsers (expressed as UDDI ‘‘inquiries’’
[20]), and the replies to such queries (expressed in XML).

LSTreeTopologyManager

<< interface >>
TopologyManager

SimpleReplyTable

GenericTable

WirelessTopologyManager

TCPTransport

DeferredUnsubscription
Reconfigurator

AbstractTopologyManager

<< interface >>
Transport

<< interface >>
RoutingStrategy

UDPTransport

PTreeTable

<< interface >>
ReplyTable

<< interface >>
Overlay

GenericOverlay

SubscriptionForwarding
RoutingStrategy

<< interface >>
SubscriptionTable

GenericRouter

<< interface >>
Router

<< interface >>
ReplyManagerInformedLinkActivation

Reconfigurator

ImmediateForward
ReplyManager

Routing layer

Overlay layer

MessageForwarding
RoutingStrategy

<< interface >>
Reconfigurator

Fig. 6. The architecture of a REDS broker.

Fig. 7. Using REDS to implement a distributed WS-Notification broker.

30 G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35



Author's personal copy

As a gateway between the REDS and the web services
worlds, we built a RedsUDDINode. As shown in Fig. 8,
several instances of such component, connected by REDS,
build a distributed UDDI registry [20].

In particular, when an organization wants to publish
some information about the services it provides, it connects
to a RedsUDDINode, which translates the provided infor-
mation as a REDS XMLFilter. Similarly, when an orga-
nization needs to find a specific service, it connects to the
closest RedsUDDINode and issues an ‘‘inquiry’’. This is
translated by the RedsUDDINode in a UDDIInquiry-

Message, which is dispatched by REDS toward the Red-
sUDDINode instances possibly holding some relevant
information (i.e., those nodes that previously subscribed
with a XMLFilter that matches the UDDIInquiryMes-
sage). Finally, replies are encoded as XMLMessages and
transported by REDS toward the inquiring node. As men-
tioned, this realizes a fully distributed UDDI registry,3

which inherits scalability and flexibility from REDS.
To better show the advantages of using a CBR infra-

structures as the underlying routing facility, we added an
additional feature to our RedsUDDINode, which may
act as a notification producer to allow organizations to
be promptly notified about new services. In fact, when a
new service description is published, not only the Red-

sUDDINode subscribes to the REDS infrastructure with
an appropriate XMLFilter, as described above, but it also
publishes a XMLMessage encoding the same information.

This message is routed by REDS toward the subscribing
RedsUDDINode instances, where it is used to notify the
interested entities (e.g., the topmost service in Fig. 8) about
the publication of the new service. This second mechanism
is similar to the one presented in [46].

5.3. Discussion

While the research described above is still in progress,
with more and more features added to our prototypes,
the preliminary experience we collected so far allows us
to formulate some considerations that are worth sharing.

First of all we confirmed our intuition that the content-
based nature of CBR (and REDS in particular) nicely fits
the requirements of both publish–subscribe interaction
and service discovery. Fully content-based WS-Notifica-
tion subscriptions and messages can be easily managed
by our RedsNotificationBroker (i.e., routed by
REDS), while precise queries for exactly the services
required can be formulated via our RedsUDDINode,
which routes them toward the right service providers.
While we have not yet used our prototypes on real, large
scale scenarios, the good performance of most advanced
CBR solutions (including REDS) suggests that a WS-Noti-
fication broker and a distributed registry built on top of
them will perform well, providing good scalability. More-
over, by building our prototypes on top of REDS we could
also take advantage of its features of reconfigurability and
adaptability to changes coming from the networking envi-
ronment[24]. As a result, our prototypes are able to operate
in dynamic environments, like those involving mobile
nodes and wireless links, and, in some sense, this is some-
thing that we obtained for free, thanks to the layered
approach we adopted.

