J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. © TROUBADOR PUBLISHING LTD 277

Content-Based Routing in Highly Dynamic Mobile
Ad Hoc Networks

ROBERTO BALDONI, ROBERTO BERALDI, LEONARDO QUERZONI
Universita di Roma “La Sapienza”, Via Salaria 113, I-00198 Roma, Italy
Email: Roberto.Beraldi@dis.uniromal .it

GIANPAOLO CUGOLA, MATTEO MIGLIAVACCA
Politecnico di Milano, P.zza L. Da Vinci, 1-20133 Milano, Italy

Received: October 24 2005

Abstract— The decoupling and asynchrony properties of the
content-based publish-subscribe paradigm makes it very appeal-
ing for dynamic wireless networks, like those that often occur in
pervasive computing scenarios. Unfortunately, most of the cur-
rently available content-based publish-subscribe middleware do
not fit the requirements of such extreme scenarios, in which the
network is subject to very frequent topological reconfigurations
due to mobility of nodes. In this paper we propose a protocol
for content-based message dissemination tailored to Mobile Ad
Hoc Networks (MANETSs) showing frequent topological changes.
Message routing occurs without the support of any network-wide
dispatching infrastructure thus eliminating the need of maintain-
ing such infrastructure on top of a physical network continuously
changing its topology. The paper reports an extensive simulation
study that confirms the suitability of the proposed approach along
with a stochastic analysis of the central mechanism adopted by
the protocol.

Index Terms— MANET, Publish-Subscribe, Middleware

I. INTRODUCTION

A Mobile Ad Hoc Network (MANET) is a dynamic col-
lection of wireless mobile devices that are able to commu-
nicate and move at the same time through dynamic wireless
links [17]. Neither pre-existing infrastructures nor centralized
administration functions are required thus self-organization
and adaptiveness are important properties. MANETS represent
a concrete example of support for pervasive computing.

One of the main issue in MANETSs is how to provide the
application layer with suitable communication abstractions for
the very dynamic nature of the underlying communication
network. Content-based publish-subscribe (cb-ps) is a very
appealing candidate for such dynamic contexts since it offers a
flexible many-to-many communication pattern that decouples
components of a distributed application in time, space, and
flow [8].

The work described in this paper was partially supported by the Italian
Ministry of Education, University, and Research (MIUR) under the IS-
MANET and VICOM projects, and by the European Community under the
IST-004536 RUNES project.

A preliminary version of this work appeared in the proceedings of the IEEE
International Conference on Pervasive Services 2005 (ICPS’05), 11-14 July
2005, Santorini, Greece.

Components of a cb-ps system interact by publishing mes-
sages and by subscribing to the messages whose content
matches a given predicate. A dispatching service is in charge
of delivering published messages to all the interested sub-
scribers, thus realizing the decoupling mentioned above.

The implementation of an efficient dispatching service for
a MANET is very challenging. In fixed networks, the dis-
patching service is often realized by a single, centralized
server, which stores the predicates that express the interests of
subscribers and use them to route messages coming from pub-
lishers. Clearly this approach cannot be adopted in MANETS,
in which nodes need to communicate without the support of
any stable infrastructure.

Recently, many cb-ps middleware have been developed,
which adopt a distributed implementation of the dispatching
service, composed of a set of brokers that collaborate to route
messages from publishers to subscribers. In such systems, bro-
kers are connected in an overlay dispatching network arranged
according to some well known topology, e.g., a tree, to ease
routing. In principle, this case is more suitable to MANETS,
since a broker could be launched on each mobile node,
removing the need of a centralized dispatching service, but the
overhead required to maintain the overlay network connecting
brokers in the face of topological changes occurring at the
networking layer, makes this approach unsuitable for scenarios
that exhibit even a moderate degree of mobility.

In this paper we explore a different strategy, whose key
aspect is the lack of any predefined logical infrastructure as a
support to message routing. We realize a distributed implemen-
tation of the dispatching service by running a broker on each
mobile node of the MANET but, differently from the previous
case, we do not try to keep an overlay dispatching network
connecting them. Conversely, we leverage off the broadcast
communications available in a MANET to forward messages,
letting each receiving broker to autonomously decide if and
when re-forwarding a message on the basis of an estimation
of its proximity to potential subscribers for that message.

In particular, we use the time elapsed since two nodes went
out from each other’s transmission range as an estimate of
their distance. As we will formally show in Section V, within

278 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. © TROUBADOR PUBLISHING LTD

a given time interval this represents a good approximation of
the distance metric between two nodes. This fact, together with
the efficiency of the implicit and indirect forwarding method
adopted, results in an effective and scalable routing mechanism
in the scenarios we consider, as proven by the results of the
simulations we run.

The rest of the paper is organized as follows: Section II
discusses the background of traditional cb-ps routing tech-
niques. Section III briefly motivates our work and gives a
general description of the routing protocol we propose, while
Section IV provides the details of the protocol. In Section V
we formally analyze the relationship between the elapsed
time and the distance between the brokers, while Section VI
presents the results of an extensive campaign of simulations,
which validates our approach. Finally, Section VII discusses
related work and Section VIII provides some concluding
remarks and describes future work.

II. CONTENT-BASED ROUTING

The aim of this section is to provide some background to
better understand the domain of our interest and to motivate
why new solutions need to be developed. As already men-
tioned in the introduction, applications exploiting a publish-
subscribe middleware are organized as a collection of compo-
nents, which interact by publishing messages and by subscrib-
ing to the classes of messages they are interested in. The core
component of the middleware, the dispatcher, is responsible
for collecting subscriptions and forwarding messages from
publishers to subscribers.

Currently available publish-subscribe middleware differ
along several dimensions among which the most relevant are
the expressiveness of the subscription language, the architec-
ture of the dispatcher, and the forwarding strategy [8], [1], [3],
[16].

The expressiveness of the subscription language draws a line
between subject-based systems, where subscriptions identify
only classes of messages belonging to a given channel or
subject, and content-based ones, where subscriptions contain
expressions (called predicates) that allow sophisticated match-
ing on the message content. We guess that the typical scenarios
of pervasive computing, where a potential large number of
components need to interact very flexibly, justify the latter
choice with respect to the more conservative, less expressive,
and less scalable solution of subject-based filtering.

