
MultiCaR: Remote invocation for large scale, context-aware applications

Gianpaolo Cugola

Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy

cugola@elet.polimi.it

Matteo Migliavacca

Department of Computing

Imperial College London, United Kingdom

migliava@doc.ic.ac.uk

Abstract—Remote Method Invocation (RMI) provides a
powerful programming abstraction, well integrated with the
object-oriented paradigm. Like conventional method calls, RMI
interaction is point-to-point and uses an explicit address to
determine the target of invocations. While natural and easy
to use, these characteristics limit the applicability of RMI
in large scale, dynamic scenarios. In this paper we present
MultiCaR: a multicast extension to RMI, which provides a
declarative addressing model that maximizes the decoupling
among components, supporting a context-aware programming
style that nicely fits dynamic scenarios. The set of guarantees
provided by MultiCaR have been carefully defined to allow an
efficient implementation of the model for large scale deploy-
ments. Finally, the MultiCaR prototype we developed exploits a
content-based routing infrastructure to provide flexibility and
scalability at the implementation level. We argue that these
characteristics make MultiCaR a good candidate to develop
large scale, object-oriented, dynamic applications, in the same
way as content-based publish-subscribe has proved to support
large scale, event-driven, dynamic applications.

Keywords-Remote Method Invocation; declarative address-
ing; content-based routing; context-aware programming.

I. INTRODUCTION

Advancement in telecommunication and information tech-

nology is establishing a new computation infrastructure

being massively decentralized, strongly heterogeneous, and

extremely dynamic. These characteristics demand unprece-

dented level of dynamism to distributed applications [1].

To answer this need, programmers make use of middleware

abstractions that help them to build applications capable of

operating in this new dynamic world. In particular, publish-

subscribe has recently attracted programmers by supporting

an interaction style among distributed components that is

multi-point, implicitly addressed, and asynchronous [2], [3].

These characteristics provide the level of decoupling among

components that allow them to evolve independently, adapt-

ing to a changing environment, and tolerating those failures

that frequently happen in such dynamic scenarios.

On the other hand, as a natural extension to procedure call,

remote method invocation (RMI) is still the most common

paradigm to build object-oriented, distributed applications.

Its characteristics are the opposite of those mentioned above:

it is point-to-point, explicitly addressed, and synchronous.

While synchronous interaction is intrinsic in the concept

of a remote method invocation, the other properties can in

principle be removed, increasing the level of decoupling

among components. In this paper we achieve this goal by

designing MultiCaR: a multicast extension to RMI explicitly

designed for large scale, dynamic environments. The Mul-

tiCaR model combines multicast invocation with a powerful,

declarative addressing schema, which enables decoupling

among distributed components.

The paper is structured as follows: in Section II we

analyze the previous multicast RMI proposals, explaining

why they are not suited to the scenarios we target. After

a general description of such systems, we focus on their

addressing schemas, recognizing their limitations. Section III

presents our model of remote method invocation, while

Section IV presents a scalable implementation of this model

over REDS [4], a reconfigurable, distributed, content-based

publish-subscribe infrastructure. Finally, Section V analyzes

the performance of MultiCaR, while Section VI draws some

conclusions and discusses future work.

II. BACKGROUND AND MOTIVATION

The idea of building a new remote invocation originated

from the need of simplifying the development of complex,

context-aware applications for large scale, dynamic systems

like those enabling pervasive computing. As mentioned in

the previous section, our goal is to maximize the level of de-

coupling among the components that build such applications,

leveraging a content-based routing infrastructure specifically

tailored to dynamic scenarios, and to do so in the context

of a remote invocation paradigm.

As an example of the applications we have in mind,

consider an emergency response system designed to support

the work of firefighters in the process of extinguishing a

building on fire and evacuating the people inside. In this

situation we could imagine that each firefighter is equipped

with a PDA capable of communicating wirelessly with the

control center, with nearby sensors, and with other firefight-

ers’ PDAs. Before entering a new area of the building the

firefighter uses his PDA to access nearby sensors and get

the temperature from sensors within fifty meters in the north

direction, while the control center issues commands such

as alert all personnel not actually involved in evacuation

procedures to leave the building immediately.