If these are the positive aspects, we also learned that
there are negative ones. In particular, in designing and
implementing our prototypes, we experienced how the
web services world poses several challenges in front of
the CBR experts. Among them three are major and are
worth discussing here: one has to do with matching, the
other with security, the last with reconfigurability.

The matching challenge originates from a simple consid-
eration: today the web services world is strongly XML-
based and in the future it might rely on rich ontologies to
define the meaning of all the published items, including
web services. At the same time, the research in the area
of CBR has usually considered simpler messages and fil-
ters, with the former typically organized as a set of typed
fields and the latter expressed as predicates on such fields.
While several works (e.g., see [69,27,15,55,65,57]) already
addressed the problem of efficiently filtering a stream of
XML documents using XPath [10] and XQuery [11] expres-
sions, more remains to do to provide the level of scalability
usually offered by the best CBR systems. This includes
defining a suitable mechanism to avoid duplicating the
effort of XML parsing and matching at each step along
the CBR network, and determining how XPath and

Fig. 8. Using REDS to implement a distributed UDDI registry.

3 Actually, since providing a full implementation of the UDDI speci-
fication was not our main goal, our current prototype focuses on the core
publishing and searching services, only.

G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35 31



Author's personal copy

XQuery expressions can be merged to reduce the need of
routing subscriptions among brokers. This issue would
get even more complex if content-based matching between
subscriptions and messages should be performed by taking
into account their semantical, not just syntactical aspects.
A problem still largely ignored by current research in CBR.

Even more complex is the security challenge. Being con-
tent-based, CBR inherently requires brokers to access the
content of messages, something that potentially breaks
message confidentiality. Some initial proposals exists to
overcome this limitation [31,74,61,58,67,44,54,53] but a
fully scalable and efficient solution for secure communica-
tion in CBR networks has still to emerge. Moreover, the
web services world has developed its own standards about
security (i.e., WS-Security [51]), which should be integrated
into the chosen CBR solution.

Last challenge we consider is the ability of the CBR
infrastructure to self-adapt to changes in the networking
environment. An Internet-wide deployment like that envi-
sioned in some of the scenarios depicted above, requires
the ability of adapting to changes that may happen in the
networking environment, with new nodes and links appear-
ing, existing nodes and links vanishing or failing, tempo-
rary network partitions, and so on. The same happens if
we consider scenarios involving mobile nodes and wireless
networks. In both cases the CBR network must be able to
adapt to such situations. Again, some proposals already
exist to solve this issue, like those on self-stabilizing CBR
[50,64,75], those that suggest using a peer-to-peer overlay
substrate to exploit its self-organizing capabilities
[6,39,70,68,59], and our own works in the area
[26,23,21,24]. Unfortunately, all these approaches still pres-
ent some limitations in terms of performance. Moreover,
they often reduce the guarantees offered by the CBR infra-
structure (e.g., most of the approaches above only provide
a best effort service). Therefore, a final solution is still to
come.

5.4. Open issues

If the points presented in the previous section are some-
how being addressed and likely will be solved in a reason-
ably short time, several other issues remain completely
open and require further studies and experiences before
they could find an answer. Here is a list of those we find
most relevant.

5.4.1. Quality of service

Current CBR infrastructures provide very different qual-
ities of service. Some provide a best effort service, while
others guarantee the delivery of messages. Some deliver
messages in an arbitrary order, while others provide FIFO
ordering (for each single source), causal ordering, or even
total ordering. Usually, the more guarantees are offered
the less scalability is provided. Unless a one-fit-all solution
comes from the CBR research, the best CBR infrastructure
to choose depends on the application domain considered.

5.4.2. Dependability vs. scalability

This is a generalization of some of the issues above.
Dependability, which includes availability, reliability,
safety, and security, is a desirable (but generic) property
of a communication infrastructure. Dependability is often
achieved at the expense of scalability. Given the impor-
tance of both aspects for SOAs, the community should fig-
ure out some kind of solution for this issue. A partial
solution we propose is to offer to the system designer the
possibility of adapting the CBR middleware in order to
take into account the property, among the two, that is
more important for each specific case. Of course, if this
can be considered a basic mechanism to allow flexibility,
still a complete methodological and technical solution has
to be defined.