To apply cb-ps in large scale networks, most advanced
middleware adopt a distributed dispatcher, where a set of
brokers are interconnected in an overlay dispatching network
and cooperatively route subscriptions and messages sent by
components attached to them.

Middleware that exploit a distributed dispatcher can be
further classified according to the interconnection topology of
brokers and the strategy exploited for message dissemination.

The simplest approach is message forwarding in which
brokers are connected to form an unrooted tree. Publishers
send messages to their associated broker, which forwards them
to all other brokers by following the tree topology. Moreover,
each broker keeps track of the subscriptions coming from

(a) Message forwarding

(b) Subscription forwarding

Fig. 1. Publish-subscribe routing strategies.

the software components directly attached to it into a local
subscription table, which is used to determine the components,
if any, that should receive incoming messages. This solution
inevitably results in high overhead as all messages are sent
to all brokers, regardless if an attached component has sub-
scribed.

An alternative and more widely used strategy is subscription
forwarding, which limits the overhead of message forwarding
by spreading knowledge about subscriptions beyond the first
broker, i.e. the broker where the publisher is attached, along
the unrooted tree connecting brokers. Specifically, when a
broker receives a subscription from one of the application
components connected to it, not only it stores the associated
predicate into its subscription table as in message forwarding,
but also it forwards such a predicate to the neighboring
brokers. During this propagation, each broker behaves as a
subscriber with respect to its neighbors'. This process effec-
tively sets up routes for messages through the reverse path
followed by subscriptions.

In Fig. 1 the above strategies are compared by showing
the same setting, characterized by a distributed dispatcher
composed of 16 brokers. Two of them, namely 57 and S5, have
components connected to them (not shown to avoid cluttering
the figure) that subscribed to the same predicate, represented as
a black color, while broker S3 received a “gray” subscription.
Finally, broker P received a message matching the black
predicate but not the gray one. The path followed by this mes-
sage is shown through thick, directed lines, while black and
gray arrows represent the content of subscription tables. More
specifically, each broker has a colored arrow oriented towards
another broker if it received the corresponding subscription

IThis basic scheme can be optimized, e.g., by exploiting the notion of
“coverage” among predicates, or by aggregating them, as described in [1].

BALDONI ET AL.: CONTENT-BASED ROUTING IN HIGHLY DYNAMIC MOBILE AD HOC NETWORKS 279

from that broker. Figure 1(a) shows how message forwarding
incurs in the highest overhead at publishing time, while it
does not require subscriptions to be propagated. Subscription
forwarding (Fig. 1(b)) fills the subscription tables of each
broker but offers the best performance at publishing time.

Apart from the two strategies above, which are the most
common especially in presence of content-based subscription
languages, other, more complex strategies are possible, in
which brokers are connected in a more complete graph to
improve routing efficiency and increase system availability and
fault tolerance.

All these solutions are characterized by a permanent
network-wide structure, be it a tree or a different kind of
graph joining a set of brokers, which supports message and,
optionally, subscription forwarding. These distributed tech-
niques where originally motivated by scalability issues in
large networks and are quite successful in quasi-static, wired
scenarios. While distributed dispatchers are also a necessity
in MANETSs, it is easy to argue that a naive application
of such structure-based approaches to mobile networks is
very inefficient, since it requires to maintain a set of logical
connections among mobile brokers. Moreover, due to mobility,
it may be often the case that the topology of the overlay
network of brokers doesn’t reflect the actual position of the
nodes, and consequently the topology of the physical network.

III. PROXIMITY-DRIVEN ROUTING: AN OVERVIEW

Message routing based on a distributed set of brokers
interconnected in an overlay dispatching network is hard to
implement efficiently in a MANET due to the cost required to
cope with the frequent changes in the topology of the physical
network.

To succeed in a MANET, and particularly in those including
fast moving nodes, a cb-ps protocol should not require any pre-
defined network-wide structure. Starting from this observation
we developed a diffusion protocol, dubbed proximity-driven
routing protocol, whose general concepts are described in this
section. Details are given in the next section.

A. Assumptions

In our description we assume that the MANET is composed
of N mobile nodes, each running a broker. When necessary,
to stress the difference between nodes and brokers, we will
use the notation n; to indicate the i-th mobile node of the
network, and b; to refer to the broker running on that node.

Each broker b; acts as an entry point to the cb-ps dispatching
service for every application running on node n;. When a
component running on a node m; wants to receive some
message, it subscribes to b;, which then stores the predicate
associated with the subscription into its subscription table.
Similarly, to publish a message, a component running on a
node n; sends it to the broker b;.

The protocol does not rely on any network layer protocol;
rather it only assumes the availability of a local broadcast
communication primitive, which allows a node to unreliably
send a message to all its one-hop neighbors via a single

transmission — a fundamental and always satisfied assumption
in MANETS.

Finally, we assume that the interests of all the application
components connected with a broker b; can be condensed
into a single predicate, which reflects the content of b;’s
subscription table?.

B. Some General Considerations

To develop our protocol we started by observing that if each
broker knew the Euclidean distance of its neighbors from the
recipients of a message (i.e., the subscribers) as well as its own
distance from them, then the message could be forwarded by
letting a broker b; to send it only to the neighbors closer than
itself to the subscribers.

To put such a kind of geographical routing into practice
we must solve three problems: how to calculate the list of
recipients of a message; how a broker determines its distance
from the others; how a broker determines the set of neighbors
that should process the message.

To calculate the list of the final recipients of a message
a broker should know the subscriptions issued by all other
brokers in the network, something that is clearly not rea-
sonable. Consequently, we decided to relax this requirement
by collecting information about subscribers as the message is
being forwarded and appending them as control information
in the message.

As for the second of the problems above, we excluded the
use of a location service support, e.g., based on positioning
device like GPS, and decided to measure the distance between
two brokers by exploiting the time elapsed since they were
most recently adjacent (i.e., in direct communication range) to
each other. This estimation technique is very simple (a beacon
signal is sufficient for this purpose) and reasonably accurate,
provided that the elapsed time is not too long. Section V
further elaborates on this issue.

