
Chapter 1

Process Programming in the Service
Age: Old Problems and New
Challenges

Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

Abstract Most modern software systems have a decentralized, modular, dis-
tributed, and dynamic structure. They are often composed of heterogeneous
components and operate on heterogeneous infrastructures. They are increas-
ingly built by composing services; that is, components owned (designed, de-
ployed, maintained, and run) by remote and independent stakeholders. The
quality of service perceived by the clients of such a composite application
depends directly on the individual services that are integrated in it, but also
on the way they are composed. At the same time, the world in which ap-
plications are situated (in particular, the remote services upon which they
can rely) change continuously. These requirements ask for an ability of appli-
cations to self-adapt to dynamic changes, especially when they need to run
for a long time without interruption. This, in turn, has an impact on the
way service compositions are defined using ad-hoc process languages that are
defined to support compositions. This paper discusses how the service set-
ting has revamped the field of process (workflow) programming: where old
problems that were identified in the past still exist now, how we can learn
from past work, and where and why new challenges instead require additional
research.

1.1 Introduction and Historical Perspective

Software is the driving engine of modern society. Most human activities are ei-
ther software enabled or entirely managed by software. Examples range from
health-care and transportation to commerce and manufacturing to entertain-
ment and education. We are today in a stage where existing Web technology

G. Cugola · C. Ghezzi · L. Sales Pinto
Dip. di Elettronica e Informazione, Politecnico di Milano, Italy, e-mail: \{cugola,ghezzi,
pinto\}@elet.polimi.it

1

2 Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

allows the data available in every node to be accessed from any other node,
being it static or mobile, through the network fabric. We are moving to a
stage where functionalities (services) may be openly accessed and integrated
to provide new functionality and serve different users.

Although the terms (software) service and service-oriented computing
(SOC) are becoming widely used, they should be made more precise to better
understand the nature of the problems we are currently facing. A service is a
software component that provides some functionality of possible general use.
Functionalities can be of different levels of complexity, generality, and gran-
ularity. Services and SOC differ with respect to (software) components and
component-based computing in that services are owned (developed, deployed,
run, and maintained) by independent stakeholders, who make them available
for external use by multiple potential clients. Their use may be possible under
certain conditions and may be subject to a service-level agreement (SLA).
The conditions and the SLA are part of a contract that binds service users
and service providers. The conditions may include a price that the user has
to pay for use. The SLA should state both the functional and non-functional
properties that the service declares to offer. For example, it may indicate
that the service offers a localization function having a given precision and
that the average time to update the coordinates is 100 msec. In the current
state of practice, contracts are often loose. Many research efforts are currently
directed towards making them formal, and hence enforceable. The push to
progressing in this direction has both economic and legal motivations.

Service-oriented computing has promise, but it also raises new problems.
The promise is that in the future, one may expect a real service marketplace
to become available, where even inexperienced users might be empowered by
their ability to access a large variety of useful functionalities. The problem is,
realizing this promise requires significant technological advances. For exam-
ple, the way existing services may be discovered and the process languages
or notations through which users may compose them are still quite primitive
and hard to master. The hope that even non-technical users might become
directly engaged is far from being real. A key obstacle is the openness and in-
stability of the environment in which clients and services are immersed today.
The environment changes continuously and unpredictably. Existing services
may be discontinued or they may change in a way that violates their SLA and
invalidates the client’s expectations. They may change the conditions under
which clients may use them. Clients may also change their expectations, or
the context in which a service is requested may change, requiring a different
service to be selected to address the new needs. New services may also be-
come available, which might give better response to the clients’ needs. How
can this dynamic complexity be managed?

Defining and managing service orchestrations in an open and evolving en-
vironments is hard. It is especially hard if the proposed solution is based
on traditional “programming” approaches adopted by current mainstream
workflow languages. The “orchestration code” needs to take care of an in-

1 Process Programming in the Service Age: Old Problems and New Challenges 3

tricate control flow in which one tries to capture all possible ways things
can go wrong and react to exceptional conditions to continue to meet the
requirements in the presence of anticipated and unanticipated changes.