5.4.3. Expressiveness vs. scalability

Considerations similar to those above can be done
about the expressiveness of the filtering language used by
the CBR infrastructure (i.e., to express the interest of com-
ponents or the content of queries). Indeed, usually the most
expressive languages involve complex matching algorithms
that may limit scalability and reduce the performance of
the CBR infrastructure. Even if XML and XPath are
becoming the de-facto standard in the web services com-
munity, the CBR infrastructure could use simpler lan-
guages at the price of delivering more messages than
those strictly required. Finding the right compromise
between expressiveness and scalability is an open issue.

5.4.4. Reflectiveness
In [56] the authors advocate the need for the services

accessing a WS-Notification infrastructure of a mechanism
to query the system to know the topics defined and active
at a certain instant. This is reasonable in a global scenario
in which services are implemented and managed by differ-
ent organizations, each unaware of the others. Moreover,
it is in line with the philosophy of web services that are
assumed to expose in their descriptions all characteristics
that are relevant to the interaction with the other parties
in the system. This could be addressed by introducing some
reflective mechanisms in the CBR infrastructure. The ques-
tion is to determine the level of reflectiveness that must be
provided by the CBR infrastructure and how, i.e., which
mechanisms using to avoid breaking the security and
dependability of the infrastructure.

5.4.5. Context-awareness

Some domains, like pervasive computing, require service
interactions to adapt to the context in which they happen.
Context information can be encoded as part of the notifica-
tions, advertisements, and queries routed by the CBR
infrastructure, but this approach could be inefficient. A
CBR infrastructure that natively supports a concept of
context, and routes subscriptions and notifications based
on it, could offer better performance. We are currently
investigating this issue in REDS, but the work is still at a

32 G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35



Author's personal copy

preliminary stage and we cannot draw any conclusions
apart from the increased expressiveness that this approach
provides.

6. Conclusions

SOAs and web services seem to represent the most
promising approaches to deal with the development of
complex distributed systems. Their attractiveness stems
from the fact that the researchers and practitioners com-
munity is working hard at the development and use of
proper standards that aim at guaranteeing interoperability
and at providing a common view and some solutions to the
problems typical of the area. Starting from this point, in
this paper we have argued that the usage of CBR tech-
niques could greatly improve discovery of services by over-
coming the current limitations due to the centralized nature
of registries. Moreover, it could support large scale interac-
tion among services through a decentralized, anonymous,
and asynchronous interaction style. There are, however,
various aspects that still need to be addressed. We high-
lighted those we feel most relevant in the previous section.

As for the future, our plan is to work at developing a
real and complex case study to apply the prototypes we
described in this paper. This should allow us to better rea-
son on how to tackle the dichotomy between scalability
and the other desirable properties of the resulting system
as well as perform a detailed evaluation of the advantages
of our approach.

Acknowledgements

This work has been partially funded by the European
Community under the IST-511680 SeCSE and IST-
034963 WASP projects, by the italian National Research
Council (CNR) under the IS-MANET Project, and by
the Italian ministry of research and education under the
Artdeco FIRB project.

We warmly thank our colleagues Carlo Ghezzi and
Matteo Migliavacca for their useful comments and sugges-
tions, Francesco Leone who is working at our implementa-
tion of WS-Notification on top of REDS, and the reviewers
of the paper who helped us dramatically improve the qual-
ity of the paper.

References

[1] D. Aiken, D10.1v0.1 Focused crawler for web service discovery, Tech.
Rep., WSMO, 2005, <http://www.wsmo.org/TR/d10/d10.1/
v0.1/>.