Finally, as we wanted to keep any routing decision as simple
and “distributed” as possible, we decided to abandon the idea
of each broker collecting the distance information from its
neighbors and using it to explicitly choose the set of neighbors
that have to further forward a message. Conversely, we adopted
an implicit routing mechanisms, which uses broadcast commu-
nication to reach every neighbor, letting them autonomously
decide if re-sending the message or not, based also on the
observed behavior of other neighbors. In particular, this re-
alizes a store, delay, and cancel-or-forward approach, which
represents an efficient technique for routing: it exploits the
broadcast nature of the wireless transmissions to send multiple
copies of the same message via a single transmission; it
eliminates the need of collecting and maintaining information
(i.e., distance data) about neighboring brokers, it avoids the
burden of link breakage detection and, overall, it provides an
intrinsic resilience to the topological changes caused by the
mobility of the nodes.

2Note that this assumption is realistic for content-based publish-subscribe
systems whose subscription language is usually powerful enough to allow it.

280 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. © TROUBADOR PUBLISHING LTD

C. The Protocol

Let now consider how the basic message forwarding scheme
works. Each broker b; periodically broadcasts a beacon mes-
sage containing the predicate that summarizes its own sub-
scription table. A broker &;, which is adjacent with b;, receives
this message and stores the predicate together with the time it
received the beacon into its proximity table. This mechanism
allows each broker to determine the time elapsed since it lost
contact with any other broker. This value, which is infinite if
the two brokers never came in contact and zero if they are
still adjacent, is the basis to calculate the proximity value (or
simply “proximity”) p;; of b; with respect to b;.

Each message m carries a destination list: the (estimated)
list of brokers interested in receiving the message, each cou-
pled with the lowest proximity computed by the brokers that
forwarded the message so far. As an example, the destination
list of a message m includes a couple < i, p > if broker b;
is known to be interested in receiving the message (i.e. m
matches a subscription issued by some subscriber attached to
b;) and p is the lowest proximity from b; calculated by all
the brokers that forwarded m. The message has also a unique
network-wide identifier provided by the source broker, we will
refer to it with the notation m.id.

Suppose now that at time ¢ the broker b; receives a message
m for the first time. It will resend the message if (i) it is
aware of some new broker not mentioned in the destination
list carried by m or (ii) its proximity table holds for some
broker b5 a proximity lower than that associated to the same
broker b into m’s destination list.

Such a condition is in general not sufficient to trigger
the actual transmission of the message. The broker b;, in
fact, schedules the transmission of the message after a delay
proportional to p;; (the lowest value is considered if such a
condition holds for more than one broker, see later). If during
such a time interval it doesn’t hear the same message (i.e. a
message with the same identifier) again, then the transmission
will take place. Otherwise b; silently drops the message. The
rational behind this decision is to avoid that two adjacent
brokers will forward the same message and also to let brokers
closest to some destination to “suppress” transmission of
adjacent brokers less close.

To clarify this basic mechanism, let us consider Fig. 2,
which shows a set of nodes (the black circles) together with
their transmission ranges (the gray circles surrounding the
node). Imagine broker by publishes a message matching broker
by’s subscriptions. The message is sent via broadcast and
received both by b7 and b,. Assume that by and b4 have never
came in contact so that the destination table carried by m is
initially empty. Assume that b, missed p24 = b beacons from
bs. The broker b, schedules the transmission with some delay
proportional to 5. However, b1 is adjacent to b4 (i.e., p14a = 0)
and immediately sends the message. Broker b,, on receiving
the message from b; aborts the scheduled transmission and
silently drops m. Moreover, since the proximity carried by the
message sent by b is zero, the broker b3 ignores the message
(by definition zero is the lowest possible proximity).

\

p=00 —
%
o

Fig. 2. The basic coordination mechanism.

Broker state
st: Array of {pred, id)
pt: Array of (id, pred, time)
Every At seconds do begin
pred < st.summarize()
broadcast (pred)
pt.cleanUp()
seconds

// removes entries older than 10 =x At

end

predicateReceived (pred, brokid) begin
if 3k such that pt[k].id = brokid then
ptlk].pred « pred
pt[k].time + currentTime
else
pt.append({(brokid,pred, currentTime))
end
end

forward(m) begin
if message m’ s.t. m'.id = m.id was already received then
de-schedule transmission of m '

return
end

foreach (pred, id) in st do
if pred.matches(m) then
m.setProximity (myld,0)
destination list
sendToClient (m, id)
end
end
minProzimity + 1.0
matched « false
foreach (id, pred, time) in pt do
p pt.proximityFor(id)
if pred.matches(m) and (id € m.destinationList or
p < m.getProximity (id)) then
matched + true
m.setProximity (idp)
if min Prozimity > p then minProximity < p
end
end
if not matched and m.credit > O then
m.credit « m.credit — 1
matched + true

// Update m's

if matched then
schedule m for transmission with a delay proportional to
minProximity
end
end

Fig. 3. The Proximity-Driven Routing Protocol.
IV. PROXIMITY-DRIVEN ROUTING: PROTOCOL DETAILS

The pseudo-code of our Proximity-Driven Routing protocol,
is reported in Fig. 3. Each broker maintains the following data

BALDONI ET AL.: CONTENT-BASED ROUTING IN HIGHLY DYNAMIC MOBILE AD HOC NETWORKS 281

structures:

+ A subscription table that holds information about the
subscriptions issued by application components running
on the same node. This table is organized as an array st
of pairs (pred, id), where pred is the predicate carried by
a subscription and ¢d is the identifier of the component
that issued the subscription.

+ A proximity table organized as an array pt of triples
(id, pred, time), where id is the identifier of a broker,
pred is the predicate received from that broker, which
summarizes its subscription table, and {ime is the time
when the predicate was received.

Every AT seconds each broker b; beacons a summary
of the predicates stored into its subscription table using a
broadcast packet. A broker b; that is within the transmission
range of b; receives such a beacon and executes the procedure
predicateReceived of Fig. 3 to update its proximity
table. If the same predicate was already received from the same
broker, then the entry is refreshed, i.e. the time associated to
the entry is set to the current time. Otherwise a new element
is appended to the table. After a timeout, experimentally set to
10AT seconds, entries are deleted from the table (procedure
cleanUp in Fig. 3). In other words, information about
brokers for which more than 10 beacons have been missed, are
dropped. This reflects the general intuition, also confirmed by
the model provided in the next section, that too large proximity
values are not correlated with the effective distance between
brokers.