This situation has very strong similarities to what was discovered in the
late 1980s and in the 1990s in the research area on software processes. This
area was mostly boosted by Osterweil’s seminal work [17]. Osterweil recog-
nized the need to formalize the software development process so that it could
be analyzed, improved, and automated. This area was sometimes referred
to using the term process programming, although the low-level term “pro-
gramming” does not do justice to the real essence of Osterweil’s proposal.
Rather, the idea was that software processes were important conceptual enti-
ties to understand, model, and possibly automate. Indeed, the same concept
was later applied to other human-intensive domains besides software devel-
opment, where the term workflow instead of process became more commonly
used1.

One of the important findings of the work on (software) processes was that
because of the active and creative role of humans in the process, deviations [8]
were important to handle [20, 3]. The software process, in fact, supports hu-
mans and manual activities as well as automated tools. Unlike tools, humans
cannot be seen as “subroutines” to invoke to get fully predictable results.
Moreover, humans can tolerate inconsistencies, whereas tools seldom can. Fi-
nally, because processes are long-running entities, they need to evolve as the
situation may change during the course of execution. Having recognized these
distinctive feature, the process work in the 1990s sought ways to model flexi-
ble processes through sophisticated mechanisms and studied how to manage
deviations and inconsistencies arising in the process enactment. This past
work can be classified in three main directions:

Process programming with exceptions. A number of approaches in-
vestigated how to adapt the exception handling constructs that are sup-
ported by standard programming languages for inclusion in languages in-
tended for process definition and automation. The emphasis here is on
using a process language, as in Osterweil’s original proposal, to program
the process. Perhaps the most completely developed approach is the AP-
PL/A language [20], which is based on an imperative paradigm. The idea
of using exceptions has the obvious advantage that the normal process
flows are clearly distinguishable from the exceptional flows in the process
description. This allows for a certain degree of separation of concerns and
supports a cleaner programming style than handling exceptional condi-
tions through conventional if–then–else constructs. The main drawback of
this approach is that it requires all possible exceptional conditions to be
identified before writing the process code. This can be quite restrictive in
highly dynamic contexts in which new and unanticipated cases may arise.

1 In this paper, the terms process and workflow will be used interchangeably.

4 Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

Reflective mechanisms. Through reflection, languages support reason-
ing about, and possibly modification of, programs. Reflective features are
often available in conventional programming languages. They have been
also proposed and experimented within process languages. As an example,
in our past work on the SPADE environment [4], we developed a fully
reflective process modeling language (SLANG) based on Petri nets, which
allows meta-programming. That is, in SLANG one can develop a process
whose objective is to modify an existing process or even an existing process
instance. The potential advantage of such an approach over the previous
one is clear: the process model does not need to anticipate all possible
exceptional situations, since it can include the (formal) description of how
the process model itself can be modified at execution-time to cope with
unexpected situations. The main drawback of this approach is that it may
bring further rigidity into the approach: not only the process must be mod-
eled (or “programmed”) in all detail, but so also must the meta-process,
i.e., the process of modifying the model itself.

Flexible approaches. Both previous cases are based on the assumption
that a precise and enforceable process model is available and there is no
way to violate the prescribed process. In other terms, there is no way to
treat a deviation from the process within the formal system. Reflective
languages support changes to the process, but all possible changes must
follow a predefined change process, i.e., again there is no way to “escape”
from a fully defined, prescriptive model. The key idea to overcome this
limitation was to abandon the ambitious but unrealistic goal of modeling
every aspect of the process in advance, following an imperative, prescrip-
tive style, to focus on certain constraints that should be preserved by the
process, without explicitly forcing a pre-defined course of actions. Any pro-
cess that satisfies the constraints would thus be acceptable. This brings a
great flexibility in process enactment, avoiding micro-management of every
specific issue while focusing on the important properties that should be
maintained. Usually, these approaches are coupled with advanced runtime
systems that support the users in finding their way through the actual sit-
uations toward the process goals, while remaining within the boundaries
determined by the process model. An early example of this approach is
described in [7].

In the reminder of this paper, we describe our current work, which focuses
on process programming for service compositions. We developed a language,
called DSOL, which can be classified in the last category. We propose a declar-
ative approach to model service orchestrations, i.e., workflows that compose
existing services to build new ones. As a result, we obtain a language that
is easier to use and results in more flexible and self-adapting orchestrations
than the existing mainstream languages adopted in the area, like BPEL and
BPMN. An ad-hoc engine, leveraging well-known planning techniques, in-
terprets such models to support automatic dynamic service orchestration at
run-time.