[2] E. Al-Masri, Q. Mahmoud, A framework for efficiet discovery of web
services, in: Proceedings of IEEE Consumer Communications and
Networking Conference (CCNC), 2007.

[3] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N.
Kartha, C.K. Liu, D. Knig, V. Mehta, S. Thatte, D. van der Rijn, P.
Yendluri, A. Yiu, eds., Web Services Business Process Execution
language version 2.0, Tech. Rep., OASIS, 2006, <http://www.
oasis-open.org/apps/org/workgroup/wsbpel/>.

[4] D. Bachlechner, K. Siorpaes, D. Fensel, I. Toma, Web service
discovery – a reality check, in: Proceedings of the First Workshop:
SemWiki2006 – From Wiki to Semantics, co-located with the Third
Annual European Semantic Web Conference (ESWC’06), 2006.

[5] D. Bachlechner, K. Siorpaes, D. Fensel, I. Toma, Web service
discovery – a reality check, Tech. Rep. DERI, 2006.

[6] R. Baldoni, C. Marchetti, A. Virgillito, R. Vitenberg, Content-based
publish-subscribe over structured overlay networks, in: Proceedings
of the 25th International Conference on Distributed Computing
Systems (ICDCS’05), IEEE Computer Society Press, Columbus, OH,
USA, 2005.

[7] L. Baresi, M. Miraz, A Distributed Approach for the Federation of
Heterogeneous Registries, in: Proc. of the Fourth International
Conference on Service-Oriented Computing, 2006.

[8] L. Baresi, E. Di Nitto, C. Ghezzi, Toward open-world software: Issue
and challenges, IEEE Computer 39 (10) (2006) 36–43.

[9] J. Beatty, G. Kakivaya, D. Kemp, T. Kuehnel, B. Lovering, B. Roe,
C.S. John, J.S. (Eds.), G. Simonnet, D. Walter, J. Weast, Y.
Yarmosh, P. Yendluri, Web Services Dynamic Discovery (WS-
Discovery), Tech. Rep., Microsoft Corporation, 2005.

[10] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J.
Robie, J. Simeon, Xml path language 2.0, Tech. Rep., W3C, January
2007, <http://www.w3.org/TR/xpath20/>.

[11] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J.
Simeon, Xquery 1.0: An xml query language, Tech. Rep., W3C, Jan
2007, <http://www.w3.org/TR/xquery/>.

[12] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C.
Ferris, D. Orchard, eds., Web Services Architecture, 2004, <http://
www.w3.org/TR/2004/NOTE-ws-arch-20040211/>.

[13] D. Box, L. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S.
Graham, D. Hull, G. Kakivaya, A. Lewis, B. Lovering, P. Niblett, D.
Orchard, S. Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, S.
Weerawarana, D. Wortendyke, Web services eventing, Tech. Rep.,
W3C (Mar 2006), <http://www.w3.org/Submission/WS-
Eventing/>.

[14] A. Carzaniga, D. Rosenblum, A. Wolf, Design and evaluation of a
wide-area event notification service, ACM Trans. on Computer
Systems 19 (3) (2001) 332–383.

[15] R. Chand, P. Felber, Xnet: a reliable content-based publish/subscribe
system, in: Proc. of the 23rd IEEE Int. Symp. on Reliable Distributed
Systems (SRDS’04), IEEE Computer Society Press, Florianpolis,
Brazil, 2004.

[16] D. Chappell, Enterprise Service Bus, O’Reilly, 2004.
[17] D. Chappell, L. Liu, Web services brokered notification 1.3, Tech.

Rep., OASIS, 2006, <http://docs.oasis-open.org/wsn/
wsn-ws_brokered_notification-1.3-spec-os.pdf>.

[18] R. Chinnici, H. Haas, A.A. Lewis, J.-J. Moreau, D. Orchard, S.
Weerawarana, Web Services Description Language (WSDL) Version
2.0 Part 2: Adjuncts, Tech. Rep., W3C, 2007, <http://
www.w3.org/TR/2007/PR-wsdl20-adjuncts-20070523/>.