The information stored in the proximity table, together with
the fact that the beacon interval AT is known globally, allow
each broker b; to calculate the proximity value p;; at time ¢
with respect to any other broker &; as follows: p;; is infinite
if b; is not present into b;’s proximity table; otherwise it is
a value in the range [0..1] calculated as the number of b;’s
beacons missed by b; divided by 10.

Remembering from previous section that each message
carries a unique identifier and a destination list composed
of couples (id, proximity), we can describe how message
forwarding proceeds (see procedure forward in Fig. 3). On
receiving a message m a broker checks if the same message,
i.e., a message with the same identifier, has been received
before>. If this is the case, the message is removed from the
list of messages scheduled for trasmission (if present) and it
is dropped without any further processing.

If m was never received before then the broker checks if
it matches some predicate into its subscription table. If this is
the case, the broker delivers m to the corresponding subscriber
and set the proximity for itself into m’s destination list to 0.
This step will avoid to trigger further transmissions aiming
at hitting the broker, as clarified next. Furtherly, the broker
determines if it has to re-forward the message. This happens
when m matches at least a predicate advised by a broker b;
such that: (1) b; doesn’t belong to the destination list of the
message or (2) the proximity value for b; computed by the
receiving broker according to its proximity table is strictly

3This check can be easily accomplished by remembering the identifiers of
the messages received so far.

Fig. 4. An example of message routing.

lower than the one carried into the message.

In both cases the retransmission of the message m is
scheduled after a delay proportional to the proximity for &;
owned by the receiving broker. When more than one broker
exits that satisfies the conditions above, the delay is determined
by the lowest proximity.

If none of the above cases hold, message should be dropped,
but to increase delivery at the price of some more traffic, a
new chance is given to the message for being forwarded. To
this end, a message also carries an integer value, called the
credit of the message, which represents the number of times a
broker can force the retransmission of the message despite the
fact that the conditions stated above about proximity do not
hold. As shown in Fig. 3, if such a case occurs, the message
is scheduled for transmission with the delay associated to
the maximum possible proximity value, i.e. one. This way,
forwarding due to credit tends to be cancelled by forwarding
due to proximity.

Figure 4 portraits an example of message forwarding. The
proximity table of a node is reported close to the node, while
messages show the destination list they carry. For the sake of
simplicity instead of storing the absolute time when the node
received a beacon message, the last column of the proximity
table stores the proximity value computed as explained above.

Suppose broker S generates a message matching subscrip-
tions on brokers D, F, and . S is only aware of the
subscriptions at D, for which it holds a proximity of 0.9.
It then sends the message with destination list C' : 0.9. On
receiving the message, broker A decides to forward it. Indeed,
it knows another broker, broker (&, which is interested in the
message. Moreover, the proximity for D calculated by A is
lower than 0.9. Brokers B and C' both receive the message sent
by A. Broker B re-forwards the message since it calculates
a proximity 0.0 for D. Similarly, broker C' re-forwards the
message because it is aware of new broker ' and also has
a proximity for G (0.4) lower than that included into the

282 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. © TROUBADOR PUBLISHING LTD

oP=(12,2)

Fig. 5. A 14 x 14 grid (A = 7) with an example of relative position and
transmission area for L = 4.

destination list of the message (0.6). Finally, broker £ re-
forwards the message since it calculates two proximity values
for F' and G lower than those included into the message (0.0
against 0.5 and 0.4, respectively).

V. ELAPSED TIME DISTANCE CORRELATION

The proximity-driven protocol assumes that the time elapsed
since two nodes were most recently adjacent to each other is
a measure of the chances of the two nodes being still close
to each other, i.e., the lower the time the closer the nodes. In
this section we provide a stochastic model that supports such
a claim.

In particular, we developed a mobility model discrete in
time and space, which captures the main short therm charac-
teristic of a physical movement and calculates the conditional
expected distance between two nodes, given the time elapsed
since they lost direct connection. A similar analysis has been
carried out in [15] for a Manhattan-like topology. The model
presented here is more general as it removes the constrains
on the movements, i.e. a node can move in any direction,
including diagonals.

The field we consider (see Fig. 5) is a 24 x 24 two-
dimensional grid, wrapped along both directions, i.e., forming
a torus. Two nodes move in this field by jumping from one
point of the grid to an adjacent one. Fixing the coordinates
system on one of the two nodes allows to express the position
of the other as P = (z,y), where z,y € [0,2A4) are the
coordinates of node measured along the two axis. Analogously,
we define the distance between the two nodes as the norm:
[z, y|| = maz{min{z,2A — 2}, min{y,24 — y}}. As for
connectivity, we suppose that a wireless link exists between the
two nodes when ||z, y|| < L. This means that the transmission
area is a square with edge 2(L — 1) points. In the previous
figure L = 4.

Movements change the relative position of the two nodes
along the two axis independently from each other. The change
can be of at most one grid point, in each direction, so that the

e e[

(1-a).
2\'!* 1-B /
(1-a)2
C

Fig. 6. Markov chain associated to movements.

relative movement can be described by a pair M = (mg, my),
where m,, m, € {—1,0,1}. Movements occur at regular
discrete time ticks. Hence, if P is the current relative position
of the two nodes and P’ was the previous one, we can write
P =P oM = (2®mg,y @my), where we define
a®b = (a+b)mod2A if a+b > 0 and 2A+ (a+b) otherwise.
According to this formula, movement at time ¢ determines the
position of the node at time ¢ from its previous position at
time ¢ — 1.

To model realistic patterns of mobility while keeping the
analysis tractable, we assume that the current movement,
M, only depends on the previous one M’, according to the
following rules:

« ifml, =0,m; =0
(1—a)/2 ifml, =0,my; #0

Prim;Im,} =< if ml, £0,my = m),
1-8 if ml, £ 0,my =0
0 otherwise

a similar relationship also applies between m, and m;

These are the transition probabilities of the Markov chain
portrayed in Fig. 6; o can be interpreted as the probability
that the relative position along one axis doesn’t change given
that it was also unchanged in the previous time tick, while
[represents the probability that the movement along one
direction repeats again. Clearly « and /5 have to be less than
1. Also note that we do not allow m, and m, to change
directly from 1 to —1 and vice versa; hence abrupt changes
are avoided.