1 Process Programming in the Service Age: Old Problems and New Challenges 5

The rest of this contribution is organized as follows. Section 1.2 presents a
deeper analysis of the deficiencies of current mainstream service composition
languages. Section 1.3 looks back to identify similar issues that were recog-
nized in the past and the solutions provided by research at the time. We also
identify what is new in the current setting and how all this may drive the
search for new solutions, like DSOL (Section 1.4). Section 1.5 draws some
conclusions and discusses future work directions.

1.2 Limitations of Currently Available Orchestration
Languages

Throughout the last two decades, different approaches were taken towards
socalled process programming using workflow languages. Several program-
ming and modeling languages were defined in an attempt to best define and
automate different kinds of processes. More recently, the advent of SOC has
attracted much research into the area of business processes, to provide foun-
dations for formalization, automation, and support to business-to-business
integration, where services provided by different organizations are combined
to provide new added-value services that can be made available to end users.

Two languages emerged as the de-facto standards for modeling service
orchestrations: BPEL [1] and BPMN [21]. Although the two have some dif-
ferences [18], they share a number of commonalities that result in the same
limitations in modeling complex processes. In particular, both adopt an im-
perative style, in which service orchestrations are modeled as monolithic pro-
grams that must capture the entire flow of execution. This requires service
architects to address every detail in the flow among services — they must
explicitly program all the sequences of activities and take care of all depen-
dencies among them, consider all the different alternatives to accomplish the
orchestration goal, and forecast and manage in advance every possible fault
and exception that may occur at run-time.

To be more precise about this issue, consider the following example. Sup-
pose we have to orchestrate some external services to buy tickets for a (night)
event, and to arrange for transportation and accommodation for those par-
ticipating in the event. Initially, a participant provides the name of the city
where she lives, the event she wants to attend, the relevant payment infor-
mation, and her desired transportation and accommodation types. The first
action to perform is buying the ticket, followed by booking transportation,
which can be arranged either by plane, train, or bus (the participant may
express a preference). After booking the transportation, the accommodation
(hotel or hostel, in this order of preference, unless explicitly chosen by the
user) must be booked. In general, the preferred option is to book the trans-
portation in such a way that the participant arrives at the event’s location
the day before the event and departs the day after, booking two nights at

6 Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

. . .
<scope name=”EventPlanning”>
<scope name=”BookTransportation ”>
< i f>
<cond i t i on>
<!−− p r e f e r r e d T r a n s e q u a l s a i r p l a n e o r p r e f e r r e d T r a n s i s n u l l −−>

</ cond i t i on>
<scope name=”BookFlight ”>
<compensationHandler>
<!−− Can c e l f l i g h t r e s e r v a t i o n −−>

</ compensationHandler>
<invoke operat ion=”bookFl ight ”

inputVar iab le=” t r an sDe ta i l s ” outputVar iable=” f l i ghtBooked ” . . . />
</ scope>

</ i f>
< i f>
<cond i t i on>
<!−− p r e f e r r e d T r a n s e q u a l s t r a i n o r

(p r e f e r r e d T r a n s i s n u l l and n o t f l i g h t B o o k e d) −−>
</ cond i t i on>
<scope name=”BookTrain”>
<compensationHandler>
<!−− Can c e l t r a i n r e s e r v a t i o n −−>

</ compensationHandler>
<invoke operat ion=”bookTrain”

inputVar iab le=” t r an sDe ta i l s ” outputVar iable=” trainBooked ” . . . />
</ scope>

</ i f>
< i f>
<cond i t i on>
<!−− p r e f e r r e d T r a n s e q u a l s b u s o r (p r e f e r r e d T r a n s i s n u l l and

n o t f l i g h t B o o k e d and n o t t r a i n B o o k e d −−>
</ cond i t i on>
<scope name=”BookTrain”>
<compensationHandler>
<!−− Can c e l b u s r e s e r v a t i o n −−>

</ compensationHandler>
<invoke operat ion=”bookBus”

inputVar iab le=” t r an sDe ta i l s ” outputVar iable=”busBooked” . . . />
</ scope>

</ i f>
< i f>
<cond i t i on>
<!−− n o t (t r a i n B o o k e d o r f l i g h t B o o k e d o r b u sB o o k e d) −−>

</ cond i t i on>
<throw faultName=”TransNotBooked” />

</ i f>
</ scope>

</ scope>
. . .