[19] R. Chinnici, J.-J. Moreau, A. Ryman, S. Weerawarana, Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language,
Tech. Rep., W3C, 2007, <http://www.w3.org/TR/2007/PR-
wsdl20-20070523/>.

[20] L. Clement, A. Hately, C. von Riegen, T. Rogers, eds., UDDI
Version 3.0.2, Tech. Rep., OASIS, 2004, <http://uddi.org/
pubs/uddi-v3.0.2-20041019.htm>.

[21] P. Costa, M. Migliavacca, G.P. Picco, G. Cugola, Epidemic
algorithms for reliable content-based publish-subscribe: an evalua-
tion, in: Proc. of the 24th Int. Conf. on Distributed Computing
Systems (ICDCS’04), IEEE Computer Society Press, Tokyo, Japan,
2004.

[22] G. Cugola, E. Di Nitto, A. Fuggetta, The jedi event-based
infrastructure and its application to the development of the opss
wfms, IEEE Trans. on Software Engineering 27 (9) (2001) 827–
850.

[23] G. Cugola, D. Frey, A.L. Murphy, G.P. Picco, Minimizing the
reconfiguration overhead in content-based publish-subscribe, in:

G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35 33



Author's personal copy

Proc. of the 19th ACM Symp. on Applied Computing (SAC’04),
ACM Press, Nicosia, Cyprus, 2004.

[24] G. Cugola, A. Murphy, G. Picco, Content-based publish-subscribe in
a mobile environment, in: P. Bellavista, A. Corradi (Eds.), The
Handbook of Mobile Middleware, Chap. 11, Auerbach Publications
Taylor & Francis Group, Boca Raton, US, 2006, pp. 257–285.

[25] G. Cugola, G. Picco, REDS: a reconfigurable dispatching system, in:
Proc. of the Sixth Int. Workshop on Software Engineering and
Middleware (SEM’06), ACM Press, Portland, Oregon, USA, 2006.

[26] G. Cugola, G.P. Picco, A.L. Murphy, Towards dynamic reconfigu-
ration of distributed publish-subscribe systems, in: A. Coen-Porisini,
A. van Der Hoek (eds.), Proc. of the 3rd Int. Workshop on Soft. Eng.
and Middleware (SEM’02), co-located with the 24th Int. Conf. on
Soft. Eng. (ICSE’03), vol. 2596 of Lecture Notes on Computer
Science (LNCS), Springer, Orlando (FL, USA), 2002.

[27] Y. Diao, S. Rizvi, M. Franklin, Towards an internet-scale xml
dissemination service, in: Proc. of the 30th Int. Conf. on Very Large
Data Bases (VLDB’04), Morgan Kaufmann, Toronto, Canada, 2004.

[28] N. Dourdas, X. Zhu, N. Maiden, S. Jones, K. Zachos, Discovering
Remote Software Services that Satisfy Requirements: Patterns for
Query Reformulation, in: Proc of the 18th Conference on Advanced
Information Systems Engineering (CAiSE’06), 2006.

[29] P. Eugster, P. Felber, R. Guerraoui, A.-M. Kermarrec, The many
faces of publish/subscribe, ACM Computing Surveys 2 (35).

[30] J. Farrell, H. Lausen, Semantic Annotations for WSDL and XML
Schema, Tech. Rep., W3C (2007), <http://www.w3.org/TR/
sawsdl/>.

[31] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, G. Muhl,
Security aspects in publish/subscribe systems, in: A. Carzaniga, P.
Fenkam (Eds.), Proc. of the Third Int. Workshop on Distributed
Event-Based Systems (DEBS’04), IEEE Computer Society Press,
Edinburgh, Scotland, UK, 2004.