Such kind of interaction is both very natural from a

programmer’s point of view and extremely powerful: it

is multicast in nature and, most importantly, declaratively

addressed. This allows for maximum decoupling between

callers and callees. As an example, before the first invocation

above takes place, the firefighter’s PDA does not know the

identity of the sensors around him, nor those sensors can

anticipate that they will be invoked by some firefighter who

happens to be nearby. It is the mutual “context” of the

firefighter and sensors that determine the need of interaction.

Unfortunately, invocations of this kind are not supported

by today’s middleware: the multicast extensions to RMI

proposed so far, in fact, were designed with totally different

scenarios in mind and do not easily adapt to the large scale,

loosely coupled, dynamic scenarios we envisioned above.

This is particularly evident if we look at their binding

and addressing model, which fail in providing the level

of decoupling required by those scenarios. The remainder

of this section motivates this claim by describing currently

available multicast extensions to RMI.

A. Existing Multicast RMI Middleware

The remote invocation paradigm was originally born with

the goal of easing the sharing of resources in the ARPANET

by substituting all the application-specific request/reply pro-

tocols with a single one [5]. In 1988 Sun Microsystems

submitted a specification [6] of their RPC implementation,

which is still in widespread use. With the advent of the

object-oriented paradigm, RPC was revisited into RMI by

middleware such as CORBA and Java RMI. As a gener-

alization of traditional method calls, RMI provides only

unicast invocations (RPC had limited support for unreliable

multicast invocations). This has been seen as a limitation

and resulted in a number of proposals to extend RMI to

multicast invocations, i.e., by letting the target of a specific

invocation being a group of objects instead of a single one.

Interestingly, while RMI middleware were designed to

support Internet-wide interactions, the research on multicast

invocation styles focused on more controlled and smaller

scale systems1. Multicast extensions to RMI were in fact

proposed in two, different, domains: parallel programming;

and fault-tolerant, replicated systems.

In the case of parallel programming systems, multicast

messaging primitives, like MPI [7] and its Java deriva-

tives [8]–[10] were used from the very beginning to dis-

seminate a single request to a group of objects, letting

each one compute and return a piece of the desired result.

More recently, Group Method Invocation (GMI) [11] was

proposed as a multicast extension to Java RMI, built on

top of MPI, to bring the RMI programming style into the

realm of parallel programming. Through the GMI services,

clients can dispatch invocation calls to a group of targets and

1Probably due to the lack of an Internet-wide multicast infrastructure

request either none, one, or all the results back, optionally

aggregated on the way back to the caller through a combine

function. groups and forbidding joins or leaves after the

group is created [12]. This is not a severe limitation when

running CPU-intensive, parallel applications on clusters, as

the environment is mostly static and pretty well controlled,

but it is instead totally unacceptable in the dynamic scenarios

we are interested in, where new components come and leave

in a very fluid situation.

Similar considerations hold for the second field where

multicast invocations were proposed: that of fault-tolerant,

replicated systems. In such domain, multicast RMI is used to

replicate and keep synchronized several copies of an entity to

increase dependability in the presence of faults. Middleware

like Jgroup [13], JGroups [14], Filterfresh [15], and the

system described in [16] aid the client programmer by

providing invocation transparency on a group of replicated

objects. In particular, each object in a group is assumed to

be an exact replica of the others, invocations are broadcasted

to all group members (too keep consistency), and a single

result is returned to the client (all the members in a group

are supposed to return the same result, so there is no reason

to collect all of them). This ends up in a communication

service characterized by a very specific semantics, which

cannot be used as a general multicast invocation facility.

Moreover, at the implementation level, a complex combi-

nations of reliable, causal, and atomic broadcast between

group members in a virtual synchrony setting has to be put

in place to maintain the required replica consistency in the

face of faults. This hampers scalability, which is limited to

few replicas for each object.

B. Addressing in Existing Multicast RMI

In traditional RMI middleware, method invocation is me-

diated by a local representative for the remote entity called

stub. The caller must obtain a stub for the target it want

to invoke (usually through a lookup service), before using

it to dispatch invocations. This behavior is also common

in multicast RMI middleware, where each stub refers to a

group of entities instead of a single one.