Listing 1.1 Booking transportation in BPEL

a nearby hotel/hostel, to allow for free time to visit the place. It is also ac-
ceptable to stay a single day (the day of the event) if this is the only way to
successfully organize the trip.

To model this orchestration using BPEL (and the same is true for BPMN),
we must explicitly code all possible action flows. Unfortunately, there are
many. Indeed, even if we do not consider possible exceptions to the main-
stream process, this requires addressing alternative actions (e.g., booking a
train is not required if a plane has already been booked), actions that must be
done in sequence (e.g., buying the ticket before finding transportation), and
actions which depend on the result of other actions (e.g., the choice of trans-
portation depends from the preference of the user). This is quite significant
and complex.

Listing 1.1 shows a code snippet that expresses the alternatives for booking
the transportation in BPEL. It is easy to observe how convoluted and hard
to read it is, especially if we consider that this is just a small fragment of

1 Process Programming in the Service Age: Old Problems and New Challenges 7

quite a simple case study and that we have not considered possible exceptions.
Indeed, the situation becomes much more complex when run-time exceptions,
such as a failure while invoking an external service, have to be considered.
We need to be able to forecast these and add code to manage them, designing
alternative paths and including code to undo actions that must be retracted
when alternative paths are followed.

It is our belief that this is mainly a consequence of the imperative paradigm
adopted by mainstream orchestration languages, which closely resemble (im-
perative) programming languages, forcing service architects to precisely and
explicitly enumerate all possible flows of actions, with the additional draw-
back that the code for fault and compensation handling is mixed with the
main process flow.

As we mentioned in the introduction, we believe that possible solutions to
mitigate these problems can be found by examining research solutions in the
past decade in the area of software process modeling. We survey the relevant
part of this research in the next section, while in Section 1.4 we present a
novel approach to service orchestration, which leverages our experience in
that area [4, 7] to abandon the imperative way of modeling orchestrations in
favor of a declarative style. The run-time system of the declarative language
may use known planning techniques to automatically determine the exact
order in which different steps can be performed and how to operate in case
of both expected and unexpected faults.

1.3 Looking to the Past to Take Inspiration for the
Future

Although service composition languages, like BPEL and BPMN, were born
in a different environment from the one in which software process model-
ing languages were proposed, they share many commonalities. Indeed, both
software processes and generic business processes are long-lived, complex,
dynamic entities that must interact with an external environment that they
usually cannot fully control. Such environments are inevitably subject to
changes, which are hard to predict and almost impossible to prevent. Thus,
changes often lead to unexpected situations that force the process to deviate
from the originally intended course of actions.

This commonality suggests that current research on service composition
languages could profit from taking inspiration from past research on software
process modeling, in particular with respect to the mechanisms to model and
handle exceptions and deviations.

The most common and often used solution to the problem of managing ex-
ceptional situations is by providing specific language constructs to describe
them and to model the actions to manage them, as in languages like AP-
PL/A [20] and, later, Little-JIL [15]. As we mentioned in Section 1.1, this

8 Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

approach, also used by mainstream business process languages like BPEL
and BPMN, and by several Workflow Management Systems [19], is limited
in that it can only handle expected exceptions, forcing the process modeler
to forecast at design time all possible situations that may lead to a deviation
from the standard course of actions. This limitation is exacerbated by the
fact that languages which follow this approach usually adopt a normative
paradigm of modeling and a rigid runtime system, which do not allow to
deviate from the model at process execution time, if something unexpected
happens.

Even if we ignore the difficulty of anticipating, at design-time, everything
that could go wrong at run-time, just modeling the forecasted exceptions
is a cumbersome and error-prone task. To address this problem, a number
of exception handling patterns were proposed [16]. They help process de-
signers to identify and reuse existing solutions, simplifying the development
and maintenance of process models. These patterns could be reused easily
in the domain of service compositions. However, the approach would still be
based on an explicit enumeration of all expected exceptions and on explicitly
programming how they can be handled.