The average value of the module of the relative speed of
the two nodes along an axis, denoted by s, is given by the
stationary probability 71 (= m_1) of the chain:

l—« l—«
s = =

(l-a)+(1-0) 2-(a+p)

Let D(k) be the distance at time k between the two
nodes. Its expected value depends on the initial “state” sg =
(20, Yo, My, My,) observed just after the wireless link be-
tween the nodes is broken. Specifically, if Pr{sy} is the
probability of observing the state sg, we can write:

E[D(k)] = Y E[D(k)|s0]Pr{s0}

From our model of connectivity we have that the position
after a breakage must belong to the square with edge L.
Similarly, from how we defined the concept of movement, M,

BALDONI ET AL.: CONTENT-BASED ROUTING IN HIGHLY DYNAMIC MOBILE AD HOC NETWORKS 283

A8

L-1
Al

NN NN

A2

R/_J

A3

Fig. 7. Possible initial states after a link breakage.

we have that m,, and my, cannot be arbitrary numbers but
must be compatible (see later) with the current position of the
two nodes and the event of link breakage. In particular, due
to the symmetry of our model, we can divide the square with
edge L into eight equivalent segments, A1, .., As, as done in
Fig. 7. They are equivalent in the sense that the conditional
expected distance given the node exits from segment A;, say
E[D(k)|sy € S;] is the same for any segment (S; being the
set of possible states just after the link is broken due to the
node exiting from segment A;). Moreover, a node has the same
probability of exiting from any segment. Hence:

E[D(k)] = ZE[D(k)|50 € 5;]Pr{sy € S;}
= ZE[D(k)|so € SZ»]% = E[D(k)|so € S1]

To compute E[D(k)|sy € Si1] we first observe that
(z,y,my, my) can be an initial state, i.e. it belongs to S1,
only if the following conditions hold: (i) « = L, y = 0..L
and (ii) my = my = 1 if y = L; my = Limy, =€ [0,1] if
y=1L -1, my,my € [-1,0,1] if y < L — 1. We say that
a movement (m,,m,) is compatible with the position (z, y)
if it satisfies the above conditions; they are depicted as small
arrows near the possible exit positions in Fig. 7.

If we call C'(z,y) the set of movements that are compatible
with the position (z, y) we can write:

Pr{(x, Yy, myg, my)}
= Pr{(z, y)} Pr{(ms, my)|(mz, my) € C(z, y)}
hence:
Pr{(x, Yy, myg, my)}
1 Pr{mgy}Pr{m,}
L+1 Z(mz,my)EC(x,y) Pr{ml‘}Pr{my}
Let now P, (z,y, mg, my, k) be the probability that at time
k the position is (z, y) and the movement is (m,,my), given
that at all previous times k' < k the position (z',3’) was such
that ||«’,¢'|| > L (i.e. the nodes never established the link

again) and that at time & = 0 the state was sy. We can write
the recurrent equation as shown in Fig. 8.

8 8
E[D(k)] = Y E[D(k)lso € Si|Pr{so € Si} = > E[D(k)|so € Si]% =E[D(k)|so € S1]

i=1 i=1

Fig. 8. Recurrent equation.
25 —ry
+4+ﬂ"‘*+%
«/7* i
20 - o
+ /*

8 '
g 5t
z
o
&
< ¥
g 10
2
<

5 5=0.8 ——

s=0.6
0 A A A A
0 10 20 30 40 50
Elapsed Time

Fig. 9. Expected distance as a function of elapsed time after a link breakage,
A =20,L =10.

E[D(k)] = E[D(k)|so € Si]= > Pr{so}

$0€S1

1/)Pso(l‘, Y, Mg, My, k)
[lz,yl|=9,me|<1,|my| <1

In Fig. 9 we report the expected distance D(k) obtained
by numerically resolving the previous recurrent equation, as a
function of & and with the speed s given as a parameter. We
can observe how, for an elapsed time below a given threshold
value, the lower the time the lower the expected distance. This
means that for a given speed, the chances of the destination
being close to a node are higher if the node has seen recently
the destination and that such a chance increases as the speed
is decreased. Thus, the elapsed times can be used to estimate
the relative proximity of two nodes wrt a destination.

VI. EVALUATION

To asses the performance of our proximity-driven routing
protocol we simulated it using J-Sim [5], an open-source
network simulator that provides a full simulation of the 802.11
protocol stack as well as a fairly complete and detailed signal
propagation model. Simulation allows us to test the perfor-
mance of our protocol in very large and complex scenarios,
involving hundreds of mobile nodes, something very hard to
achieve using real devices.

The main figures we measured were delivery and overhead.
In a cb-ps application, the former is defined as the average ratio
between the number of subscribers that received a message and
the total number subscribers interested in the message. As for
the overhead, we defined it as the average number of link-
layer packets generated for each delivered message (including
the beacon packets generated by our protocol).

As a baseline to evaluate the performance of our protocol,
we used a pure gossip protocol, which represents the simplest
structure-less approach for cb-ps message dissemination. In

284 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. © TROUBADOR PUBLISHING LTD

[Parameter [Default Value |
Number of nodes N =100
Field area A = 1000 x 1000 m?
Minimum speed Sm =10m/s
Maximum speed Sn =20m/s
Number of publishers N,=2
Publishing rate (for each publisher) Pr = 0.5 msg/sec
Number of subscribers N:; =10
Beacon interval At =5 sec
Message credits Cr =20
Forwarding probability p=205

Fig. 10. Default simulation parameters.

the gossip protocol we considered, brokers delivers messages
using the broadcast facility provided by the MAC layer (i.e.,
802.11 in our simulations), adopting a forwarding probability
p € (0,1]. This means that the broker running on the
same node of the publisher, i.e., the first one forwarding the
message, delivers it using an 802.11 broadcast packet, while
the receiving brokers, independently from the content of their
subscription tables, re-forwards it with a probability p € (0, 1].

A. Simulation Settings

The reference scenario we considered is that of a MANET
composed of a number of nodes dispersed in a square field,
which move around according to a random waypoint mo-
bility model [9]. Each node randomly chooses a destination
and starts moving toward it at a random speed. Once the
destination has been reached, the node randomly determines
another destination, and continues in that direction with a new
randomly chosen speed.

The total number IV of nodes, the area A of the field, and the
minimum 5, and maximum Sp; speed nodes can move at are
the main physical parameters that characterize the simulated
scenario.

As for the wireless protocol, we used the 802.11 network
model provided by J-Sim. To reflect a realistic open field
scenario, we choose a two rays ground propagation model
with a random transmission range varying between 100 and
200 meters.