Moving from this observation, we introduce a first distinc-

tion among the various addressing schema used by multicast

RMI systems by looking at the time when the targets

of invocations are bound to stubs. We call late-binding a

schema that allows the set of targets associated to each stub

to change after the stub is created, early-binding a schema

that does not offer this feature.

An early-binding approach usually performs better. It

anticipates the resolution of targets, allowing them to be

directly referred by the stub and used many times for dif-

ferent invocations, without additional costs for establishing

the binding. This is the approach adopted by standard RMI

and by the multicast extensions targeted at parallel systems,

like GMI, which focus on performance. On the other hand,

an early-binding approach might raise consistency issues in

dynamic environments when new targets become available

and old targets leave or become unreachable due to network

partitions. A late-binding approach is better suited to such

scenarios. This is the choice adopted by multicast RMI

systems designed to support fault-tolerant, replicated appli-

cations, which delegate precise membership computation to

the replicated servers themselves.

Another dimension along which the addressing schemas

used in multicast RMI systems can be categorized is the

structure of the name space used to select the targets of

the invocations. It can vary from simple, flat name spaces,

as in the RMI registry, to structured name spaces, as in

JNDI [17], up to complex naming systems in which names

are composed of attribute-value pairs used by callers to

lookup the targets for their invocations. This is the case

of Jini [18], which allows remote entities to be retrieved

according to the interfaces they implement and to the value

of the attributes they specified at registration-time.

Most of the systems cited in the previous section, namely

Jgroup, JGroups, GMI, and the system described in [16], use

an explicit notion of “group” to which potential targets of

invocations must explicitly join in combination with a flat

name space to lookup groups. This approach has several

limitations when used in large scale, dynamic scenarios.

Indeed, flat names offers scarce flexibility because of their

lack of expressiveness power, while the use of an explicit

notion of “group” increases the coupling between application

components by requiring an agreement between callers and

callees on the grouping of entities.

To remove these limitations, MultiCaR provides a late-

binding approach where the concept of group is never used

explicitly. Callers specify the entities they want to reach

through predicates over a set of attributes that define the

relevant properties of each specific entity, while targets use

a similar approach to select their potential invokers. The

binding between callers and targets is determined by com-

bining these two set of predicates at invocation-time. This

schema, which is innovative in the panorama of multicast

RMI extensions2, provides the flexibility and decoupling

among callers and callees that is required by the large scale,

dynamic scenarios we target.

III. THE MULTICAR MODEL

As mentioned above, in MultiCaR each entity (both

invokers and targets) is characterized by a set of attributes

expressing its relevant properties. As an example, meaning-

ful properties for a firefighter are his location, his equipment,

the current task he is involved, his role, and so on. More in

general, these properties represent the contextual information

associated to each entity. Accordingly, in the following we

collectively refer to them as the context of the entity.

2The Intentional Naming System [19] exploits a similar, albeit simpler,
concept for message-based communication

Each attribute building the context of an entity is com-

posed of a triple 〈name, type, value〉. The name identifies

the attribute, the type is a basic data type such as string or

integer, and the value is the current value of the attribute.

We say “current” because, just like in our example and in

context-aware applications in general, the context of each

entity may change and MultiCaR supports this by allowing

the values of context attributes to change at run-time.

The context of each entity forms the basis for the powerful

addressing model adopted by MultiCaR. When an entity

needs to interact with others, either as a caller or as a callee,

it specifies the context of the other endpoints through a

context-filter, which is built as a set of conditions. Each

condition is composed of a triple 〈name, operator, value〉.
While name and value have the same meaning as above,

the operator is chosen among a set of predefined operators

including equality (applies to every type), prefix, suffix,

and substring (apply to strings), and standard arithmetic

comparison operators (apply to numeric types).

As an example of how context-filters can be used, con-

sider the case of an entity that must act as a target for

invocations. Upon creation its initial context is specified in

the constructor; at export time3 a context-filter is specified

to implicitly select the callers that this entity is willing to

serve; afterward, both the context and the context-filter may

change to reflect changes in the entity state, including the set

of callers the entity is ready to serve. Similarly, callers may

specify a context-filter at stub-creation time to implicitly

select the targets that will receive subsequent invocations.