[32] I. Foster, Globus toolkit version 4: Software for service-oriented
systems, in: Proc. of the IFIP International Conference on Network
and Parallel Computing, vol. 3779 of Lecture Notes in Computer
Science (LNCS), Springer, Beijing, China, 2005.

[33] G. Fox, S. Pallickara, Deploying the naradabrokering substrate in
aiding efficient web and grid service interactions, Special Issue of the
Proceedings of the IEEE on Grid Computing 93 (3) (2005) 564–577.

[34] G. Cugola, M. Migliavacca, On adding replies to publish-subscribe,
in: Proc. of the Inaugural Int. Conf. on Distributed Event-Based
Systems (DEBS’07), ACM Press, Las Vegas, Nevada, USA, 2007.

[35] S. Graham, D. Hull, B. Murray, Web services base notification 1.3,
Tech. Rep., OASIS, 2006, <http://docs.oasis-open.org/
wsn/wsn-ws_base_notification-1.3-spec-os.pdf>.

[36] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, I. Sedukhin,
Web Services Resource 1.2 (WS-Resource), Tech. Rep., OASIS, 2006,
<http://docs.oasis-open.org/wsrf/wsrf-ws_resource-
1.2-spec-os.pdf>.

[37] S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam, J.
Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snelling, S. Tuecke, W.
Vambenepe, B. Weihl, Publish-subscribe notification for web services,
Tech. Rep., OASIS, 2004.

[38] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H.F. Nielsen,
A. Karmarkar, Y. Lafon, SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition), Tech. Rep., W3C, 2007, <http://
www.w3.org/TR/2007/REC-soap12-part1-20070427/>.

[39] A. Gupta, O. Sahin, D. Agrawal, A. El Abbadi, Meghdoot: Content-
based publish/subscribe over p2p networks, in: Proc. of the Fifth
ACM/IFIP/USENIX Int. Conf. on Middleware, vol. 3231 of Lecture
Notes in Computer Science (LNCS), Springer, Toronto, Canada,
2004.

[40] D. Heimbigner, Adapting publish/subscribe middleware to achieve
gnutella-like functionality, in: Proc. of the 2001 ACM Symp. on
Applied Computing (SAC’01), ACM Press, Las Vegas, Nevada,
USA, 2001.

[41] Y. Huang, A. Slominski, C. Herath, D. Gannon, Ws-messenger: A
web services-based messaging system for service-oriented grid com-

puting, in: Proc. of the Sixth IEEE Int. Symp. on Cluster Computing
and the Grid (CCGRID’06), IEEE Computer Society Press, Singa-
pore, 2006.

[42] M. Humphrey, G. Wasson, Architectural foundations of wsrf.net,
International Journal of Web Services Research 2 (2) (2005) 83–97.

[43] A. Keller, H. Ludwig, The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services, Journal of
Network and Systems Management 11 (1) (2003).

[44] H. Khurana, Scalable security and accounting services for content-
based publish/subscribe systems, in: Proc. of the 20th ACM Symp. on
Applied Computing (SAC’05), ACM Press, Santa Fe, New Mexico,
USA, 2005.

[45] A. Kozlenkov, G. Spanoudakis, A. Zisman, V. Fasoulas, F. Sanchez
Cid, Architecture-driven Service Discovery for Service Centric
Systems, International Journal of Web Services Research 4 (2)
(2007) 81–112.

[46] D. Lynch, J. Keeney, D. Lewis, D. O’Sullivan, A proactive approach
to semantically oriented service discovery, in: Proceedings of the
Second Workshop on Innovations in Web Infrastructure (IWI 2006),
2006.

[47] S.P. Mahambre, M.S.D. Kumar, U. Bellur, A taxonomy of qos-
aware, adaptive event-dissemination middleware, IEEE Internet
Computing 11 (4) (2007) 35–44.

[48] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.
McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, K. Sycara, Owl-s: Semantic markup for web services,
Tech. rep. W3C (2004).