A broker runs on each node and it has either a single
publisher, or a single subscriber attached to it, or it acts as
a pure forwarder. We assume that N, publishers produce
messages of interest for N, subscribers at a publishing rate of
Pr msg/s. These parameters characterize the cb-ps application
model.

Finally, the main parameters that characterize our protocol
are the beaconing interval A¢ and the number of credits C'r
initially assigned to a message. Similarly, the gossip protocol
we use for comparison is characterized by the probability of
re-forwarding P.

Unless otherwise stated all the simulation parameters above
assume the default values listed in Table 10.

B. Simulation Results

To have a baseline to start evaluating our protocol we first
simulate the gossip protocol in our reference scenario (see
Fig. 10) varying the forwarding probability p. Results are
reported in Figure 11. It is worth observing how the delivery

100

% of delivery

0 L L L L L L L L L
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Forwarding probability

number of packets sent for each received message

L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Forwarding probability

Fig. 11.
(right).

Impact of forwarding probability on delivery (left) and overhead

exhibits the typical bimodal behavior of gossip protocols [7].
We also note how 100% delivery is never reached due to
collisions at the MAC layer and network partitioning, while a
reasonable percentage of delivery, say more than half of the
number of interested subscribers, can be achieved at the cost
of at least 5 packets per delivered message.

Figure 12 shows the performance of our protocol as a
function of the number of credits under the same reference
scenario. Although the maximum delivery is slightly lower
than the one obtained by gossip, reasonable high values can
be reached at a much lower cost. As an example, without
using any credit, our protocol delivers 70% of the messages
published using less than a half packets with respect to gossip
(respectively 2.5 and 5.5 packets per delivered message). Gos-
sip shows the same overhead of our protocol with zero credits
(i.e., 2.5 packets per delivered message) while delivering only
30% of the published messages. By increasing the number of
credits the delivery can be increased while still keeping a high
convenience with respect to gossip.

The next point to evaluate is how the number of sub-
scribers affects the protocol’s performance. Figure 13 shows
the delivery and overhead as a function of the number of
subscribers, measured under a different number of credits. The
performance of the gossip protocol are also reported varying
the gossip probability. It is interesting to note the effectiveness
of the credits mechanism as a way to increase the delivery,
which is particular effective when the number of subscribers

BALDONI ET AL.: CONTENT-BASED ROUTING IN HIGHLY DYNAMIC MOBILE AD HOC NETWORKS 285

95
90
65
60
50
45

100 T T

85 [9
80 g
751 g
70 g
55 - b

% of delivery

40
35
30
25
20
15
10

credits

number of packets sent for each received message
o
T

credits

Fig. 12. Impact of credits on delivery (left) and overhead (right).

is low. Our protocol is always able to assure a high delivery
fraction (more than 85%) independently of the number of
subscribers and at progressively decreasing cost. As expected,
the efficiency of the gossip protocol increases with the number
of subscribers.

Another parameter that could impact performance is the rate
of published messages. As shown in Fig. 14, our protocol is
only very marginally influenced by this parameter, while gos-
sip is much more sensible, expecially when p increases. This
can be explained by remembering, from previous simulations,
that gossip loads the network much more than our protocol.
As a consequence, when the publishing rate increases, gossip
suffers from a relevant number of collisions, which do not
occur when our protocol is used. It is worth noticing that an
increase in the publishing rate also decreases the overhead of
our protocol. To understand this behavior we have to remember
that as part of the overhead we also count the beacon packets
produced by our protocol. The number of such packets is fixed
(it depends on the beaconing interval, only) and it represents
a lage fraction of the overhead when a few messages are
published. When the number of messages published (and
consequently received) grows, this contribute to the overhead
becomes negligible.

Next step is to study how mobility affects the performance
of our protocol. Figure 15 shows how delivery and overhead
change when the speed of nodes increases, showing also the
impact of adopting different beaconing intervals (i.e., 2.0,
4.0, and 6.0 seconds) at different speeds. At fist one could

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

5

% of delivery
A B

p=03

0 S S S S S RS
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
number of subscribers

PDR ——
gossip --------

number of packets sent for each received message

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
number of subscribers

Fig. 13. Effect of increasing the number of subscribers on delivery (left)
and overhead (right).

think that a shorter beaconing interval would provide the best
performance (not considering the impact on the overhead). The
number of missed beacons, in fact, is the key parameter we
use to estimate the distance between brokers, and ultimately
to guide our protocol. A shorter beaconing interval should
provide the best accuracy and consequently the best perfor-
mance. On the other hand, we have to remember that in order
to make sure that the “missed-beacons to distance” correlation
is valid for the entries stored in the proximity table, we delete
them after 10 missed beacons. As a consequence, under low
mobility a short beaconing interval results in removing valid
entries from the table (i.e. those for which the correlation is
still valid). Convrsely, under a high mobility degree a long
beaconing interval does not provide enough accuracy. This
explains the results in Fig. 15. The same beaconing interval
cannot account for every situation. Each range of speeds
has an “ideal” beaconing interval, while other choices reduce
performance.

To analyze how our protocol performs when the size of
the network grows, and to compare it against the gossip, as
before, we varied the number of nodes in the network, while
keeping their density constant, i.e., by also increasing the size
of the simulated area. Given the high impact on the protocols’
performances when the density of subscribers changes, as
shown in Fig. 13, we fixed the percentage of subscribers with
respect to the total number of nodes N to 10%. For the same
rason we fixed the percentage of publisher to 2% of N and we

286 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. © TROUBADOR PUBLISHING LTD

100

% of delivery

40 F e |

p=0.3
20 [
0
0.1 05 1 2 4 6
publish per second per publisher (2 publishers)
12
o
&
2 10 p=1.0 4
@
E ,,,,,,,,,,,,, p=0.9
2
>
8 8
o
S p=0.7
<4
3
s 6r
g p=0.5
2
s
i &LO_L—/—/’
<4
3 =0.
E I Ci=
]
k-1 E Cr=0
£ 2
5
= PDR ——
0SSip --------
. . . .
01 05 1 2 4 6

publish per second per publisher (2 publishers)

Fig. 14. Effect of increasing the publishing rate on delivery (left) and
overhead (right).

kept the publishing rate (per publisher) constant. As shown in
Fig. 16 both our protocol and gossip scale very well, with
gossip decreasing slightly its delivery as the network size
grows, and our protocol marginally increasing it.