Some software process execution environments—such as SPADE [4], OA-
SIS [12], Endeavors [5], EPOS [11], and IPSE 2.5 [6]—adopted reflective lan-
guages, through which process models and even their running instances may
be accessed as data items to be inspected and modified at process enactment
time. This approach allows the meta-process, i.e., the process of changing
the running instance of the model, to be also modeled, as a special step of
the process itself. While this brings an unprecedented level of expressiveness
to the language, it also requires a lot of effort from the process modeler,
who is asked not only to model the software development process, but also
the meta-process, in all details. For this reason, reflection is considered an
effective approach to manage major exceptional situations, which require a
radical departure from the originally modeled process, and particularly those
situations that are expected to occur again. For the other (minor but more
frequent) cases, which happen sporadically and require quick responses, other
approaches are required.

One example of such approaches in the area of software process modeling
is a system we developed a few years ago: PROSYT [7]. Three intuitions
guided the design of PROSYT:

� the need to abandon the normative approach to process modeling and
consequently, the imperative style that was typical of previous process
languages;

� the need to add flexibility into the runtime system, to allow the users
involved in a process to deviate readily from the expected course of actions
if an unexpected situation arises; and

� the need to abandon the activity-oriented approach to modeling, which
often results in focusing only and too early on those aspects of the process
that are directly related to the specific course of actions that the process

1 Process Programming in the Service Age: Old Problems and New Challenges 9

modeler had in mind. Conversely, we preferred an approach focusing on
the general constraints that guide and govern the domain in which the
process operates.

Moving from these ideas, we designed a language called PLAN–Prosyt
LANguage–which adopts an artifact-based approach to modeling. PLAN al-
lows process designers to focus on the artifacts produced during the process
(together with the basic operations to handle them), rather than on the activ-
ities that fragment the process into elementary steps. This shift is similar to
the transition from imperative programming languages to the object-oriented
paradigm. Moreover, in PLAN the expected flow of actions is never stated
explicitly. Instead,the constraints (i.e., pre-conditions) to invoke operations
on each artifact type, and a set of invariants that have to hold for each ar-
tifact, are the basis for building a process model and for guide the control
flow.

At process enactment time, an advanced runtime support system inter-
prets the PLAN model, allowing the users involved in the process to execute
actions in the order they find more effective to pursue the process goals un-
der the actual circumstances. When something unexpected happens, users
are allowed to deviate from the modeled process temporarily, by violating
some of the pre-conditions to invoke actions, as long as the overall invariants
hold. This allows small deviations to be handled without the need to modify
the process model. At the same time, PROSYT allows different consistency-
checking and deviation-handling policies to be specified and changed at run-
time on a per-user, per-artifact basis, to precisely control the level of devi-
ation allowed. This brings great flexibility in process enactment and avoids
micro-management of every specific issue of the process, while focusing on
the fundamental properties that have to be guaranteed.

Other software process execution environments adopted approaches sim-
ilar to those introduced in PROSYT. For example, SENTINEL [9] adopts
an activity-based approach, in which software processes are modeled as a
collection of state machines. State transitions are guarded by preconditions.
To guarantee safe behaviors, transitions may legally occur when all the pre-
conditions hold; however, state transitions can also be triggered by human
interaction, and in this case, some preconditions can be explicitly violated,
allowing minor deviations to the process model. The process is allowed to
continue enactment as long as no invariant assertions — which define safe
states — are violated. If violations occur, a reconciling process must be car-
ried out to fix corrupted state variables, after which the process execution
can resume in a safe way.

Provence [13] adopts a different approach, in which the process model is
used to monitor the process, rather than automating it. Provence is based on
an event-action system, called Yeast [14]. When relevant events occur in the
actual process, Yeast notifies Provence. Provence matches those events with
the process model to trigger actions and state changes. Although Provence
does not have any specific support to handle unforeseen situations, its ap-

10 Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

proach provides an interesting way to support detection of changes in the
process state (which can become inconsistent with respect to the process
model) as soon as they occur.

PEACE [2] and GRAPPLE [10] follow a goal-oriented approach, imple-
mented using a logic-based formalism (in PEACE) and ad-hoc planning tech-
niques (in GRAPPLE). In both systems, the process model is defined only
through the objectives that must be satisfied, while at enactment time the
runtime support system finds the best ordering of activities to accomplish
the given goals. This approach increases the environment flexibility, reducing
the need for deviations.

The lessons learned by looking at the systems above were at the core
of our recent work in the area of service orchestration, which lead to the
development of DSOL, the subject of the next section.