More precisely, each invocation involves:

• a couple 〈Cinvoker,CF invoker〉 with the first term ex-

pressing the context of the invoker and the second one

the context-filter associated with the stub;

• a couple 〈Ctarget,CF target〉 for each potential target.

The first term represents the context of the target while

the second one represents its context-filter (specified at

export time).

A given target is actually chosen (and the invocation takes

place) only if CF invoker matches Ctarget and CF target

matches Cinvoker. This check is performed at each invo-

cation, resulting in a late-binding approach. In particular,

the caller’s context-filter CF invoker is simply stored in the

stub and the same happens to the context-filter of the

targets CF target, which is stored in the target’s skeleton.

At each invocation these filters, together with the current

contexts of the invoker and targets, are used to determine

the set of entities that are actually invoked. This gracefully

accounts for possible changes that frequently happen in the

application or in the external environment, in the large scale,

dynamic scenarios we target.

To further support scalability, MultiCaR provides also a

3As in Java RMI, MultiCaR needs objects to be explicitly exported before
they can be remotely invoked.

minimal set of guarantees. In particular, resembling what

offered by conventional Java RMI, MultiCaR does not try

to offer an exactly-once semantics, while simply providing

the caller with information (in the form of an exception)

about faults happened during invocation. When stubs are

created, two alternative semantics can be selected: either an

exception is returned if at least one target was not reachable

or failed to complete the invocation, or the same exception

is returned only if every target fails. By choosing among

the two semantics, programmers may adapt the MultiCaR

behavior to their needs, covering most of the cases that may

happen. Moreover, this basic functionality can be used to

build more complex, fault-tolerant behaviors, either at the

application-level or as a higher-level middleware service.

IV. MULTICAR IMPLEMENTATION

In this section we describe how we implemented the

MultiCaR model on top of REDS [4], [20], [21], our context-

aware, reply-enabled, content-based publish-subscribe in-

frastructure. An important aspect of our implementation is

that of being fully compatible with the original Java RMI:

remote objects can be invoked both in unicast, via Java RMI,

and in multicast, via MultiCaR, within the same application.

A. Background on Java RMI and REDS

In Java RMI each remote object is characterized by the

remote interfaces it implements. Differently from standard

objects, remote objects must be explicitly exported to allow

remote invocation by clients. To do so, programmers can

choose whether to extend the UnicastRemoteObject class

or simply to invoke its static exportObject method. In

both cases the object is inserted into the RMI runtime and

is ready to accept clients’ invocations.

The Java RMI architecture consists of three layers:

• the stub/skeleton layer is the interface between appli-

cations (client and server side) and the RMI system.

• the remote reference layer is responsible for the seman-

tics of the invocation, e.g. unicast or multicast.

• the transport layer manages the low-level details, such

as connection management and transmission of data.

REDS (REconfigurable Dispatching Service) [4] is a

framework of Java classes developed at Politecnico di Mi-

lano to build large scale, highly reconfigurable, publish-

subscribe systems. To support large scale scenarios, REDS

provides the publish-subscribe service through a distributed

network of brokers. Applications access this network using

the DispatchingService interface, which exposes all the

necessary methods to connect to a REDS broker, send and

receive messages, or add new subscriptions. To support dy-

namic scenarios, REDS includes several ad-hoc mechanisms

that automatically adapt the dispatching infrastructure when

the underlying network changes (e.g., due to churn in a

peer-to-peer scenario), efficiently restoring stale subscription

information, and recovering lost messages.