The second scalability test we run, see Fig. 17, consists
in increasing the number of nodes N while keeping the area
A constant, hence producing an increase in the node density.
Here, we observe an interesting phenomenon, which is due to
the increasing number of collisions: a low gossiping probabil-
ity provides better performance as the density increases, while
using a higher probability performance starts decreasing after a
given number of nodes. Our protocol is much more resilient to
collisions because of the suppression mechanism it uses, which
can be considered a form of auto-adaptation to the density of
the network. Here, as usual, the overhead of our protocol is
far better than gossip and is rather constant with respect to the
increasing density of nodes.

VII. RELATED WORK

As mentioned in Section II, the last decade saw the
development of several cb-ps middleware platforms, which
embody different routing algorithms to implement content-
based publish-subscribe facilities for fixed networks (for a
detailed comparison see [8], [1], [3], [16]).

At the same time, in the last few years we have seen a
continuous growth in the dynamism of networks, motivated

75

% of delivery

50 L L L L
5-15 10-20 15-25 20-30 25-35 30-40 35-45

speed (min-max)

35

number of packets sent for each received message

.
5-15 10-20 15-25 20-30 25-35 30-40 35-45
speed (min-max)

Fig. 15. Delivery and overhead versus speed at different beaconing intervals.

by peer-to-peer overlays and wireless networking, which orig-
inated a number of challenging issue for routing in general
and for content-based routing in particular. Our research
group have addressed these issues within the cb-ps context,
by adapting traditional tree-based cb-ps routing techniques,
optimal from a pure traffic standpoint in stable networks,
with the addition of advanced tree maintenance mechanisms
for both fixed peer-to-peer networks [14], and mobile ad-
hoc networks [13]. These experiences convinced us that tree-
based routing techniques cannot be applied in very dynamic
scenarios like those we consider in this paper.

To overcome the intrinsic fragility of trees, other researchers
experimented mesh based solutions. Among them, Yoneki and
Bacon [19] proposed using the On Demand Multicast Routing
Protocol (ODMRP) for building an optimized dissemination
mesh by applying techniques developed for multicast routing
in MANETSs to the context of a cb-ps system. In particular,
they used bloom filters to summarize subscriptions. As a result,
the cb-ps scheme is actually approximated to a topic based
one, and the cost of this approximation is clearly an intrinsic
limitation to such a solution.

However, as mobility and size of the network grow, overlay
state maintenance, whichever form it takes, tends to pose
severe scalability problems. As a way to alleviate them,
Content Based Multicast [20] and STEAM [12] introduce
spatial scopes as a way to limit the diffusion of messages
to a restricted geographical zone, thus avoiding the burden of
maintaining a global routing topology. In Content Based Mul-

BALDONI ET AL.: CONTENT-BASED ROUTING IN HIGHLY DYNAMIC MOBILE AD HOC NETWORKS 287

> 06 p=05
3
2
]
]
5
2 04f

02

PDR ——
0SSIp ~—----—-
0
100 150 200 250 300 350 400
number of nodes

12
o
& |
§ 10 |~ p=t T -
E
-
2
=z
3 8r
o
T T
& p=0.7
3
5 °f
-
S p=0.5
5}
£ 4t
8 Cr=1
s
5
?g Cr=0
£ 27
5
2

100 150 200 250 300 350 400
number of nodes

Fig. 16. Delivery and overhead as network size grows.

ticast messages are generated and spread in a given direction
up to a given distance. Nodes interested in information about
a given area send pull requests (i.e, subscriptions) in that area,
where the matching actually occurs. Similarly, STEAM offers
a content-based service to applications and implements it using
a “proximity-group” communication mechanism. Proximity
groups are defined by a proximity area, which defines the
validity of messages and the type (the subject) of the filter,
while the full content based filters are not used for routing
but kept by subscribers. Moreover, the group communication
middleware used by STEAM [10] provides strong guarantees
about message delivery and ordering, but of course it will scale
poorly if scopes grew beyond a given scale.

Besides spatial scoping, which intrinsically provides
content-based routing only in a limited area around the pub-
lisher, other mechanisms were recently proposed to limit the
amount of state brokers needed to keep while still providing
content-based routing network-wide. In [2], a TTL is used
to limit the propagation of subscriptions. Published messages
“follow” the routes defined by subscription propagation (as
in subscription forwarding routing — see Section II) when
they are available, otherwise they are propagated using pure
probabilistic gossip techniques. Similarly, the authors of Au-
tonomous Gossip [4] propose a completely stateless, bio-
inspired, self organizing mechanism to disseminate informa-
tions in a content-based fashion. Each mobile node of a
MANET has a profile, which can be thought of as the node’s
subscriptions, and a destination, which is the place where the

% of delivery

p=0.3,

0.6

05

04 L - ; . ;

100 150 200 250 300 350 400
number of nodes

12
% Pl
@0 T m

=0.9

g PO
°
2
=z
3 8r
o p=0.7
= .
S
4
3
5 sr
pet PO
S L e
&
g Cr=1 p=03
S
)
g 2rCr=0
5
2

0

100 150 200 250 300 350 400

number of nodes

Fig. 17. Delivery and overhead as node density increases.

node is going, which is assumed to be known to the routing
algorithm. Messages are also labelled with a profile, a destina-
tion, or both. Messages migrate from node to node according
to their “similarity” with the node’s profile and destination.
Depending on the hospitality (based on similarity) received at
the present node, messages decide to either continue to reside,
migrate, or replicate to another node with a more suitable
profile and/or goal destination. While similar to our algorithm
in the idea of a totally structure-less dissemination based
only on local information, Autonomous Gossip has several
peculiarities. Indeed, with our algorithm messages follow the
“traces” left by mobile nodes, which spread their interests
through beacons that populate the proximity tables used for
routing. Conversely, Autonomous Gossip messages reside in
the routing nodes indefinitely, waiting to find interested targets.