1.4 The DSOL Approach

Our main motivation in defining a new language for service orchestrations
was the fact that none of the currently available languages designed for this
purpose were able to cope efficiently with unforeseen exceptions, a feature we
consider fundamental for a system that has to operate in an open, dynamic
world.

After some initial research, looking also at past experience in process mod-
eling, we realized that to achieve this goal, we have to rethink the way in
which service orchestrations are defined: we need a paradigm shift. As we
already noted, the imperative programming style adopted by most process
languages seems to be inappropriate to supporting flexible orchestrations for
several reasons: (i) processes are modeled in a normative and rigid form,
making runtime adaptations hard to achieve; (ii) they must capture com-
pletely different aspects within a single monolithic model, from control flow
to exception and compensation handlers; (iii) they require sophisticated pro-
gramming skills, precluding SOP from reaching a key goal: empowering even
non-technical users to build their own service orchestrations.

The language DSOL—Declarative Service Orchestration Language—that
we defined to support service orchestration and its runtime support system,
adopts a radically different, declarative approach. With DSOL, we aim to
achieve two different goals: (i) simplify the definition of complex service or-
chestrations, in order to empower even non-technical users, such as domain
experts; and (ii) increase the possibility of runtime adaptations by letting
orchestrations evolve when unforeseen situations happen, or when the or-
chestration’s requirements change.

A service orchestration modeled in DSOL includes different aspects, which
are defined separately using different idioms, possibly by different stakehold-

1 Process Programming in the Service Age: Old Problems and New Challenges 11

Fig. 1.1 The DSOL approach to service orchestration

ers who bring their own competencies. Specifically, as shown in Figure 1.1, a
service orchestration in DSOL includes the following elements:

� the definition of the orchestration interface, i.e., the signature of the service
that represents the entry point to the orchestration;

� the goal of the orchestration, as a set of facts that are required to be true
at the end of the orchestration. This is is usually expressed by a domain
expert, who is not necessarily competent in software development;

� the initial state, which models the set of facts that one can assume to
be true at orchestration invocation time (usually described by the same
domain expert who formulates the goal);

� a set of abstract actions, which model the primitive operations that can be
invoked to achieve a certain goal and are typical of a certain domain. They
are described using a simple, logic-like language that can be mastered even
by non-technical domain experts;

� a set of concrete actions, one or more for each abstract action, written
by a software engineer to map abstract actions into the concrete steps
required to implement the operation modeled by the abstract action, e.g.,
by invoking an external service or executing some code.

At orchestration invocation time, the DSOL Interpreter translates the
goal, the initial state, and the abstract actions into a set of rules and facts
used by the Planner to build an abstract plan of execution, which lists the
logical steps through which the desired goal may be reached. The Interpreter

12 Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

then enacts the plan by associating each step (i.e., each abstract action) with
a concrete action that is executed, possibly interacting with external services.
If everything goes as expected and all the steps are executed successfully, the
workflow terminates and control is transferred back to the client.

Unfortunately, as we have indicated, real world service orchestrations
may encounter situations that prevent them from terminating normally.
To tolerate exceptions to the standard flow of actions—both expected and
unexpected—DSOL provides both specific language constructs and ad-hoc
run-time facilities. For the former, it is possible to associate different con-
crete actions with the same abstract action. This gives the Interpreter the
ability to try different options to realize each step of a plan. Indeed, when an
abstract action A has to be executed, the Interpreter tries the first concrete
action implementing A. If this fails (e.g., the service is unavailable), the In-
terpreter automatically captures the exception and tries the second concrete
action, which invokes a different external service, which hopefully is available
and executes correctly.

If, however, none of the available concrete actions can execute correctly,
a second mechanism is available: the ability to build an alternative plan to
execute when something bad happens at run-time. That is, if the Interpreter
cannot realize a step (i.e., an abstract action invoked with specific parame-
ters) of the current plan, it invokes the Planner again, forcing it to avoid the
failed step. This causes a new plan to be computed that excludes the failed
step. By comparing the old and new plans, considering the current state of
execution, the Interpreter is able to calculate the set of actions that must be
compensated (i.e., undone), as they have already been executed but are not
part of the new plan.