MultiCaRRemoteObject

MultiCaRRemoteObject(ContextFilter cf)
void exportObject(Remote obj, ContextFilter cf)
void setContext(Context ctx)

MultiCaRServerRef

Object dispatch(Object[] args, long opnum)

java.rmi.Remote

<<interface>>

polimi.reds.DispatchingService

void setContext(Context ctx)
void publish(Message msg, ContextFilter destCtx)
void subscribe(Filter f, ContextFilter publisherCtx)
void unsubscribe(Filter f, ContextFilter publisherCtx)
void reply(Message r, MessageId origMsgId)
Message getNextMessage()
Replies getAllReplies(MessageId origMsgId)

creates

*

uses

remoteObj

Figure 1. MultiCaR: main server-side classes and methods

MultiCaRLookupService

MultiCaRLookupService(Context clientCtx)
Object lookup(Class iface, ContextFilter cf, boolean faultTolerant)
void setContext(Context clienttx)

Object

Object invoke(...)

MulticastRemote

<<interface>>

polimi.reds.DispatchingService

void setContext(Context ctx)
void publish(Message msg, ContextFilter destCtx)
void subscribe(Filter f, ContextFilter publisherCtx)
void unsubscribe(Filter f, ContextFilter publisherCtx)
void reply(Message r, MessageId origMsgId)
Message getNextMessage()
Replies getAllReplies(MessageId origMsgId)

lookup

*

uses

stubs

MultiCaRRef

Object invoke(...)

MultiCaRInvocationHandler

Object invoke(...)

uses

uses

Figure 2. MultiCaR: main client-side classes and methods

REDS extends the traditional publish-subscribe model

through an efficient, in-band mechanism to manage replies

to received messages [20], thus naturally providing a bidi-

rectional communication channel between publishers and

subscribers. Recently, REDS has also been extended to

support context-aware message routing [21]. Through the

DispatchingService, clients can set their Context,

while the methods to subscribe and publish have been aug-

mented with a new parameter, the ContextFilter, used

by an innovative, context-aware, routing schema to steer

subscriptions only toward areas where matching context

exists and to route messages only towards clients whose

context matches the context-filter specified at publication.

B. The MultiCaR Prototype

The idea of implementing the MultiCaR model on top of

REDS comes from the desire of exploiting the flexibility and

scalability of the publish-subscribe paradigm to efficiently

perform remote invocations in large scale, dynamic envi-

ronments. Indeed, a context-aware, content-based, routing

infrastructure as that realized by REDS, perfectly suit the

complex needs that result from the MultiCaR addressing and

invocation models. The fact that REDS allows components

to reply to the messages they receive, comes as a further

benefit to ease the implementation of MultiCaR. Finally, the

REDS ability of supporting changes in the topology of the

routing infrastructure is crucial to cope with the dynamism

of the scenarios we tailor.

The stub/skeleton layer. Moving from these premises, we

may now analyze, starting from the stub/skeleton layer, how

we actually used REDS to implement MultiCaR.

To create a multicast remote object, server-side developers

may either extend the MultiCaRRemoteObject class or

use its static exportObject method (see Figure 1). In

the former case, the MultiCaRRemoteObject constructor

takes the context-filter CF target of the remote object as

a parameter and calls the exportObject method. This

method creates an appropriate MultiCaRServerRef, i.e.,

the skeleton for the remote object, and activates it.

The context Ctarget of the exported object can be set

and changed at any time through the MultiCaRRemote-

Object.setContext method. Similarly, the context-filter

of the exported object can be changed at runtime (i.e., to

change the set of clients it is willing to serve) re-exporting

the object again.

On the client-side, an instance of the MultiCaR-

LookupService must be created passing the client’s con-

text Cinvoker to the constructor (see Figure 2). Through

this instance the client may create a stub to invoke a

set of remote objects. This is obtained by calling the

lookup method and passing it both the interface that the

relevant remote objects must implement and the desired

context-filter CF invoker. The stub is dynamically created

using the reflection services provided by Java, in the same

way as the JDK 5.0 does for standard, unicast RMI. The

stub delegates the actual invocation of remote methods to

a MultiCaRInvocationHandler, which in turn uses a

MultiCaRRef to invoke them.

Notice that the stub generated by the MultiCaRLookup-

Service.lookup method implements an interface that dif-

fers slightly from the interface implemented by the relevant

remote objects. It has the same methods of the original

remote interface but differs in the return values: if the orig-

inal interface’s return value is of type T, the corresponding

multicast interface method returns T[]. This is coherent with

the multicast nature of this interface and allows the client to

obtain all the return values provided by the invoked objects

and collected by the MultiCaR runtime. Moreover, in a way

similar to standard RMI, the newly created interface extends

the tagging interface MulticastRemote.