[49] G. Mühl, L. Fiege, P. Pietzuch, Distributed Event-Based Systems,
Springer, Berlin, 2006.

[50] G. Mühl, M. Jaeger, K. Herrmann, T. Weis, L. Fiege, A. Ullbrich,
Self-stabilizing publish/subscribe systems: Algorithms and evaluation,
in: Proc. of the European Conf. on Parallel Computing (EuroPar’05),
vol. 3648 of Lecture Notes in Computer Science (LNCS), Springer,
Lisboa, Portugal, 2005.

[51] A. Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker, Web services
security: Soap message security 1.1 (ws-security 2004), Tech. Rep.,
OASIS, 2006, <http://docs.oasis-open.org/wss/v1.1/>.

[52] J. Nanyan, C. Schmidt, M. Parashar, A decentralized content-based
aggregation service for pervasive environments, in: Proc. of the IEEE
Int. Conf. on Pervasive Services 2006 (ICPS’06), IEEE Computer
Society Press, Lyon, France, 2006.

[53] L. Opyrchal, A. Prakash, Secure distribution of events in content-
based publish/subscribe systems, in: Proc. of the 10th USENIX
Security Symp., USENIX, Washington, USA, 2001.

[54] L. Opyrchal, A. Prakash, A. Agrawal, Designing a publish-subscribe
substrate for privacy/security in pervasive environments, in: Proc. of
the Int. Conf. on Pervasive Services (ICPS’06), IEEE Computer
Society Press, Lyon, France, 2006.

[55] S. Pallickara, G. Fox, Naradabrokering: A distributed middleware
framework and architecture for enabling durable peer-to-peer grids.,
in: Proc. of the Fourth ACM/IFIP/USENIX Int. Middleware Conf.,
Rio de Janeiro, Brazil, 2003.

[56] S. Pallickara, G. Fox, H. Gadgil, On the creation and discovery of
topics in distributed publish/subscribe, in: Proc. of the Sixth IEEE/
ACM Int. Workshop on Grid Computing (GRID’05), IEEE Com-
puter Society Press, Seattle, Washington, USA, 2005.

[57] J. Pereira, F. Fabret, H.-A. Jacobsen, F. Llirbat, D. Shasha,
Webfilter: A high-throughput xml-based publish and subscribe
system, in: Proc. of the 27th Int. Conf. on Very Large Data Bases
(VLDB’01), IEEE Computer Society Press, Roma, Italy, 2001.

[58] L. Pesonen, D. Eyers, J. Bacon, Access control in decentralised
publish/subscribe systems, Journal of Networks 2 (2) (2007) 57–
67.

[59] P. Pietzuch, J. Bacon, Peer-to-peer overlay broker networks in an
event-based middleware, in: Proc. of the Second Int. Workshop on
Distributed Event-Based Systems, San Diego, CA, 2003.

[60] A. Quiroz, M. Parashar, Design and implementation of a distributed
content-based notification broker for ws-notification, in: Proc. of the

34 G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35



Author's personal copy

Seventh IEEE/ACM Int. Conf. on Grid Computing (GRID’06),
Barcelona, Spain, 2006.

[61] C. Raiciu, D. Rosenblum, Enabling confidentiality in content-based
publish/subscribe infrastructures, in: Proc. of the 2nd Int. Conf. on
Security and Privacy in Communication Networks, Batlimore, MD,
USA, 2006.

[62] P. Rompothong, T. Senivongse, A query federation of UDDI
registries, in: Proc. of the 1st international symposium on Information
and communication technologies, Trinity College Dublin, 2003.

[63] B. Sapkota, D. Roman, S.R. Kruk, D. Fensel, Distributed Web
Service Discovery Architecture, in: Proc. of the International Con-
ference on Internet and Web Applications and Services (ICIW’06),
2006.