In summary, by combining the ability to specify different implementations
(i.e., concrete actions) for each step of a plan, plus the ability to rebuild failed
plans in search of alternative courses of actions, possibly achieving different
but still acceptable goals, our language and run-time system allow robust
orchestrations to be built in a natural and easy way. Indeed, by combining
these mechanisms, DSOL orchestrations are able to work around failures and
any other form of unexpected situation automatically, by self-adapting to
changes in the external environment.

This fundamental characteristics is also achieved thanks to the DSOL ap-
proach to modeling orchestrations, which focuses on the primitive actions
typical of a given domain more than on the specific flow of a single orches-
tration. This approach is reminiscent of the solution we experimented with
PROSYT [7], which decomposes processes in terms of the artifacts involved
in it, leaving aside the traditional top down decomposition into activities.
The goal is the same here: to maximize the chance that when something bad
happens, even if not explicitly anticipated at modeling time, the actions that
may overcome the current situation have been modeled and are available to
the Planner and Interpreter (to the user, in the case of PROSYT).

1 Process Programming in the Service Age: Old Problems and New Challenges 13

This brief description shows the main advantages of the DSOL approach
w.r.t. traditional ones:

1. It achieves a clear separation among the different aspects of an orches-
tration: from the more abstract ones, captured by goals, initial state, and
abstract actions, to those closer to the implementation domain, captured
by concrete actions.

2. It meets one of the original goals of service-oriented computing; i.e., it
involves users who are not expert in software development into the cycle.

3. By focusing on the primitive actions available and letting the actual flow
of execution be built automatically at run-time through the Planner, it
allows orchestration designers to focus on those aspects that are typical of
a certain domain and remain stable over time, ignoring the peculiarities of
a specific orchestration, which may change when requirements change. This
last property also holds the promise of increasing reusability, since the same
abstract and concrete actions can be reused for different orchestrations
within the same domain.

4. By separating abstract and concrete actions, with several concrete actions
possibly mapped to a single abstract action, the DSOL Interpreter can find
the best implementation for each orchestration step and to try different
routes if something goes wrong at run-time, in a fully automated way.

5. Because abstract actions only capture the general rules governing the
ordering among primitive actions, the Interpreter, through a careful re-
planning mechanism, can automatically overcome potentially disruptive
and unexpected situations that occur at run-time.

6. The modularity and dynamism inherent in the DSOL approach allow the
orchestration model to be changed easily at run-time, by adding new ab-
stract/concrete actions when those available do not allow the orchestra-
tion’s goal to be reached.

1.5 Conclusions

Service-oriented computing shows great promise. Through it, an open and
dynamic world of services becomes accessible for humans, who can be empow-
ered by useful application components that are developed by service providers
and exposed for possible use. Service-oriented computing may also generate
new business. For example, it supports service provision by brokers who can
integrate third-party services and export new added-value services. Because
services live in open platforms, the computational environment is continu-
ously evolving. New services may be created, old services may be discontin-
ued, and existing services may be evolved by their owners.

Service-oriented computing raises several important challenges that need
to be addressed by research to become successful. In particular, how can
the new systems we build by composing existing services be described? How

14 Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto

can such descriptions accommodate the need for tolerating the continuous
changes that occur in the computational environment?

Service compositions may be achieved through workflow languages. Work-
flows describe processes through which humans interact with software com-
ponents and compose them to achieve their goals. The existing workflow
languages that have been developed to support service compositions, unfor-
tunately, are still very primitive. In this paper, we argued that much can
be learned from the work developed in the past in the area of software pro-
cesses and software process programming. This area was pioneered by the
Osterweil’s work and the key challenges were identified in the keynote he
delivered at the International Conference on Software Engineering (ICSE)
in 1987 ([17]). Although seldom acknowledged, we believe that many of the
findings reached by this research area may provide useful inspiration to tackle
the problems arising in service-oriented computing.

The work we describe here traces back to the research in software processes
that was originated by Osterweil and builds on (some of) the lessons learned
at the time to propose a new approach to service composition that we have
been recently exploring.

Acknowledgements This work was partially supported by the European Commission,

Programme IDEAS-ERC, Project 227977-SMScom; and by the Italian Government under
the projects FIRB INSYEME and PRIN D-ASAP.