As for the server-side, the client may change its context at

any time by invoking the setContext method provided by

the MultiCaRLookupService instance it uses. Conversely,

to change the context-filter used to determine the set of

relevant targets it must build a new stub. At a first sight

this could seem to be a wasteful approach but this is not the

case. In fact, besides the name, which has been chosen to

resemble the standard RMI life-cycle, the lookup method

does not need to contact any naming or directory service

to build the required stub. All the information required to

address the targets of future invocations (i.e., the Context

and the ContextFilter instances used to determine the

relevant targets) are simply stored into the returned stub and

used dynamically by REDS, at each invocation, to determine

the set of recipients, in the late-binding MultiCaR style.

The remote reference and transport layers. The two

classes MultiCaRServerRef and MultiCaRRef men-

tioned above build the MultiCaR remote reference layer.

The former is the skeleton for remote objects, in charge

of receiving incoming calls and invoking the corresponding

methods, while the latter operates on the client-side by

dispatching calls to the relevant recipients. Instances of both

classes use REDS as their addressing and transport layer.

In particular, the contexts and context-filters specified

both by client and servers are passed to REDS through the

DispatchingService instance used by the MultiCaRRef

and MultiCaRServerRef objects, respectively, and they

are used to route messages only toward the relevant targets.

More specifically, at the server-side, when the MultiCaR-

ServerRef instance is created, it subscribes to messages

published by clients whose context satisfies the remote

object’s context-filter and whose content includes one of the

interfaces implemented by the remote object.

On the client-side, when a client calls a remote method

through the stub, a new REDS message is created. It includes

the interface the targets must implement, a numeric code

that identifies the method to call, and the parameters to be

passed to the target. This message is published by specifying

the context-filter of the remote objects the client wants to

reach. REDS uses the subscriptions issued by remote objects

and the context information above to efficiently route this

message only toward the relevant targets.

Finally, the converge-cast mechanism implemented by

REDS to collect replies is used to transport return values

back to the caller.

V. EVALUATION

MultiCaR adopts a distributed, attribute-based name space

with late-binding of targets; a combination that is unique in

the panorama of RMI middleware and provides great expres-

siveness and flexibility. Consequently, a direct comparison

of MultiCaR with other proposals is not possible. At the

same time, we were interested in evaluating the effectiveness

of MultiCaR, so we decided to focus on the performance

and overhead that late-binding introduces w.r.t. the tradi-

tional early-binding approach of Java RMI, forgetting about

expressiveness. Accordingly, in the following we assume

that targets of interest could be identified by a predicate

equivalent to a flat-name group selection.

Host name Round-trip latency

planetlab6.csee.usf.edu 172.37 ms

planetlab7.csres.utexas.edu 153.24 ms

planetlab4.cs.uchicago.edu 126.99 ms

planetlab2.elet.polimi.it 684 µs

planetlab3.itwm.fraunhofer.de 21.22 ms

planetlab2.upm.ro 34.7 ms

plab3.ple.silweb.pl 36.44 ms

zoi.di.uoa.gr 45.94 ms

planetlab4.n.info.eng.osaka-cu.ac.jp 311.41 ms

plnodea.plaust.edu.cn 228.54 ms

Table I
PLANETLAB SITES.

1 inv 10 inv 100 inv

Java RMI 2.61 s 4.27 s 21 s

MultiCaR 0.403 s 4.03 s 40 s

Table II
LATENCY FOR A SEQUENCE OF INVOCATIONS ON 5 TARGETS, 1 SITE.

In our tests we measured the latency of a multicast

invocation to a group of targets. Targets were hosted on

sites: workstations in the PlanetLab network selected to

cover a wide geographical area. A measuring site, located at

Politecnico di Milano, started the invocations and recorded

the latency to collect replies. Table I reports the 10 selected

sites with their latencies from the measuring site. Each target

was exported and registered in the local RMI Registry and

in the local REDS broker.