Location-aided routing, also called geographical routing, or
position-based routing, is a different approach, which also
holds the promise of providing cb-ps in a structure-less
fashion. Currently, this kind of routing has been used for
addressing unicast messages in MANETS in a way that avoids
keeping and maintaining routing tables by exploiting the
knowledge about the geographical position of the destinations.
This allows to keep the routing decision entirely local to the
forwarding node, by propagating messages along a path of
decreasing distance to the destination, in a similar way our
own routing algorithm does. Recently, geographical routing
have been extended to provide multicast services, e.g., see [11]
and [18], while, to the best of out knowledge, it has never been

288

applied to content-based dissemination. Clearly, our algorithm
can be viewed as a special form of geographical routing,
even if it is characterized by several peculiarities. First of
all the domain of application, content-based routing, which
is new in the area. Moreover, all the previous geographical
routing approaches we are aware of, rely on some sort of
self-localization mechanism to compute the current position
of nodes (e.g., through a GPS) and on a location service, used
to determine the position of message recipients. Our approach
relaxes both these requirements, in creasing the applicability
of the approach.

Finally, the idea of exploiting the elapsed time since two
nodes were most recently neighbors as a proximity metric
has been originally proposed in [6] in the framework of on-
demand path discovery. This idea has been further elaborated
in [15].

VIII. CONCLUSIONS

In this paper we explored a new approach to content-based
routing in Mobile Ad Hoc Networks. Our protocol doesn’t re-
quire any network-wide structure to support routing decisions.
Rather, it uses broadcast to efficiently send a message to all
neighboring nodes and defers to them the decision to forward
the message based on an estimation of their distance from a
potential subscriber of the message.

The protocol is very resilient to topological changes and
can thus be profitably used in settings characterized by a high
mobility degree. We have shown through simulations that mes-
sages can be delivered with high probability to the interested
subscribers at a low cost. We are currently investigating how
to improve the performance by increasing the accuracy of the
estimations by taking other information, e.g. the permanence
of a node close to another, into account.

ACKNOWLEDGMENTS

The authors would like to thank Gian Pietro Picco and
Paolo Costa for the interesting discussions about content-based
publish/subscribe systems in mobile ad-hoc networks.

REFERENCES

[1] A. Carzaniga, D. S. Rosenblum and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Trans. on Computer
Systems, 19(3):332-383, August 2001.

[2] P. Costa and G. P. Picco. Semi-probabilistic content-based publish-
subscribe. Proc. of the 25 Int. Conf. on Distributed Computing
Systems, Columbus, OH, June 2005. IEEE Press.

[3] G. Cugola, H. Di Nitto and A. Fuggetta. The JEDI event-based infras-
tructure and its application to the development of the OPSS WFMS.
IEEE Trans. on Software Engineering, 27(9):827-850, September 2001.

[4] A. Datta, S. Quarteroni and K. Aberer. Autonomous gossiping: A self-
organizing epidemic algorithm for selective information dissemination
in wireless mobile ad-hoc networks. In Proceedings of the International
Conference on Semantics of a Networked World (IC-SNW04). LNCS,
Springer Verlag, 2004.

(3]
(6]

(71
(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. © TROUBADOR PUBLISHING LTD

J-Sim Web Page.

http://www.j-sim.org.

H. Dubois-Ferriere, M. Grossglauser and M. Vetterli. Age matters:
efficient route discovery in mobile ad hoc networks using encounter
ages. Proceedings of the 4th ACM international symposium on Mobile
ad hoc networking & computing, pp. 257-266, Annapolis, MD, 2003.
ACM Press.

Z. Haas. et al. Gossip-based ad-hoc routing. Proceedings of IEEE
INFOCOM 2002, New York, 2002. IEEE.

P. T. Eugster, P. A. Felber, R. Guerraoui and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 35(2):114—
131, 2003.

D. B. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. Proc.
of the Workshop on Mobile Computing Systems and Applications, pp.
158-163, 1994.

M. Killijjian, R. Cunningham, R. Meier, L. Mazare and V. Cahill.
Towards group communication for mobile participants. Proceedings of
the 1st ACM Workshop on Principles of Mobile Computing (POMC
2001), pp. 75-82, 2001.

M. Mauve, H. Foler, J. Widmer and T. Lang. Position-based multicast
routing for mobile ad-hoc networks. SIGMOBILE Mob. Comput.
Commun. Rev., 7(3):53-55, 2003.

R. Meier and V. Cahill. Steam: Event-based middleware for wireless
ad hoc networks. Proceedings of the Ist International Workshop on
Distributed Event-Based Systems (DEBS ’02), Vienna, Austria, July
2002.

L. Mottola, G. Cugola and G. P. Picco. Tree overlays for publish-
subscribe in mobile ad hoc networks. Technical report, Dipartimento
Elettronica e Informazione, Politecnico di Milano, 2005. Submitted for
pubblication at Percom’06.

G. P. Picco, G. Cugola and A. L. Murphy. Efficient Content-Based
Event Dispatching in Presence of Topological Reconfiguration. Proc. of
the 237 Int. Conf. on Distributed Computing Systems (ICDCS03), Pp-
234-243. ACM Press, May 2003.

R. Baldoni, R. Beraldi and L. Querzoni. A hint based probabilistic
protocol for unicast communications in manets. Ad Hoc Networks (to
appear).

D. S. Rosenblum and A. L. Wolf. A Design Framework for Internet-
Scale Event Observation and Notification. Proc. of the 6" European
Software Engineering Conf. held jointly with the 5 Symp. on the Foun-
dations of Software Engineering (ESEC/FSE97), LNCS 1301, Zurich
(Switzerland), September 1997. Springer.

C.-K. Toh. Ad hoc Mobile Wireless Networks. Prentice Hall PTR, Upper
Saddle River, 2002.

M. Transier, H. Foler, J. Widmer, M. Mauve and W. Effelsberg. Scalable
Position-Based Multicast for Mobile Ad-hoc Networks. Accepted for
Proc. of the First International Workshop on Broadband Wireless Mul-
timedia: Algorithms, Architectures and Applications (BroadWim 2004),
San Jose, CA, October 2004.

E. Yoneki and J. Bacon. An adaptive approach to content-based
subscription in mobile ad hoc networks. Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications
Workshops (PERCOMWO04). 1EEE, 2004.

H. Zhou and S. Singh. Content based multicast (cbm) in ad hoc
networks. MobiHoc ’00: Proceedings of the Ist ACM international
symposium on Mobile ad hoc networking & computing, pp. 51-60,
Piscataway, NJ, 2000. IEEE Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