[64] Z. Shen, S. Tirthapura, Self-stabilizing routing in publish-subscribe
systems, in: A. Carzaniga, P. Fenkam (Eds.), Proc. of the 3rd Int.
Workshop on Distributed Event-Based Systems (DEBS’04), IEEE
Computer Society Press, Edinburgh, Scotland, UK, 2004.

[65] A. Snoeren, K. Conley, D. Gifford, Mesh-based content routing using
xml, in: Proc. of the 18th ACM Symp. on Operating Systems
Principles (SOSP’01), ACM Press, Chateau Lake Louise, Banff,
Canada, 2001.

[66] G. Spanoudakis, K. Mahbub, Z. A, A Platform for Context Aware
Runtime Web Service Discovery, in: Proc. of IEEE 2007 International
Conference on Web Services, 2007.

[67] M. Srivatsa, L. Liu, Securing publish-subscribe overlay services with
eventguard, in: Proc. of the 12th ACM Conf. on Computer and
Communications Security, ACM Press, Alexandria, VA, USA, 2005.

[68] W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, A. Buchmann, A peer-
to-peer approach to content-based publish/subscribe, in: Proc. of the
Second Int. Workshop on Distributed Event-Based Systems, San
Diego, CA, 2003.

[69] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, J. Myllymaki,
Implementing a scalable xml publish/subscribe system using rela-
tional database systems, in: Proc. of the 23rd ACM SIGMOD Int.
Conf. on the Management of Data, ACM Press, Paris, France, 2004.

[70] P. Triantafillou, I. Aekaterinidis, Content-based publish-subscribe
over structured p2p networks, in: A. Carzaniga, P. Fenkam (Eds.),
Proc. of the 3rd Int. Workshop on Distributed Event-Based Systems
(DEBS’04), IEEE Computer Society Press, Edinburgh, Scotland, UK,
2004.

[71] W. Vambenepe, S. Graham, P. Niblett, Web services topics 1.3, Tech.
Rep., OASIS, 2006, <http://docs.oasis-open.org/wsn/
wsn-ws_topics-1.3-spec-os.pdf>.

[72] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, J.
Miller, Meteor-s wsdi: A scalable p2p infrastructure of registries for
semantic publication and discovery of web services, Inf. Tech. and
Management 6 (1) (2005) 17–39.

[73] J. Walkerdine, J. Hutchinson, P. Sawyer, G. Dobson, V. Onditi, A
Faceted Approach to Service Specification, in: Proc of the Second
International Conference on Internet and Web Applications and
Services (ICIW07), 2007.

[74] C. Wang, A. Carzaniga, D. Evans, A. Wolf, Security issues and
requirements for Internet-scale publish-subscribe systems, in: Proc. of
the 35th Annual Hawaii Int. Conf. on System Sciences (HICSS-35),
Big Island, Hawaii, 2002.

[75] Z. Xu, P. Srimani, Self-stabilizing publish/subscribe protocol for p2p
networks, in: Proc. of the Seventh Int. Workshop on Distributed
Computing (IWDC’05), vol. 3741 of Lecture Notes in Computer
Science (LNCS), Springer, Kharagpore, India, 2005.

[76] Ibm websphere message broker, <http://www-306.ibm.com/software/
integration/wbimessagebroker/>.

[77] Jini, <http://www.jini.org/>.
[78] JMS, <http://java.sun.com/products/jms>.
[79] JXTA, <http://www.jxta.org/>.
[80] Mule ESB, <http://mule.codehaus.org/display/MULE/Home>.
[81] Apache muse, <http://ws.apache.org/muse/>.
[82] OSGI alliance, <http://www.osgi.org/>.
[83] SeCSE project, <http://secse.eng.it>.
[84] WebSphere, <http://www.ibm.com/software/websphere>.
[85] Web Service Modeling Ontology (WSMO), <http://www.wsmo.org/>.

G. Cugola, E. Di Nitto / Information and Software Technology 50 (2008) 22–35 35