Invoking a set of distributed targets using Java RMI

requires two operations: looking up the targets on the

RMI registries and binding the corresponding stubs before

invocation. Performing these operations and the following

invocations sequentially would be strongly inefficient, thus

we used multiple threads provided by the invoker. We used

one thread per site for looking up the targets and one thread

per target to perform the initial binding and the following

invocations. In the case of MultiCaR, invocations were

performed by creating a context-filter choosing the required

targets and then issuing the call, which sends the invocation

message to the REDS broker local to the invoker and from

there to the other sites (each having its own broker).

Our servers defined a simple public method accepting

two parameters each composed of three fields: a String,

a long, and a double. To measure more accurately the

communication costs the tested methods runs quickly, per-

forming a simple comparison and returning one of the

parameters to the invoker. Each test was repeated 30 times

to calculate and plot the median across the runs. Notice that

we expect that increasing the size of the parameters will

have a higher impact on Java RMI than on MultiCaR, which

optimizes multicast dissemination by forwarding a single

invocation per site instead of one invocation per target.

Single site overhead. Table II shows the latency to invoke,

respectively 1, 10 and 100 times, five targets deployed

on the topmost site of Table I. The latency to perform a

single invocation is substantially higher in Java RMI than

in MultiCaR (more than 6 times). Indeed, by the time Java

 0

 500

 1000

 1500

 2000

 2500

 3000

Java RMI MultiCar

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Analysis of latency

Invocation
Proxy Binding

Resolution

Figure 3. Breakdown of invocation latency for 5 targets, 1 site.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140 160 180 200
L

a
te

n
c
y
 (

m
ili

s
e

c
o

n
d

s
)

Number of targets

Latency increasing targets (multiple sites)

Total latency (Java RMI)
Proxy Binding (Java RMI)

Resolution (Java RMI)
Invocation (Java RMI)

Total latency (MultiCaR)

Figure 4. Breakdown of invocation latency growing the number of targets,
10 sites. Figure shows minimum, median and 90

th perc. of latencies.

RMI has completed the first invocation MultiCaR was able

to perform more than 10 invocations. Only if the client

performs more invocations on the same set of targets the

latency of Java RMI is better (i.e., as it approaches 100

invocations).

Figure 3 reports the individual contributions to the latency

for the first invocation. This includes the time for binding

targets and the time for invoking them. The latter is smaller

for Java RMI than for MultiCaR, but invocation in Mul-

tiCaR includes binding, while the two phases are disjoint in

Java RMI. In a dynamic scenario, in which late-binding is

required and consequently Java RMI has to re-bind objects

at each invocation, the total cost is the important one, and

this is where MultiCaR shines.

Multisite performance. Figure 4 reports the results of a

distributed test involving all selected sites. The chart shows

how latencies vary when increasing the total number of

object invoked from 10 to 200, split evenly across the ten

sites. We see that while the latency for looking up the

targets remains constant (the number of sites is constant)

the latency to bind the stubs increases with the number of

targets. Finally, the overhead of MultiCaR with respect to

Java RMI does not grows significantly with the number of

targets, a sign of good scalability.

In conclusions, we can say that MultiCaR outperforms

Java RMI in all those scenarios where a late-binding ap-

proach is required, including the “mixed” scenarios where

it is enough to perform one binding every 10 invocations.

For static scenarios, the early-binding approach of Java RMI

performs better.

VI. CONCLUSIONS

In this paper we presented MultiCaR, a new middleware

for multicast remote method invocations, designed to support

large scale, dynamic, context-aware applications.

By adopting an innovative, late-binding, attribute-based

addressing schema, MultiCaR provides an unprecedented

level of expressiveness, which maximizes decoupling among

components, supporting dynamic applications capable of

changing their architecture at run-time.

At the implementation level MultiCaR supports scalability

and dynamism thanks to the characteristics of REDS, the

distributed publish-subscribe substrate on top of which it

is built. Indeed, REDS offers efficient dispatching of data

in large scale scenarios, providing mechanisms to tolerate

and mask reconfigurations of the underlying network (e.g.,

to operate in mobile, wireless or in dynamic peer-to-peer

scenarios).

Our future plans include using MultiCaR as a substrate to

implement a higher level coordination infrastructure based

on the concept of Distributed Abstract Data Type [22].

ACKNOWLEDGMENT

This work was partially supported by the European

Commission, Programme IDEAS-ERC, Project 227977-

SMScom; and by the Italian Government under the projects

FIRB INSYEME and PRIN D-ASAP.

REFERENCES

[1] L. Baresi, E. D. Nitto, and C. Ghezzi, “Toward open-world
software: Issue and challenges.” IEEE Computer, vol. 39,
no. 10, pp. 36–43, 2006.

[2] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event-Based
Systems. Springer, 2006.

[3] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv.,
vol. 35, no. 2, pp. 114–131, 2003.

[4] G. Cugola and G. Picco, “REDS: A Reconfigurable Dispatch-
ing System,” in Proc. of the 6th Int. Workshop on Soft. Eng.
and Middleware. Portland, Oregon, USA: ACM Press, nov
2006, pp. 9—16.

[5] J. White, “High-level framework for network-based resource
sharing,” RFC 707, Dec. 1975.

[6] S. Microsystems, “RPC: Remote Procedure Call Protocol
specification: Version 2,” RFC 1057, Jun. 1988.

[7] M. P. I. Forum, “MPI: A message-passing interface standard,”
Tech. Rep. UT-CS-94-230, 1994.

[8] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim, “Mpi-
java: An object-oriented java interface to mpi,” in IPPS/SPDP
Workshops, ser. LNCS, vol. 1586. Springer, 1999.

[9] G. Judd, M. J. Clement, and Q. Snell, “Dogma: distributed
object group metacomputing architecture,” Concurrency -
Pract. and Exp., vol. 10, no. 11-13, pp. 977–983, 1998.

[10] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox,
“Mpj: Mpi-like message passing for java,” Concurrency -
Pract. and Exp., vol. 12, no. 11, pp. 1019–1038, 2000.

[11] J. Maassen, T. Kielmann, and H. Bal, “GMI: Flexible and
efficient group method invocation for parallel programming,”
in Proc. of the 6th Workshop on Languages, Compilers, and
Runtime Systems for Scalable Computers, 2002.

[12] A. Nelisse, T. Kielmann, H. E. Bal, and J. Maassen, “Object-
based collective communication in java,” in Proc. of the 2001
joint ACM-ISCOPE Conf. on Java Grande. NY, USA: ACM
Press, 2001, pp. 11–20.

[13] A. Montresor, “The jgroup reliable distributed object model,”
in Proc. of the 2nd IFIP Int. Working Conf. on Dist. Appl. and
Int. Sys. Helsinki, Finland: Kluwer, Jun. 1999, pp. 389–402.

[14] B. Ban, “Design and implementation of a reliable group
communication toolkit for java,” Cornell University, Tech.
Rep., 1998.

[15] A. Baratloo, P. E. Chung, Y. Huang, S. Rangarajan, and
S. Yajnik, “Filterfresh: Hot replication of java rmi server
objects,” in COOTS. USENIX, 1998, pp. 65–78.

[16] W. C. Massimo, “Enhancing java to support object groups,”
in ROOTS’02, 2002.

[17] JNDI Website, http://java.sun.com/products/jndi/.

[18] Jini Website, http://www.jini.org/.

[19] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley,
“The design and implementation of an intentional naming
system,” in SOSP, 1999, pp. 186–201.

[20] G. Cugola, M. Migliavacca, and A. Monguzzi, “On adding
replies to publish-subscribe,” in DEBS, 2007, pp. 128–138.

[21] G. Cugola, A. Margara, and M. Migliavacca, “Context-aware
publish-subscribe: Model, implementation, and evaluation,”
in Proc. of the IEEE Symp. on Comp. and Comm., Sousse,
Tunisia, July 2009.

[22] G. P. Picco, M. Migliavacca, A. L. Murphy, and G.-C. Roman,
“Distributed abstract data types,” in OTM Conferences (2), ser.
LNCS, vol. 4276. Springer, 2006, pp. 1594–1612.