References

1. Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu,
C.K., Konig, D., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A., eds.:

Web Services Business Process Execution Language Version 2.0. Tech. rep., OASIS

(2006). URL http://www.oasis-open.org/apps/org/workgroup/wsbpel/

2. Arbaoui, S., Oquendo, F.: PEACE: goal-oriented logic-based formalism for process

modelling, pp. 249–278. Research Studies Press Ltd., Taunton, UK, UK (1994)

3. Balzer, R.: Tolerating inconsistency. In: Proceedings of the 13th international confer-
ence on Software engineering, ICSE ’91, pp. 158–165. IEEE Computer Society Press,

Los Alamitos, CA, USA (1991)
4. Bandinelli, S.C., Fuggetta, A., Ghezzi, C.: Software process model evolution in the

spade environment. IEEE Trans. Softw. Eng. 19, 1128–1144 (1993)

5. Bolcer, G., Taylor, R.: Endeavors: a process system integration infrastructure. In:

Software Process, 1996. Proceedings., Fourth International Conference on the, pp. 76
–89 (1996)

6. Bruynooghe, R., Parker, J., Rowles, J.: Pss: A system for process enactment. In:

Proceedings of the 1st International Conference on the Software Process, pp. 128–141
(1991)

7. Cugola, G.: Tolerating deviations in process support systems via flexible enactment of
process models. IEEE Trans. Software Eng. 24(11), 982–1001 (1998)

8. Cugola, G., Di Nitto, E., Fuggetta, A., Ghezzi, C.: A framework for formalizing incon-

sistencies in human-centered systems. ACM Transactions On Software Engineering
and Methodology (TOSEM) 5(3) (1996)

1 Process Programming in the Service Age: Old Problems and New Challenges 15

9. Cugola, G., Di Nitto, E., Ghezzi, C., Mantione, M.: How to deal with deviations

during process model enactment. In: Proceedings of the 17th international conference
on Software engineering, ICSE ’95, pp. 265–273. ACM, New York, NY, USA (1995)

10. Huff, K.E.: Grapple example: processes as plans. In: Proceedings of the 5th interna-

tional software process workshop on Experience with software process models, ISPW
’90, pp. 156–158. IEEE Computer Society Press, Los Alamitos, CA, USA (1990)

11. Jaccheri, L., Larsen, J., Conradi, R.: Software process modeling and evolution in

epos. In: Proceedings of the 4th International Conference on Software Engineering
and Knowledge Engineering, pp. 574 –581 (1992)

12. Jamart, P., van Lamsweerde, A.: A reflective approach to process model customization,
enactment and evolution. In: ’Applying the Software Process’ , Proceedings of the 3rd

International Conference on the Software Process, pp. 21 –32 (1994)

13. Krishnamurthy, B., Barghouti, N.S.: Provence: A process visualisation and enactment
environment. In: Proceedings of the 4th European Software Engineering Conference

on Software Engineering, ESEC ’93, pp. 451–465. Springer-Verlag, London, UK (1993)

14. Krishnamurthy, B., Rosenblum, D.S.: Yeast: A general purpose event-action system.
IEEE Transactions on Software Engineering 21, 845–857 (1995)

15. Lemer, B.S., McCall, E.K., Wise, A., Cass, A.G., Osterweil, L.J., Stanley M. Sutton,

J.: Using little-jil to coordinate agents in software engineering. p. 155. IEEE Computer
Society, Los Alamitos, CA, USA (2000)

16. Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.:

Exception handling patterns for process modeling. IEEE Transactions on Software
Engineering 99(RapidPosts), 162–183 (2010)

17. Osterweil, L.: Software processes are software too. In: ICSE ’87: Proceedings of the 9th
international conference on Software Engineering, pp. 2–13. IEEE Computer Society

Press, Los Alamitos, CA, USA (1987)

18. Ouyang, C., Dumas, M., Aalst, W.M.P.V.D., Hofstede, A.H.M.T., Mendling, J.: From
business process models to process-oriented software systems. ACM Trans. Softw. Eng.

Methodol. 19, 2:1–2:37 (2009)

19. Russell, N., van der Aalst, W., ter Hofstede, A.: Workflow Exception Patterns. Ad-
vanced Information Systems Engineering pp. 288–302 (2006)

20. Sutton Jr., S.M., Heimbigner, D., Osterweil, L.J.: Language constructs for managing

change in process-centered environments. SIGSOFT Softw. Eng. Notes 15, 206–217
(1990)

21. White, S.A.: Business Process Modeling Notation, V1.1. Tech. rep., OMG (2008).

URL http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf

