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Distributed content-based publish-subscribe is emerging as a communication paradigm able to
meet the demands of highly dynamic distributed applications, e.g., those made popular by mo-
bile computing and peer-to-peer networks. Nevertheless, the available systems implementing this
communication model are unable to cope efficiently with dynamic changes to the topology of their
distributed dispatching infrastructure, thus effectively hampering applicability in the aforemen-
tioned scenarios.

Dealing with topological reconfiguration is a multi-faceted problem. In this paper, we focus
on the fundamental issue raised by content-based systems: how to reconcile the information used
to route events to subscribers in the face of the topological changes forced by dynamic reconfig-
uration. Our study begins by analyzing the mechanics of event and subscription propagation in
mainstream systems, and their dynamics in the presence of reconfiguration. This analysis enables
us to characterize some fundamental phenomena, which are key to defining efficient reconfigura-
tion protocols. The paper defines four such protocols that cover different areas of the tradeoff
space defined by applicability and performance. Our solutions are evaluated through simulation
showing that indeed they all provide good performance.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
protocols — applications, routing protocols; C.2.4 [Computer-Communication Networks]:
Distributed Systems — Distributed applications; H.3.4 [Information Storage and Retrieval]:
Systems and Software — distributed systems, user profiles and alert services, information net-
works; I.6.3 [Simulation and Modeling]: Applications

General Terms: algorithms, design, measurement, performance, reliability

Additional Key Words and Phrases: distributed publish-subscribe systems, content-based routing

1. INTRODUCTION

The publish-subscribe communication model is enjoying increasing popularity, both
in research and industry. In this model, application clients interact by publishing
events and by subscribing to the classes of events they are interested in. Content-
based systems provide a higher level of flexibility by allowing the client to specify
these classes using linguistic facilities to match a pattern against event content. A
number of content-based publish-subscribe systems are available, differing mainly
in the design of the event dispatcher, the middleware component responsible for
collecting subscriptions and forwarding events to subscribers. In particular, since
the first successful centralized implementations, commercial and academic efforts
have brought increased scalability by realizing the event dispatcher by means of a
distributed architecture, composed of dispatching servers interconnected through
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an overlay network. Examples of these systems include Siena [Carzaniga et al.
2001], Jedi [Cugola et al. 2001], Gryphon [Banavar et al. 1999], and many others.

Beyond scalability, the next challenge for publish-subscribe middleware is to
tolerate dynamic reconfiguration of the topology of the distributed dispatching
infrastructure. The motivations are numerous. Mobility is increasingly becom-
ing part of mainstream computing. Peer-to-peer networks are defining very fluid
application-level networks for information sharing and dissemination. Companies
are frequently undergoing administrative and organizational changes, and so is the
logical and physical network enabling their information systems. The very char-
acteristics of the publish-subscribe model, most prominently the sharp decoupling
between communication parties, make it amenable to these and other highly dy-
namic environments. However, this is true in practice only if the publish-subscribe
system is itself capable of dealing with reconfiguration. Unfortunately, most of the
systems available in the literature do not provide such support. Filling this gap is
precisely the goal of the work we present in this paper.

To approach the problem, in this paper we consider a configuration where the dis-
patching servers are organized in a single unrooted tree overlay, and the base routing
strategy used in absence of reconfiguration is subscription forwarding [Carzaniga
et al. 2001]. Our choice is motivated by the fact that the aforementioned combi-
nation is assumed by many of the proposals in the literature as well as the ma-
jority of implemented systems. Therefore, although alternative solutions recently
appeared (e.g., [Carzaniga et al. 2004; Snoeren et al. 2001; Cao and Singh 2004;
Poutievski et al. 2004; Mühl et al. 2005]), the results we present here are immedi-
ately applicable to what arguably constitutes a significant fraction of content-based
publish-subscribe middleware.

Dealing with topological reconfiguration is a multi-faceted problem, involving
restoring the connectivity of the overlay network containing the dispatching servers,
restoring the consistency of the routing information steering events towards sub-
scribers, and recovering the events lost during reconfiguration. The second problem
is the fundamental one in content-based routing, and is therefore the one we tackle
here. Parallel efforts by our research group provide solutions for the other two
problems (see for instance [Costa et al. 2004; Mottola et al. 2005; Frey and Murphy
2005]).

In principle, the problem of keeping the subscription information used for event
routing consistent in spite of topological reconfiguration can be easily solved using
the very operations characterizing a publish-subscribe system, by properly trigger-
ing (un)subscription requests in response to the (dis)appearance of links towards
dispatchers. This approach, hereafter referred to as the “strawman protocol” due
to its inherent simplicity, has already been suggested by some authors [Carzaniga
et al. 2001; Yu et al. 1999], but to our knowledge it has never been precisely defined,
characterized, or evaluated. Moreover, this approach, albeit very simple, turns out
to be severely inefficient in many reconfiguration scenarios.

The strawman protocol plays a dual role in the work we describe here. On one
hand, it provides the starting point for analyzing the mechanics and dynamics
of message propagation in the presence of topological reconfiguration. As such,
it allows us to identify the core ideas around which to structure alternative, and
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more efficient, protocols. On the other hand, the strawman protocol constitutes
the most natural baseline for comparing the effectiveness of our protocols. Simu-
lation results indeed show that very simple modifications to the basic idea enable
overhead reductions up to 50%, while more complex protocols yield improvements
up to 80%. Although all of our reconfiguration protocols exhibit improvement over
the strawman one, they do not all enjoy the same degree of applicability, as they
assume different levels of knowledge about how the overlay network changed during
reconfiguration. This is reasonable since, as previously mentioned, the sources of
reconfiguration are very diverse in nature and different assumptions make sense
in different environments. The paper analyzes the tradeoffs between performance,
applicability, and knowledge assumed about reconfiguration.

The contributions of this paper can therefore be summarized as follows:

—we elicit the principles underlying the propagation of subscription information
during reconfiguration;

—we define four reconfiguration protocols;

—we quantitatively assess through simulation the performance of our solutions;

—we discuss the applicability of each protocol in the light of the tradeoff between its
performance and the requirements it imposes on the underlying overlay network.

The paper is structured as follows. Section 2 provides the reader with the neces-
sary background in content-based publish-subscribe systems. Section 3 defines the
reconfiguration problem we are tackling in this paper. Section 4 states some basic
assumptions, presents the strawman protocol, highlights its weaknesses, and makes
some observations that are at the core of the reconfiguration protocols introduced in
this paper and presented in detail in Section 5. Their effectiveness is quantitatively
assessed through simulation in Section 6, while overall qualitative considerations
are drawn in Section 7. Section 8 places our work in the context of related efforts.
Finally, Section 9 ends the paper with brief concluding remarks.

2. CONTENT-BASED PUBLISH-SUBSCRIBE SYSTEMS

Applications exploiting publish-subscribe middleware are organized as a collection
of autonomous components, the clients, which interact by publishing events and
by subscribing to the classes of events they are interested in. A component of the
architecture, the event dispatcher, is responsible for collecting subscriptions and for-
warding events to subscribers. Recently, many publish-subscribe middleware have
become available, as reported in Section 8, differing along several dimensions [Eu-
gster et al. 2003].

First, the expressiveness of the subscription language draws a line between subject-
based systems, where subscriptions identify only classes of events belonging to a
given channel or subject, and content-based systems, where subscriptions contain
expressions (called event patterns or filters) that allow sophisticated matching over
event content. The approaches described in this paper are applicable to both classes
of systems but we assume a content-based subscription language, as this represents
the most general and challenging case.

Second, the architecture of the event dispatcher can be either centralized or
distributed; in this paper, we focus on the latter case. In this middleware, a set of
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Fig. 1. Publish-subscribe routing schemes. Circles denote dispatchers. Filled circles represent
dispatchers subscribed to a given pattern. Arrows outgoing from a dispatcher denote the content

of its subscription table. Thick lines and arrows show the path followed by the “black” event
published by P . Clients are not shown to avoid cluttering the figure.

dispatching servers2 (see Figure 1) are interconnected in an overlay network and
cooperatively route subscriptions and events sent by the clients attached to them. A
large fraction of existing proposals assumes a tree topology for the overlay network,
and we retain this assumption.

Finally, systems that exploit a distributed dispatcher can be further classified
according to the strategy exploited for message routing. Common choices for tree-
based systems are event forwarding, subscription forwarding, or hierarchical for-
warding [Carzaniga et al. 2001].

Event forwarding is the simplest: events received by a dispatcher from one of its
clients are simply broadcast along the tree connecting all the dispatchers. The in-
formation about a client’s subscriptions, on the other hand, is never communicated
but is stored local to the dispatcher the client is attached to. This information,
stored in the dispatcher’s subscription table, is checked whenever an event is re-
ceived (forwarded by a neighbor dispatcher or published by another of the attached
clients), to determine whether any of the attached clients should receive a copy of
the event. Figure 1(a) illustrates the concept. Two dispatchers, S1 and S2, are
subscribed to the same pattern, represented by the black color, while dispatchers
S3, S4, and S5 are subscribed to a “gray” pattern3. When the dispatcher P pub-
lishes an event matching the black pattern, the corresponding message is forwarded
along the thick, directed lines shown in the figure, i.e., to all the other dispatchers,
including the intended receivers S1 and S2.

2Hereafter we refer to dispatching servers simply as dispatchers.
3In practice, event patterns can be sophisticated expressions, e.g., involving regular expressions
as in 〈"Distributed Sys*" OR "Soft?are", 52.0〉.
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Note that in reality only clients are subscribers and/or publishers of events, but
since our ultimate goal is to enable reconfiguration of the dispatching infrastructure,
hereafter we ignore the presence of clients and focus on dispatchers. Therefore, with
some stretch of terminology we say that a dispatcher is a subscriber (publisher) if
at least one of its clients is a subscriber (publisher). Similarly, clients are omitted
from the graphical representations in Figure 1.

Event forwarding inevitably results in high overhead as all events are sent to all
dispatchers, regardless of the presence of receiving clients. Subscription forward-
ing limits this overhead by spreading knowledge about subscriptions beyond the
dispatcher the subscribing client is directly attached to. Specifically, when a client
issues a subscription for a given event pattern, not only is the pattern inserted into
the subscription table of the dispatcher the client is attached to, together with the
identifier of the subscriber (as in event forwarding), but the subscription message
is also forwarded to all the neighboring dispatchers. During this propagation, each
dispatcher behaves as a subscriber with respect to its neighbors, i.e., it records
the event pattern in its subscription table and re-forwards the subscription to its
neighbors, except the one that sent it. This scheme is usually optimized by avoiding
subscription forwarding of the same pattern in the same direction4. This process
effectively sets up the routes that a published event follows in its journey from a
publisher to a subscriber. Requests to unsubscribe are handled and propagated
analogously to subscriptions, although at each hop an entry in the subscription ta-
ble is removed rather than inserted. Figure 1(b) illustrates the concept graphically.

Hierarchical forwarding strikes a balance between the aforementioned schemes,
assuming that dispatchers are organized in a rooted tree. Subscription messages
establish the route followed by events, and are always forwarded to the root, where
their propagation stops. Events are also always propagated “upstream” towards the
root. Nevertheless, at each dispatcher, including the root, events can also propagate
“downstream”, if a matching subscription so dictates. This is shown in Figure 1(c),
where the dispatcher R acts as the root. Events published by P are forwarded up
to the root R, but are also steered downstream by the subscriptions issued by the
various subscribers. It is worth noting that an event from P to S1 and S2 need
not pass through the root before being redirected to the subscribers. Instead, at
the branch point in the tree (X in Figure 1(c)) the event is copied and sent both
downstream to S1 and S2 and upstream to the root.

In this paper, we consider subscription forwarding as it is the most popular among
available systems, and return to event forwarding in Section 6.3.4 for evaluation
purposes. We do not consider hierarchical forwarding as the root introduces a single
point of failure and is therefore intrinsically ill-suited for dynamic environments.

3. THE RECONFIGURATION PROBLEM

The reconfiguration problem we address can be defined informally as: the need
to adapt the dispatching infrastructure of a distributed publish-subscribe system to
changes in its topology, without interrupting the normal system operation. As al-

4Other optimizations are possible, e.g., by defining a notion of “coverage” among subscriptions, or
by aggregating them, as in [Carzaniga et al. 2001; Fiege et al. 2002; Triantafillou and Economides
2004; Chand and Felber 2003].
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ready mentioned, we focus on content-based systems that adopt a subscription
forwarding strategy and a single unrooted tree overlay. More sophisticated solu-
tions have been recently proposed that do not rely on a single shared tree or use
different routing strategies (e.g., [Carzaniga et al. 2004; Snoeren et al. 2001; Cao
and Singh 2004; Poutievski et al. 2004; Mühl et al. 2005]). Nevertheless, the com-
bination we choose covers the majority of implemented systems, and is assumed by
most of the literature in the field. Therefore, by choosing it as a base for the work
described here, we make our results immediately applicable to a significant fraction
of the state of the art.

For these systems, the reconfiguration problem we just stated can be broken
down into three sub-problems, namely:

(1) repairing the overlay network supporting the dispatching infrastructure, to re-
tain connectivity among dispatchers without creating loops;

(2) reconciling the subscription information held by each dispatcher and used for
routing messages, to keep it consistent with the topological changes above with-
out interfering with the normal processing of subscriptions and unsubscriptions;

(3) recovering messages lost during reconfiguration.

The objective of this paper is to propose several solutions for correctly recon-
figuring the subscription information, i.e., for the second of the aforementioned
problems, and to compare them both with respect to their performance and to
their applicability. This is motivated by the fact that maintaining the consis-
tency of subscription information is the defining problem of content-based routing
for publish-subscribe systems. If the information necessary for event dispatching
is misconfigured, or propagated inefficiently, the whole purpose of a content-based
system is undermined.

Clearly, the other two problems are also relevant in providing a complete solu-
tion to the reconfiguration problem, and indeed we have addressed them in other
papers [Costa et al. 2003; 2004; Mottola et al. 2005; Frey and Murphy 2005]. More-
over, these problems can be solved in various ways, depending also on the target
deployment scenario. Therefore, in our overall approach to providing reconfigurable
content-based publish-subscribe, we treat them as orthogonal problems, by tack-
ling each one in isolation and minimizing their interactions. For what concerns the
maintenance of the overlay network, we assume that the dispatching tree is kept
connected and cycle-free by some other module, as detailed in the next section.
In our research on the topic, we defined two different solutions for achieving this
functionality: the work in [Mottola et al. 2005] is inspired by the MAODV [Royer
and Perkins 1999] multicast protocol and therefore geared towards mobile ad hoc
networks, while the work in [Frey and Murphy 2005] provides tree maintenance for
large-scale, fixed networks such as those characterizing peer-to-peer networks. Sim-
ilarly, in this work we do not make any assumption about how events lost during
reconfiguration are recovered. However, in [Costa et al. 2003; 2004] we describe a
solution to this problem that is based on epidemic algorithms and makes no assump-
tions about the source of loss or the underlying routing mechanisms. Therefore it
can be naturally combined with the protocols described in this paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 7

4. ASSUMPTIONS, BASELINE, AND FUNDAMENTAL CONCEPTS

With this understanding of the reconfiguration problem, we now illustrate the foun-
dations our protocols rely upon. We begin by stating in Section 4.1 the assumptions
we make about the configuration of the system and the architecture of the publi-
sh-subscribe middleware. Then, in Section 4.2 we present the strawman protocol, a
basic solution [Carzaniga et al. 2001; Yu et al. 1999] which serves as a baseline for
the results presented in this paper. Finally, in Section 4.3 we analyze the behav-
ior of the strawman protocol, highlight its drawbacks, and derive the fundamental
observations that inspired the design of the reconfiguration protocols we present in
Section 5.

4.1 Basic Assumptions

In addition to considering a content-based publish-subscribe system using subscrip-
tion forwarding on an unrooted tree overlay network, hereafter we make the follow-
ing assumptions.

Communication. We assume that the links connecting the dispatchers are FIFO
and transport reliably subscriptions, unsubscriptions, events, and other control
messages. Both assumptions are typical of mainstream publish-subscribe systems
and are easily satisfied, e.g., by using TCP for communication between dispatchers.

Reconfigurations. We focus on reconfigurations where a single link is added or re-
moved, as this is the most general modification of the network topology. Indeed, a
dispatcher failure or appearance can be modeled as several links simultaneously van-
ishing or appearing. Although this assumption may preclude some optimizations,
by considering the most general case we focus on the essence of the reconfiguration
problem and unveil its fundamental characteristics and tradeoffs.

Abstract middleware architecture. Based on the discussion at the end of Section 3,
we assume the presence of two distinct modules: the routing module and the tree
maintenance module. The routing module manages the reconciliation of routing
information upon topological changes, and any of the protocols described in this
paper can provide an implementation for this module. Instead, the tree mainte-
nance module takes care of updating the tree overlay network, and notifies the
routing module of any change, as discussed next.

Interface between tree maintenance and routing. At a minimum, the tree mainte-
nance module must notify the routing module at each end-point of a broken or new
link, so that it can take appropriate actions. These notifications are independent
(i.e., dispatchers on the old link do not know the identities of the dispatchers on
the new link and vice versa) and can be easily implemented locally. Some of our
protocols make more stringent assumptions on the underlying tree maintenance
module. In these cases, we state these assumptions as part of the description of the
different protocols in Section 5, and analyze their impact in Section 7.

4.2 Baseline: The Strawman Protocol

In this section we describe the basic solution found in the literature [Carzaniga et al.
2001; Yu et al. 1999], which we refer to as the Strawman protocol. This protocol
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provides an ideal starting point for our investigation for three main reasons. First,
it serves as a base for understanding reconfiguration and therefore how the process
can be improved. Second, it serves as a point of comparison for demonstrating the
improvements achieved by our protocols. Third, it uses only the normal publish-
subscribe operations, allowing us to introduce, in a simple context, the notation
that we use later for describing more complex protocols.

The operation of the Strawman protocol can be summarized as follows:

—When a link breaks, messages can no longer be sent across it. All subscriptions
received previously along that link are useless and should be removed. Therefore,
when a dispatcher is notified that a link towards a neighbor n is broken, it behaves
as if it received an unsubscription message for all the subscriptions previously sent
by n. This removes the routes forwarding events across the broken link.

—When a new link appears, message forwarding across it must be properly es-
tablished, by propagating the appropriate subscriptions. Therefore, when a dis-
patcher is notified of a new neighbor n, it sends to n subscription messages for all
of the patterns in its subscription table, thus enabling the forwarding of matching
events across the new link.

The key to the Strawman protocol is that the operations above are accomplished
entirely with normal subscription and unsubscription messages. These propagate
normally along the tree, updating routing information along the way.

Figure 2 shows the pseudo-code executed on a dispatcher for these reconfigu-
ration operations, along with the normal subscription, unsubscription, and event
processing. We assume that each dispatcher knows its neighbors, maintained in the
neighbors variable. Also, we assume that each dispatcher holds a subscription table
subTab containing subscriptions in the form 〈n, p〉, to record that the neighboring
dispatcher n is subscribed to pattern p. The behavior of clients is not modeled
explicitly as it does not directly affect our reconfiguration protocols, which instead
focus on inter-dispatcher routing. Moreover, in the scenarios we target (e.g., mo-
bile ad hoc and peer-to-peer networks) the publish-subscribe system is likely to be
deployed so that clients and dispatchers are co-located [Huang and Garcia-Molina
2003].

Each operation in the pseudo-code executes local to a dispatcher. Moreover,
only one operation at a time can be executed. The operations eventReceived,
subscriptionReceived, and unsubscriptionReceived are triggered by the arrival of the
corresponding messages at the dispatcher, while removeLinkTo and addLinkTo are
called by the tree maintenance module to notify a dispatcher of the removal or
appearance of a link towards one of its neighbors. The identifier of the dispatcher
where an operation is executing is obtained from the variable self .

The figure also introduces a simple graphical notation to represent the protocol
behavior, whose usefulness will be appreciated when we discuss more complex pro-
tocols later on. The picture on the left represents the two end-points of the broken
link (top) and those of the new link (bottom), and shows pictorially which messages
are being sent, where, and how—in this case, unsubscription messages sent by the
end-points of the old link and subscription messages sent by the end-points of the
new link, both propagating on the tree as usual. The schematic also shows the
dependencies between these messages. In this case, the dependence diagram in the
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//Process event from neighbor n

eventReceived(n, event)

send event to matching subscribers except n

//Unsubscription received from neighbor n

unsubscriptionReceived(n, unsub(p))

if 〈n, p〉 ∈ subTab then

processUnsubFrom(n, p)

//Subscription received from neighbor n

subscriptionReceived(n, sub(p))

if 〈n, p〉 6∈ subTab then

subTab ← subTab ∪ {〈n, p〉}
if this is first subscription

received for p then

send sub(p) to all neighbors except n

else if this is second subscription
received for p then

send sub(p) to first subscriber

//Remove link to neighbor n

removeLinkTo(n)

for all 〈n, p〉 ∈ subTab do

processUnsubFrom(n, p) [1]
neighbors ← neighbors − {n}

//Add link to new neighbor n

addLinkTo(n)

neighbors ← neighbors ∪ {n}
for all 〈n, p〉 ∈ subTab do

send sub(p) to n [2]

//Process unsub. for pattern p from neighbor n

processUnsubFrom(n, p)

subTab ← subTab − {〈n, p〉}
if no more subscribers for p in subTab then

send unsub(p) to all neighbors except n

else if only one subscription
〈n′, p〉 in subTab then

send unsub(p) to n′

U N S U BU N S U B
22 S U BS U B1 1 s u b / u n s u b f o r w a r d i n gD E P E N D E N C I E SL E G E N D1 2

Fig. 2. Pseudo-code and schematic of the Strawman protocol. The pseudo-code also outlines
normal event, subscription and unsubscription processing. Numbers in square brackets indicate
the corresponding messages in the schematic below. The schematic assumes the top link is removed
and the bottom link is added. To the right of the schematic is a dependence diagram showing
implied (but not strict) dependence among steps with numbering. Also, the legend shows that only
normal subscription and unsubscription messages are sent during the execution of the protocol,
with the split arrow indicating propagation of the message along the tree.

middle shows that the sending of unsubscriptions and subscriptions, respectively
numbered as 1 and 2, can happen concurrently. In the protocols introduced later,
sequential dependencies, depicted by arrows, are also introduced.

4.3 Understanding Propagation and Reconfiguration

In this section we highlight a fundamental problem of the Strawman protocol,
and state several observations that are at the core of the reconfiguration protocols
we introduce in Section 5.

The Fundamental Problem: Subscriptions are removed and immediately re-
inserted. The Strawman protocol is the most natural protocol when reconfigura-
tion involves only an isolated link insertion or removal. However, the most frequent

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 ·

SA B C D
(a) before

SA B C D
(b) during

SA B C D
(c) after

Fig. 3. A dispatching tree of before, during and after a reconfiguration performed using the
Strawman approach.

case in a dynamic network is one where a broken link is quickly replaced by a new
one. In this case, the Strawman protocol is highly inefficient, as illustrated in
Figure 3. If the unsubscriptions propagate throughout one of the sub-trees before
the subscriptions start (which is the most likely case), the effect is that many of
the subscriptions in this sub-tree are removed only to be re-added after a short
time. This phenomenon generates unnecessary overhead, whose negative impact is
proportional to the size of the system and the degree of reconfiguration. Provid-
ing alternative protocols that are not affected by the same problem, and therefore
achieve a considerable overhead reduction over Strawman, is the purpose of the
work described in this paper. Before delving into the details of the protocols, illus-
trated in the next section, we make some observations that provide the foundations
of their design.

Observation 1: The higher the density of subscribers, the shorter the propaga-
tion of subscriptions. To understand this observation, it is useful to analyze how
subscriptions propagate on the dispatching tree. Let us define the pattern tree for
a given pattern p as the (minimal) sub-tree of the dispatching tree connecting all
the dispatchers subscribed to p. Figure 4(a) visualizes the concept by showing the
pattern tree for a “gray” pattern.

Based on this definition, the following rule holds for systems based on the sub-
scription forwarding strategy outlined in Section 2: a subscription for a pattern p

is propagated along the unique route up to the pattern tree for p, if it exists; to the
whole tree, otherwise. Clearly, if the new subscriber for p already lies on the pattern
tree for p no subscription needs to be propagated. A similar rule holds for unsub-
scriptions: an unsubscription for a pattern p propagates up to the closest dispatcher
that, after having rearranged its subscription table by processing the unsubscription
message, remains part of the pattern tree.

To understand these rules we observe that the routing tables of the dispatchers
belonging to the pattern tree for p are organized in such a way that any event
matching p that reaches one of these dispatchers is forwarded to all the others—
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(a) A pattern tree

T S
(b) S issues a subscription

Fig. 4. Understanding the propagation of subscriptions. In the left figure, the pattern tree for a
gray pattern is shown. In the right figure, when a dispatcher S issues a subscription for the gray
pattern, its subscription is propagated only up to the closest dispatcher (T ) that is part of the
pattern tree.

i.e., it is broadcast along the pattern tree. This is evident in Figure 4(a), where
each link of the pattern tree has event routes (represented by arrows) in both
directions. Instead, the routing tables of the dispatchers outside the pattern tree
are set so that they route the events matching p towards the pattern tree but not
vice versa, i.e., once events reach the pattern tree they are never forwarded outside
of it. Again, this is visualized in Figure 4(a). The mechanics of propagation are
easily understood by focusing on what happens when a new subscriber S appears.
Clearly, if no other subscriber exists, the subscription is simply broadcast to the
rest of the tree, as discussed in Section 2. Instead, if a pattern tree has already
been established (even with a single subscriber), as in Figure 4(b), the subscription
is propagated only up to the closest dispatcher belonging to it, e.g., T in the figure.
Effectively, the propagation of this new subscription establishes the bidirectional
routes that extend the pattern tree and enable the broadcast of matching events
towards the new subscriber. Similar considerations hold for unsubscriptions.

These rules prompt two considerations. First, the price of adding a subscription
is limited. In general, it does not involve a propagation along the entire tree but
only along the route to the closest dispatcher in the pattern tree, unless there are
no subscribers. Second, as more subscriptions are added, the size of the pattern
tree increases, thus shortening the path traveled by subsequent subscriptions. Un-
subscriptions, on the other hand, decrease the number of dispatchers in the pattern
tree so that subsequent subscriptions and unsubscriptions must propagate to larger
sections of the dispatching tree.

These considerations lead to a criterion for designing reconfiguration protocols:
keep the tree “dense” of subscriptions, and thus reduce the overhead caused by
the propagation of subscriptions. This is naturally accomplished by performing
subscriptions before unsubscriptions, essentially reversing the normal sequence of
operations of the Strawman protocol.

Observation 2: Subscriptions across the old link may not require propagation. Our
second observation comes from analyzing the reconfiguration process that involves
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(c) after

Fig. 5. Extraneous subscriptions created during reconfiguration when subscriptions precede un-
subscriptions.

the new link. In the Strawman protocol, the end-points of the new link simply
send subscriptions for all the entries in their subscription table, to ensure that all
the events of interest generated in the other sub-tree are properly forwarded. While
this is sufficient, however, it is not entirely necessary.

Consider, for example, the situation shown in Figure 5 in which only one dis-
patcher is subscribed to a particular pattern. It may happen that the unsubscription
issued by dispatcher B, that will eventually remove the arrows between D and B,
propagates slowly and reaches D only after the new link has opened and D has
exchanged its subscriptions with C. This causes the insertion of extraneous sub-
scriptions (the thick arrows in Figure 5(b)), which will be eventually removed by
the slowly propagating unsubscriptions issued by B (Figure 5(c)). Therefore, the
protocol still correctly restores the routing information, but it does so in an ineffi-
cient way. This phenomenon can occur in the Strawman protocol, but it is even
more likely to occur if the subscription and unsubscription operations are reversed,
as suggested above.

The key observation is that the link between C and D is not being added in
isolation, but rather in response to the removal of the link between A and B.
By scrutinizing the subscriptions on these latter dispatchers, we can decide which
subscriptions should be exchanged between C and D and, equally important, which
should not. Specifically, any subscription that is present on the old link and serves
only to route events to the other sub-tree (e.g., the one at B towards A) should
not be propagated across the new link. This is sufficient to prevent the extraneous
subscriptions shown in Figure 5(b).

Observation 3: The impact of reconfiguration is limited to a well-defined path.
While the previous observations may help in reducing unnecessary subscriptions,
our next observation focuses on narrowing the scope of reconfiguration in terms
of dispatchers involved, and therefore helps in designing protocols that limit its
impact. To find which dispatchers are involved we note that, from the perspective
of event routing, the events that were intended to traverse the vanished link must
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Fig. 6. A dispatching tree before and after a reconfiguration, showing explicitly the subscriptions
that replace the broken link.

be re-routed across the new link to reach the other part of the tree. We therefore
observe that only the subscription tables of the dispatchers on the path between
the old and new link need to be changed. All the other dispatchers simply forward
events to this path, and remain unchanged during reconfiguration. We refer to this
path as the reconfiguration path and define it as the concatenation of two sequences
of dispatchers:

—the head path begins with the first end-point of the removed link (e.g., the end-
point with the lowest identifier) and contains the sequence of dispatchers con-
necting it to the end-point of the new link that lies in the same sub-tree, which
is included as the last dispatcher of the head path;

—the tail path begins with the other end-point of the new link, and contains the
dispatchers connecting it to the second end-point of the removed link, inclusive.

Figure 6 shows a reconfiguration example where the link (A, B) is being substi-
tuted with the link (C, D). In this case, (A, E, F, C) is the head path and (D, G, B)
is the tail path, yielding the reconfiguration path (A, E, F, C, D, G, B). As a result
of the reconfiguration, the subscription ab, which was exploiting the vanished link
(A, B) to route events towards B’s sub-tree, is removed by the reconfiguration and
it is replaced by subscriptions ab1, ab2, ab3, and ab4. Similarly, the effect formerly
achieved by ba is obtained by ba1, ba2, and ba3.

From the example, we can derive two considerations that help in understanding
the mechanics of reconfiguration. First, a subscriber’s sub-tree always contains
complete routing information to allow events to reach the subscriber from any of
its dispatchers. Second, some of the subscriptions necessary to allow events to reach
the other sub-tree may already be present due to other subscribers. In this example,
in fact, only ab2, ab3, and ab4 need to be added in A’s sub-tree: ab1 was already
present to route events from A towards the subscriber E. Similarly, in the other
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sub-tree, only ba3 needs to be added towards A, since ba1 and ba2 were already
present because of D.

These considerations allow us to derive a general principle: the subscriptions
replacing those on the first end-point of the old link (e.g., from A to B in Figure 6)
are needed only on the head path. Similarly, the subscriptions replacing those on
the other end-point of the old link (e.g., from B to A) are needed only on the tail
path. No other dispatcher is affected by the reconfiguration.

5. FOUR NEW RECONFIGURATION PROTOCOLS

Based on the previous observations, we have designed four reconfiguration protocols
called: Deferred Unsubscription (in two variants Timed Deferred Unsub-

scription and Notified Deferred Unsubscription), Informed Link Acti-

vation, and Reconfiguration Path. Each protocol makes different assumptions
about the underlying tree maintenance module. For example, the Timed De-

ferred Unsubscription protocol retains the assumptions of Strawman, while
the Reconfiguration Path protocol assumes that the notification sent by the
tree maintenance module to the routing module (see Section 4.1) contains the list
of dispatchers on the reconfiguration path. The protocols also differ in terms of
complexity and of the performance improvement they achieve with respect to the
Strawman protocol. The combination of overhead reduction capability, proto-
col complexity, and assumptions about the tree maintenance module provide the
evaluation criteria to decide which protocol to use in a particular environment.

In the following, we provide a detailed description of the protocols. Three of
them have been introduced in our previous work [Cugola et al. 2002; Cugola et al.
2004; Picco et al. 2003]. Here we introduce the new Informed Link Activation

protocol, and also extend our previous work by i) presenting all the protocols in
an integrated and detailed way, with a uniform description in terms of informal
pseudo-code, ii) exhaustively comparing the protocols against one another through
simulation in Section 6, and iii) comparing them qualitatively in Section 7.

5.1 Deferred Unsubscription

As discussed in Section 4, the main drawbacks of the Strawman protocol result
from the fact that the unsubscription process initiated by a link removal and the
subscription process handling link insertion proceed completely in parallel. Our
Deferred Unsubscription protocol is based on Observation 1 from Section 4.3:
keeping the tree dense of subscribers can reduce the overhead of subscription propa-
gation. The protocol leverages off the conventional subscription and unsubscription
operations as in the Strawman protocol, but performs them in the inverse order:
the subscriptions triggered by the appearance of a link are issued immediately,
while the unsubscriptions due to a link break are deferred. This strategy does not
introduce any special mechanism to limit its scope to the reconfiguration path and
therefore it may add subscriptions that must be removed immediately after. How-
ever, these subscriptions propagate only up to the corresponding pattern tree—a
distance likely to be short when the tree is dense of subscriptions. It is worth not-
ing that the reconfiguration described by this protocol does not interfere with the
normal processing of events and (un)subscriptions. In fact, it relies on the stan-
dard processing that, by design, deals with the concurrent publishing of events and
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//Remove link to neighbor n

removeLinkTo(n)

rId ← newRId()
manageBrokenLink(n, rId)

//Add link to new neighbor n

addLinkTo(n)

neighbors ← neighbors ∪ {n}
for all 〈n′, p〉 ∈ subTab, n′ 6= n do

send sub(p) to n [2]

//Unsubscription timer expires, n is old neighbor,
//rId is the reconfiguration identifier
unsubTimerExpires(n, rId)

for all 〈n, p〉 ∈ pending[rId ] do

processUnsubFrom(n, p) [3]
pending ← pending − pending[rId ]

//Manage broken link to n for reconfiguration rId

manageBrokenLink(n, rId)

if |neighbors| ≥ 1 then

// self is a non-leaf dispatcher
pending[rId ]← subTab[n]
subTab ← subTab − subTab[n]
neighbors ← neighbors − {n}
start unsubTimer(n, rId) [1]

else

// self is a leaf dispatcher
subTab ← subTab − subTab[n]
neighbors ← neighbors − {n}

22 S U BS U B s u b / u n s u b f o r w a r d i n gi n t e r n a l a c t i o n
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Fig. 7. Timed Deferred Unsubscription pseudo-code and schematic. Arrows in the dependence
diagram show strict dependence.

issuing of (un)subscriptions.
In the following we describe two variants of this protocol, which differ in the

mechanism used to defer unsubscriptions.

5.1.1 Timed Deferred Unsubscription. In our first and simplest variant of the
Deferred Unsubscription protocol, shown in Figure 7, the delay is provided by
an unsubscription timer Tu that is initialized by each end-point dispatcher when a
link breaks. The expiration of this timer triggers the propagation of unsubscrip-
tions, therefore we refer to our protocol as Timed Deferred Unsubscription.
Ideally, the delay induced by the timer should coincide with the time needed by
the underlying tree maintenance module to restore the connectivity of the tree,
plus the time required to propagate subscriptions. As in the Strawman protocol,
Timed Deferred Unsubscription only requires the underlying tree maintenance
module to notify the end-points of the old and new links.

Links Sharing a Dispatcher. This protocol provides significant advantages over
Strawman. However, from Observation 2 in Section 4.3 we know that delaying
unsubscriptions may lead to an unnecessary propagation of subscriptions across
the new link. Unfortunately, in this Timed Deferred Unsubscription protocol,
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we assume that the underlying tree maintenance module does not provide any
association between the old and new links, making the optimization outlined in
Section 4.3 impossible.

However, in the case where one end-point of the new link coincides with an
end-point of the old link we do have sufficient information to prevent unnecessary
subscription forwarding. While this may at first seem to be a special case, it is
actually quite common for overlay network protocols to make this choice. One of
the end-points of a removed link is usually responsible for actively repairing the tree
and very often also becomes an end-point of the link added during this process.

To handle this case effectively, we simply prevent the reconfiguration from for-
warding subscriptions directed only towards dispatchers connected through links
that are now broken. All other subscriptions, i.e., those coming from clients at-
tached to the shared dispatcher and those associated to intact links, are propagated
as usual. This behavior is evident by looking at the action manageBrokenLink(n, rId)
in Figure 7, which is invoked when the link between the current dispatcher and n

breaks. When this happens, the set of patterns associated to the neighbor n (de-
noted by subTab[n]) are immediately removed from the local subscription table and
stored in a separate pending table. This way they are ignored both when processing
other concurrent (un)subscriptions and when propagating subscriptions to newly
added links. On the other hand, when the timer expires the unsubscriptions for the
patterns in the pending table are propagated, as required by the protocol.

Leaf Dispatchers. A special case in which the new and old links share an end-point
is when a leaf dispatcher is detached and re-attached to a different dispatcher. This
case is fairly frequent because leaf dispatchers are usually a large fraction of the
total number of dispatchers and, since they are at the fringe of the system, they
are more subject to reconfiguration.

The peculiarity of this case is that deferring unsubscriptions becomes superflu-
ous in the case of a detached leaf dispatcher. A detached leaf dispatcher has, by
definition, no neighbors to send messages to. As a result it can unsubscribe locally
without updating its pending table and without setting timers. This optimization
not only simplifies processing when a leaf dispatcher is involved in a reconfiguration,
but also allows the protocol to avoid the propagation of unnecessary unsubscriptions
across the new link when the timer expires.

5.1.2 Reducing the Dependence on Timers: Notified Deferred Unsubscription.
In the Timed Deferred Unsubscription protocol the timer plays a crucial role.
If its value is too small, the overhead of the protocol approaches that of Strawman

because unsubscriptions are triggered too early, before subscriptions have been
restored. If it is too large, obsolete routes remain in place and steer events where
there are no subscribers, thus increasing overhead.

Although it is possible to determine experimentally an appropriate timer value
for a specific system (as we did in the experiments presented in Section 6), we
target a dynamic environment where reliance on a statically set timer is inherently
approximate. Rather than trying to dynamically adjust the timer, our next pro-
tocol complements the timer with a deterministic notification process while still
maintaining the benefits of deferring unsubscriptions. For this protocol, Notified
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//Remove link to neighbor n,
//rId is the reconfiguration identifier
removeLinkTo(n, rId)

TimedDefUnsub.manageBrokenLink(n, rId) [1]

//Add link to new neighbor n

addLinkTo(n, rId)

TimedDefUnsub.addLinkTo(n) [2]
send flush(rId) to n [3]

//Unsubscription timer expires, n is old neighbor,
//rId is the reconfiguration identifier
unsubTimerExpires(n, rId)

TimedDefUnsub.unsubTimerExpires(n, rId) [4]

//flush message received from neighbor n

flushReceived(n, flush(rId))

if self has unsubTimer(n′, rId) then

//n′ is other end-point of old link
cancel unsubTimer(n′, rId)
TimedDefUnsub.unsubTimerExpires(n′, rId) [4]

else

//self is not end-point of old link
send flush(rId) to all neighbors except n [3]

s u b / u n s u b f o r w a r d i n gi n t e r n a l a c t i o n
D E P E N D E N C I E S
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Fig. 8. Notified Deferred Unsubscription pseudo-code and schematic. In the dependence
diagram, a step with more than one incoming arrow indicates it can be triggered by either of the
previous steps.

Deferred Unsubscription, we assume that the tree maintenance module is able
to associate the removed link with the inserted one by assigning a unique identifier
to each reconfiguration. We also assume that the calls to removeLinkTo are made
before the calls to addLinkTo, thus ensuring the proper tagging of links as broken
before subscriptions are forwarded5. These assumptions make it possible to imple-
ment the aforementioned notification process by means of a flush message, sent
by the end-points of the new link towards the corresponding end-points of the old
link after the former finish propagating subscriptions. Since we assume FIFO links,
when the end-points of the old link receive the flush message they can correctly
deduce that the subscriptions from the new link have propagated all the way to
the old link, and therefore the unsubscription process can start. This behavior is
outlined in Figure 8.

The remainder of the processing is identical to the Timed Deferred Unsub-

scription protocol—including the presence of the unsubscription timer. In fact,
although the flush message serves the same purpose of the timer (i.e., to start the
propagation of the unsubscriptions) it is possible that, due to concurrent reconfig-

5Both assumptions are satisfied by the overlay maintenance protocols defined in our research, i.e.,
[Mottola et al. 2005] and [Frey and Murphy 2005].
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urations, the flush message will not reach the end-points of the old link. In this
case, the unsubscriptions begin propagating when the timer expires. To improve
readability we use the notation protocol.operation (e.g., TimedDefUnsub.addLinkTo

in Figure 8) to reuse operations defined in a protocol previously presented.
It is worth noting that, for simplicity, the flush message is broadcast along the

entire tree, although it only needs to propagate along the reconfiguration path to
reach the end-points of the old link. There are two ways to optimize this propaga-
tion. One is to exploit information about the reconfiguration path if it is provided
by the tree maintenance module. The other is to exploit the propagation of the
subscriptions sent by end-points of the new link to guide the propagation of the
flush. More specifically, the flush can be piggybacked on these subscriptions
as they propagate towards the removed link; this way, the flush only needs to
be broadcast from the point where the last subscription stops propagating. The
benefits arising from these optimizations should, nevertheless, be weighed against
the complexity they introduce and against the fact that broadcasting the flush

message along the whole tree is likely to be more resilient to concurrent reconfigu-
rations.

5.2 Informed Link Activation

In Section 4.3, we pointed out that unnecessary reconfiguration overhead comes
primarily from two sources. First, according to Observation 1, unsubscriptions from
the old link may propagate unnecessarily and temporarily remove routes that are
needed after the reconfiguration. Second, according to Observation 2, subscriptions
from the new link may propagate stale routing information that was only needed
before the reconfiguration occurred. Both Deferred Unsubscription protocols
address the first problem by postponing the propagation of unsubscriptions until
the subscriptions from the new link have finished propagating. However, they
only address the second problem when the new and old links share an end-point.
The shared end-point identifies the subscriptions that are directed only along the
vanished link and avoids propagating them.

Our new Informed Link Activation protocol extends the behavior of the
Deferred Unsubscription protocols by addressing Observation 2 even when
the end-points of the new and old links are not shared. To accomplish this it
propagates information about unnecessary subscriptions from the old link to the
new one, allowing the end-points of the new link to recognize these subscriptions and
avoid their propagation. The protocol is based on the same assumption as Notified

Deferred Unsubscription, namely, that the tree maintenance module is able
to associate the new link with the old one. Moreover, the communication between
the end-points of the old and new link can occur either by sending a direct, out-of-
band activate message or by piggybacking this information on messages sent by
the tree maintenance module.

Figure 9 shows the pseudo-code and schematics for the protocol. We assume
that the tree maintenance module invokes the operation substituteLinkTo on each
of the old link end-points when a reconfiguration occurs, informing them of the
identity of the end-points of the new link. In this operation, each end-point of
the old link determines the set of patterns P that are used to route events only
toward the other sub-tree and propagates P to the corresponding end-point (i.e.,
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//Substitute link (self , o) with (n1, n2)
//rId is the reconfiguration identifier
substituteLinkTo(o, n1, n2, rId)

//n1 is in same sub-tree as self

P ← {p | only o is subscribed to p}
if |neighbors| ≥ 1 then

// self is a non-leaf dispatcher
start unsubTimer(o, rId) [1]

else

// self is a leaf dispatcher
subTab ← subTab − subTab[o]

neighbors ← neighbors − {o}
send activate(rId , P, n2) to n1 [2]

//Unsubscription timer expires
//n is old neighbor,
//rId is the reconfiguration identifier
unsubTimerExpires(n, rId)

for all 〈n, p〉 ∈ subTab do

processUnsubFrom(n, p) [6]

//Subscription timer expires
subTimerExpires(n, rId)

for all p ∈ taggedSubs[rId ] do

if 〈p, n′〉 ∈ subTab and n′ 6= n then

send sub(p) to n [7]
cancel subTimer(n, rId)
taggedSubs[rId ] = ∅

//flush message received
flushReceived(n, flush(rId))

if self has unsubTimer(n′, rId) then

//n′ is other end-point of old link
cancel unsubTimer(n′, rId)
unsubTimerExpires(n′, rId) [6]

else

//self is not end-point of old link
send flush(rId) to all neighbors except n [5]

//activate message received
activateReceived(activate(rId , P, n))

neighbors ← neighbors ∪ {n}
start subTimer(n, rId) [3]
for all p ∈ subTab do

if p 6∈ P or 〈p, self 〉 ∈ subTab then

send sub(p) to n [4]
else

taggedSubs[rId]← taggedSubs[rId] ∪ {p}
send flush(rId) to n [5]
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Fig. 9. Informed Link Activation pseudo-code and schematic.

in the same sub-tree) of the new link by means of an activate message (step 2
in the pseudo-code). Upon receiving the activate message, the end-points of the
new link propagate their subscriptions across the new link (step 4). The processing
is similar to the addLinkTo operation found in the previous protocols, except here
a subscription is propagated across the new link only if it is local or it does not
belong to the set of patterns P contained in the activate message. For instance,
Figure 10(a) shows a situation similar to the one depicted in Figure 5 where, upon
breakage of the link (A, B), B sends to D an activate message where P contains
the pattern for B’s subscriptions towards A. Upon receiving this message, D does
not propagate the subscriptions in P across the new link, therefore avoiding the
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SA B C DA C T I V A T E
(a) Activating a link.

SA B C DT
A C T I V A T E

(b) Concurrent subscrip-
tions.

Fig. 10. Two scenarios in the Informed Link Activation protocol.

generation of the extraneous subscriptions shown in Figure 5.
Unsubscriptions can be dealt with as in the Deferred Unsubscription pro-

tocols. In Figure 9 (and later in the simulations of Section 6) we use the technique
described in Notified Deferred Unsubscription. Unsubscriptions are trig-
gered at the broken link by the receipt of a flush message sent by the end-points
of the new link (step 5) or, if this does not propagate fast enough, by the expira-
tion of a timer (set in step 1). Moreover, as in the Deferred Unsubscription

protocols, leaf dispatchers that lose the link to their only neighbor do not wait for
the timeout and process the corresponding unsubscriptions as soon as the link is
removed.

The processing just described is sufficient when the only subscriptions and unsub-
scriptions being propagated are those determined by a reconfiguration. In reality,
however, subscriptions can change concurrently to a reconfiguration, and multiple
reconfigurations can occur in parallel. In these cases, some of the subscriptions that
have been deemed unnecessary may still need to be propagated. For instance, con-
sider the situation depicted in Figure 10(b). Dispatcher T may decide to subscribe
to the same “gray” pattern of interest to S, concurrently to the replacement of
link (A, B) with (C, D). In this case, contrary to what we stated earlier, D should
forward the subscription even if it is contained in P . Interestingly, D has no way
to know whether a subscription is used only by B or also by some other dispatcher
in its sub-tree. This becomes evident only after the unsubscriptions eventually is-
sued by B have propagated to D, and have purged unnecessary entries from its
subscription table.

To address the issue, the Informed Link Activation protocol uses an addi-
tional subscription timer Ts, started upon receipt of the activate message (step 3).
The expiration of this timer (step 7) causes the propagation of those subscriptions
in P that were not propagated in step 4 but that are still in the subscription table.
These are contained in the variable taggedSubs in Figure 10(b). In the example of
Figure 10, this technique leads to the correct propagation of the subscription issued
by T , as it is not removed by the unsubscriptions propagated by B. Both the timer
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and the subscriptions in taggedSubs are associated with a reconfiguration identifier
rId , to distinguish among multiple reconfigurations.

Clearly, the value of the subscription timer must be large enough to allow the
unsubscriptions generated at the old link to be propagated to the new link before
it expires. If trep is the sum of the time required by the tree maintenance module
to locate a new route plus the time required for the propagation of the activate

messages, and tprop is the time required for the propagation of unsubscriptions
from the old to the new link, then to maximize performance the values of the
unsubscription and subscription timers, Tu and Ts, should satisfy the following
constraint:

Tu + tprop < Ts + trep (1)

It is worth observing that the use of the subscription timer may increase the delay
experienced by clients before receiving events after a new subscription. However,
this is a small price to pay with respect to the great reduction in overhead achieved
by the protocol.

5.3 Reconfiguration Path

Although the previous protocols keep the tree dense of subscriptions to limit
the scope of the reconfiguration, it is possible that subscriptions (and possibly un-
subscriptions) propagate beyond the reconfiguration path, introducing unnecessary
overhead. Our next protocol focuses explicitly on the dispatchers on the reconfig-
uration path. We assume the latter is computed by the tree maintenance module
and communicated to the content-based routing module. The protocol operates in
a strictly sequential way by propagating a special reconfiguration message along
the reconfiguration path, from one end-point of the broken link to the other. Upon
receiving this reconfiguration message, dispatchers rearrange their subscription ta-
ble to take into account the changes in the overlay topology. This sequential way
of operating reduces the overhead to a minimum, but is also the source of the
main weakness of the protocol, i.e., its inability to withstand multiple overlapping
reconfigurations.

For the sake of clarity, the description of the Reconfiguration Path protocol
is split in two parts, first describing its basic operations, then continuing with the
details of the management of the (un)subscriptions issued during the reconfigura-
tion. The pseudo-code and schematic for the complete protocol are presented in
Figure 11.

5.3.1 Basic Operation. This section steps through a single reconfiguration dis-
tinguishing the operations done on the head path from those made on the new link
and on the tail path.

Starting the Reconfiguration. The reconfiguration process begins when the tree
maintenance module invokes the action substituteLinkTo(n, RP, rId). As shown in
Figure 11, this action, differently from the one found in Informed Link Acti-

vation, provides the routing module with the entire reconfiguration path and is
invoked only on the first dispatcher of the path, called the initiator.

The initiator removes the other end-point n of the old link from its set of neighbors
and computes two sets of patterns, Padd and Pdel. These contain the subscriptions
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//Replace a link to dispatcher n

substituteLinkTo(n, RP , rId)

Padd ← patterns n was subscribed to
along old link

Pdel ← Padd

neighbors ← neighbors − {n}
//emulate reconfiguration message from n:
send rec(rId , Padd , Pdel , RP) to self [1a]

//Receive a control message from a neighbor n

recAckReceived(n, recAck(rId))

ignore ← ignore − {〈rId , ∗, n〉} [1d]

//Receive a flush message from a neighbor n

flushReceived(n, flush(rId , RP))

if self = first(tail(RP)) then

for all p ∈ subTab s.t.
p 6∈ storedPadd [rId ] and

prev(RP) is not the only
subscriber to p do

send sub(p) to prev(RP) [8]
storedPadd [rId ]← ∅

else

send flush to all neighbors except n [7]

//Unsubscription received from neighbor n

unsubscriptionReceived(n, unsub(p))

if 〈p, n〉 ∈ subTab and

∄〈∗, p, n〉 ∈ ignore then

processUnsubFrom(n, p)

//Receive a rec message from a neighbor n

recReceived(n, rec(rId , Padd , Pdel , RP))

if self ∈ head(RP) then

subTab[n]← subTab[n]− Pdel

if self 6= last(head(RP)) then

for all p ∈ Padd do

ignore ← ignore ∪ {〈rId , p, next(RP)〉}
P ′

del ← patterns to be removed at next hop
send rec(rId , Padd , P ′

del , RP)
to next(RP) [1b]

else

TimedDefUnsub.addLinkTo(next(RP)) [2]
send rec(rId , Padd , ∅, RP)

to next(RP) [3]
add Padd to subscriptions of next(RP)
if self 6= first(RP) then

send recAck(rId) to n [1c]
if self ∈ tail(RP) then

if self = first(tail(RP)) then

neighbors ← neighbors ∪ {n}
for all p in Padd with no

subscriber except n do

send unsub(p) to n [4]
storedPadd [rId ]← Padd

if self 6= last(RP) then

send rec(rId , ∅, ∅, RP) to next(RP) [5]
else

Strawman.removeLinkTo(first(RP)) [6]
send flush(rId , RP) to self [7]

The following functions apply to a sequence
of dispatchers Seq:

first(Seq) the first dispatcher in Seq

last(Seq) the last dispatcher in Seq

next(Seq) the dispatcher following self in Seq

prev(Seq) the dispatcher preceding self in Seq

The following functions apply to the
reconfiguration path RP :

head(RP) the head path
tail(RP) the tail path

1 8S U B4U N S U BR E C 3
R E CR E C A C K

2S U B
6U N S U B 5R E C7F L U S H s u b / u n s u b f o r w a r d i n go n e " h o p m e s s a g eo n e " h o p a c k n o w l e d g e m e n t

1 2 3 4 5 6 7 8D E P E N D E N C I E SL E G E N D
Fig. 11. Reconfiguration Path pseudo-code and schematic.

that must be respectively added and removed along the head path. With reference
to Figure 6, Padd enables the insertion of the missing abi subscriptions, on the path
from A to C, while Pdel enables the removal of the unnecessary subscriptions on

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 23

the path from C to A. Both Padd and Pdel are initialized by the initiator with the
same patterns: those belonging to subscriptions (ab in Figure 6) previously issued
by the other end-point of the vanished link.

At this point, the initiator creates a rec message containing rId , Padd, Pdel,
and the sequence RP , as this constitutes all the information necessary to effect the
changes in the routing information along the reconfiguration path. To simplify the
pseudo-code in Figure 11 and keep the processing uniform on all dispatchers, we
assume that the initiator first sends the rec message to itself (step 1a).

Reconfiguring the Head Path. The receipt of the rec message triggers the processing
of the recReceived action. On the initiator, a new entry is inserted in the initia-
tor’s subscription table for each event pattern in Padd, as if it were a subscription
coming from the next dispatcher in the reconfiguration path (E in Figure 6). This
enables event forwarding towards the new link. Similarly, all the entries in Pdel are
deleted from the subscription table. In Figure 6, these actions cause respectively
the insertion of ab1 and the deletion of ab.

After reconfiguring its subscription table, the initiator propagates the rec mes-
sage to its neighbor along the reconfiguration path. All along the head path, each
dispatcher receiving the rec performs the same operations performed by the ini-
tiator, updating its subscription table and propagating a new rec (step 1b). The
contents of Padd remain the same as the rec message propagates along the head
path establishing the forwarding chain to route events across the new link. The
contents of Pdel, on the other hand, are recomputed by each dispatcher (including
the initiator) before propagating rec. Pdel contains exclusively subscriptions that
formerly routed events only towards the removed link. Therefore, if a dispatcher’s
subscription table contains a subscription for a pattern p to any dispatcher other
than the next one on the reconfiguration path, p is not included in the Pdel propa-
gated to the next dispatcher.

Reconciling Subscriptions Across the New Link. The propagation of the rec mes-
sage continues along the head path until it reaches the first end-point of the new
link (C in Figure 6). This dispatcher behaves differently from the others along the
head path as it must take the necessary steps to activate routing across the new
link. In particular, it updates its subscription table as described earlier but also
adds the other end-point as a new neighbor and sends it a subscription message for
each pattern in its subscription table (step 2), followed by a rec message (step 3).

Completing the Reconfiguration. The other end-point of the new link processes the
subscriptions sent in step 2 normally. Consequently, these subscriptions propagate
throughout the second sub-tree to enable the correct routing of events across the
new link and on the tail path. Observe that since these subscriptions are generated
after the removal of those on the head path and before unsubscriptions have been
processed on the tail path, their propagation is naturally confined to the tail path.

After processing the subscriptions coming from the first end-point of the new
link, the second end-point processes the rec message and propagates it to the next
dispatcher along the tail path. Propagation of the rec message continues along the
tail path (step 5) with each dispatcher simply forwarding it until it arrives at the
last dispatcher. This dispatcher, which is also the second end-point of the removed
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link, reacts to the rec message by behaving as if it had received an unsubscription
message for each subscription associated with the other end-point of the removed
link. It processes these unsubscriptions and propagates them normally, completing
the reconfiguration (step 6).

It is worth noting how these unsubscriptions are generated only after the sub-
scriptions sent in step 2 have finished propagating on the tail path. This naturally
limits their propagation to the reconfiguration path, removing subscriptions that
were used only to route events to the first sub-tree via the removed link (e.g., the
subscriptions from G to B and from D to G in Figure 6).

5.3.2 Dealing with Concurrent (Un)Subscriptions. Thus far we have ignored the
details related to subscriptions and unsubscriptions issued during the reconfigura-
tion. Different from the other protocols, Reconfiguration Path demands that
these be treated in a special way to avoid race conditions arising from its sequential
processing.

Avoiding Race Conditions on the Head Path. The first issue arises in the head
path. While the rec message flows along the head path from the initiator to the
first end-point of the new link, it adds subscriptions that route events towards
the next dispatcher in the head path, i.e., towards a dispatcher that has not yet
received the rec message. This processing proceeds in the opposite direction w.r.t.
the processing of normal subscriptions, activating a subscription before the event
recipient is aware of it. To see why this can become a problem, consider two
dispatchers R and S, found in this order in the head path. S is a subscriber
for a pattern p. It may happen that, while R forwards the rec message to S,
S simultaneously unsubscribes from p. If other subscriptions to p are present in
the sub-tree of the tail path, the processing above would incorrectly remove a
subscription that, although no longer necessary to S, enables forwarding towards
some other subscriber reachable through the new link. For instance, in Figure 6,
this situation occurs if E unsubscribes while the rec is travelling from A to E. The
unsubscription would incorrectly remove the subscription ab1, therefore preventing
events generated by the dispatchers to the left of A from correctly reaching D.

The solution we adopt requires that the rec message is explicitly acknowledged
with a recAck message, and that the sender of the rec message (i.e., R in the
previous example) remembers the subscriptions added by a reconfiguration un-
til the rec message has been acknowledged. This allows it to discern between
an unsubscription that would disrupt event propagation along the reconfiguration
path, and one that should instead be processed. Indeed, a dispatcher ignores the
unsubscriptions received in between the forwarding of a rec and the receipt of
its acknowledgement recAck, if they correspond to subscriptions added by the
reconfiguration. In Figure 11 this motivates the ignore table containing the unsub-
scriptions that should not be processed, and the acknowledgment message recAck,
whose effect is to clear the ignore table (steps 1c and 1d).

Reconciling Subscriptions Across the New Link. The second issue arises because the
contents of the rec message and thus the reconfiguration carried out on the head
path are solely determined by the state of the initiator when the link is removed.
In particular, while the rec message is on the head path, the second sub-tree is
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unaffected by the reconfiguration, and normal subscriptions and unsubscriptions
can be issued without the possibility to reach the initiator’s sub-tree.

This requires a reconciliation mechanism to remove inconsistencies generated
before the two sub-trees are joined. This reconciliation is carried out by the second
end-point of the new link, which compares its own subscription table with the Padd

carried by the rec message, checking if some subscriptions added in the head path
are no longer necessary because the corresponding subscribers in the second sub-
tree have unsubscribed. For each subscription found in Padd but not in the local
table, an unsubscription message is sent across the new link (step 4).

Similarly, the second end-point of the new link checks whether there are sub-
scriptions generated in the sub-tree of the tail path during the first part of the
reconfiguration, which should be added on the head path. However, this check
cannot be done until the last dispatcher on the tail path receives the rec message
and propagates its unsubscriptions (step 6). Therefore, the second end-point of the
new link saves the patterns in Padd received with the rec message into a temporary
variable storedPadd , while the last dispatcher in the reconfiguration path sends a
flush message (step 7) after the unsubscription messages generated in step 6. By
receiving this flush the second end-point of the new link can determine when the
reconfiguration has completed. When this happens, it compares the patterns saved
in storedPadd against its current subscription table and propagates to the first sub-
tree all the subscriptions in its table that do not direct events exclusively to the
other end-point of the new link and are not contained in storedPadd (step 8).

6. EVALUATION

Section 5 described in detail the behavior of our protocols. This section comple-
ments it by focusing on a numerical evaluation of their performance in several sce-
narios, carried out with OMNeT++ [Varga 2003], a popular, open source, discrete
event simulation tool.

Section 6.1 introduces the simulation environment and the parameters character-
izing the scenarios we evaluated. Section 6.2 analyzes the ability of the protocols to
restore the correct event routing after reconfigurations, while maintaining reason-
able event delivery. Finally, Section 6.3 presents a detailed evaluation of the cost
of dealing with reconfiguration for each of the protocols we propose.

6.1 Simulation Setting

In the absence of reference scenarios, we extended those we used in [Picco et al.
2003] and [Cugola et al. 2004]. Clients are not modeled explicitly, as their activity
affects only the dispatcher they are attached to. The parameters of our simulations
and corresponding default values are shown in Table I, and briefly described below.

Events, subscriptions, and matching. Events are modeled as strings containing µ =
9 random characters. Subscriptions are represented as a single character. An event
matches a subscription if it contains the character specified by the subscription.
Each dispatcher is allowed to subscribe to π = 7 subscriptions drawn randomly
from the Π available. In most simulations we use Π = 96, limiting ourselves to the
printable characters.

Publish frequency. The behavior of each dispatcher is governed by the frequency
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Parameter Default value

number of dispatchers N = 100
dispatcher degree δ = 4

available patterns in the system Π = 96
patterns per dispatcher π = 7

patterns matched by each event µ = 9

density of subscribers σs = 0.2
density of publishers σp = 1

publish frequency at each dispatcher ε = 1 pub/s

frequency of reconfiguration ρ = 3 rec/s
time required to repair the tree trep = 0.1 s

unsubscription timer Tu = 0.15 s
subscription timer Ts = 0.15 s

Table I. Default simulation parameters. Those in italics remain constant throughout our simula-
tions.

at which publish, subscribe, and unsubscribe operations are invoked by each dis-
patcher. The most relevant is the publish frequency ε, which essentially determines
the system load in terms of event messages that need to be routed: its impact is
evaluated in Section 6.3.3. In our simulations, the density of publishers is σp = 1,
i.e., every dispatcher is a publisher. This parameter is not changed across our simu-
lations since it affects primarily the event load, which is already controlled through
the publish frequency ε.

Density of subscribers and receivers. As discussed in Section 4.3, the extent to which
(un)subscriptions are propagated is determined by the density of subscribers in the
tree, the impact of which is analyzed in Section 6.3.2.3. The choice of σs = 0.2
as the default value is motivated by the fact that this value causes an event to
be received by approximately 10% of the dispatchers in the system—a commonly
accepted “rule of thumb” for content-based systems (see, e.g., [Carzaniga et al.
2004]). In fact, given our event model, the density of receivers for a given event can
be computed as

σr = σs × p = σs

(

1 −

(

Π − π

Π

)µ)

(2)

where p is the probability that a given event matches at least one of a subscriber’s
patterns. Using the default values in Table I, Equation (2) indeed yields σr =
0.0988 ∼ 0.1.

Network size and topology. The results we present are obtained with tree config-
urations consisting of up to 500 dispatchers, with most of our plots derived with
N = 100. The links connecting dispatchers are assumed to behave as error-free
10 Mbit/s links. The maximum degree of the dispatchers in the network limits
each dispatcher to at most δ = 4 neighbors. Simulation runs with different degrees
showed that the influence of this parameter is negligible. In the following, we as-
sume that the initial configuration is a balanced tree, although in Section 6.3.2.1
we analyze also the case of an unbalanced initial configuration.

Tree reconfiguration. The aim of our simulations is to compare the performance
of the protocols described in this paper in a situation where the dispatching tree
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is modified through the replacement of one link with another. The cases where
the dispatching tree is partitioned into two sub-trees or two sub-trees merge are
in fact treated in the same way by all the protocols we consider, and are also
arguably less frequent. The selection of the links breaking or appearing is done
randomly. However, the same random sequences were applied to all the protocols
in order to obtain consistent results. To retain some degree of control about when
a reconfiguration occurs, we assume that each broken link is replaced by a new one
after trep = 0.1s.

Each simulation represents an interval of eight seconds. During the first three
seconds, dispatchers operate normally, generating subscriptions, unsubscriptions
and events in the absence of topological reconfigurations. These occur in the in-
terval between 3s and 7s, at a regular frequency determined by the parameter
ρ, whose impact is assessed in Section 6.3.2.4. The last second is used to allow
reconfigurations to complete.

Timers. Some of our protocols make use of timers to coordinate their actions. The
choice of the best timer values depends on the specific scenario being considered.
In the scenario we analyzed, however, we set both the subscription and the unsub-
scription timers to 0.15s, as these values yield average performance. An analysis of
the impact of timer values is provided in Sections 6.3.2.5 and 6.3.3.2.

Reducing the effect of randomization. Since topology, subscriptions, events, and
reconfigurations are determined randomly, our results had a significant degree of
variability. To reduce the bias induced by randomization, we ran each configuration
30 times using different seeds, and then averaged the results. The same set of seeds
is used for all the protocols evaluated in each configuration. Instead, in the case of
unbalanced tree configurations the initial tree is random and different for each run.

6.2 Event Delivery

The first property we need to evaluate in our protocols is their ability to restore
correct event routes regardless of the temporary disruption caused by reconfigura-
tions. If the protocols behave correctly, the percentage of events delivered should
drop temporarily as a consequence of reconfiguration, and then go back to 100%.
This is exactly the case in Figure 12, where we show the results obtained by the
Timed Deferred Unsubscription protocol under different reconfiguration rates.
We report only the results obtained with one of the protocols, as simulation of the
others did not evidence significant differences.

The measurements were performed by relying on a subset of the dispatchers be-
longing to a stable core. Core dispatchers are prevented from issuing (un)subscriptions
after a given time threshold, set to 2s in our tests. The presence of the stable core
focuses our measurements on the events lost as a result of reconfigurations, elim-
inating events missed during the propagation of new subscriptions. Nevertheless,
only the stable core is subject to this limitation: as a result, the protocols are
validated not only against the reconfiguration coming from changes in the topol-
ogy, but also against the reconfiguration of routing information determined by the
(un)subscriptions coming from dispatchers not in the core.

The plots of Figure 12 are based on a configuration with N = 100 dispatchers,
50% of which belong to the core. Moreover, 50% of the dispatchers inside the
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Fig. 12. Event delivery for the Timed Deferred Unsubscription protocol.

core and 50% of those outside the core are subscribers, and a high event load of
ε = 50 publish/s is assumed. The reconfiguration rate ρ in Figure 12(a) allows
each reconfiguration to complete before the next one starts. In this case, event
delivery is only marginally affected by reconfiguration. Instead, the higher rate of
Figure 12(b) leads to a situation where reconfigurations overlap in time and space,
therefore negatively affecting event delivery.

Figure 12 shows how, independently of the reconfiguration scenario, our protocols
always restore correct routes. Indeed, event delivery goes back to exactly 100% after
the network topology stabilizes at t = 7.

6.3 Overhead

The simulation results for event delivery indicate that our protocols correctly re-
store event routes in the presence of topological reconfigurations, but do not provide
insights about the efficiency of the process. Here, we evaluate this aspect by focus-
ing on the communication overhead, while Section 6.3.5 analyzes also the number
of nodes involved in (i.e., triggering some processing as a consequence of) a recon-
figuration, as an indirect measure of the computational overhead induced in the
dispatching network.

In the plots we present in this section, the main quantity under evaluation is
the (average) cost of a single reconfiguration, computed by taking the number
of overhead messages generated during the simulation run and dividing it by the
number of reconfigurations that occurred. This quantity represents the most basic
“building block” necessary to assess the behavior of our protocols, and in the rest of
this section we show how it varies according to changes in the simulation parameters
of Table I. Each plot reports the original data points together with their Bezier
interpolation, to help visualize trends. Also, note that the overhead is measured by
making all dispatchers part of the stable core. This way, the only (un)subscription
messages exchanged in the system are those caused by reconfiguration.

Before delving into the analysis, however, we detail further how we modeled the
various overhead components.
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Message Weight

sub 1
unsub 1
event 1

flush 0.1
activate #patterns

rec #patterns
recAck 0.1

Table II. Modeling the different costs of publish-subscribe messages and control messages.

6.3.1 Modeling the Cost of Publish-Subscribe and Control Messages. Through-
out the analysis, the communication overhead is computed as the number of mes-
sages that the protocols generate to restore correct event routing in the presence of
reconfigurations. More precisely, the overhead is the sum of: i) the (un)subscription
messages exchanged because of reconfiguration; ii) the control messages of the
protocols that manage the reconfiguration process; and iii) the event messages
misrouted along obsolete subscription paths and therefore reaching uninterested
dispatchers. Obviously, based on what we presented in Section 5, not all of these
overhead components are necessarily present in all of the protocols.

The overhead generated by a message depends both on the number of hops it
travels and on its size. Nevertheless, the actual size of event and (un)subscription
messages is ultimately determined by the application, while the size of control
messages is determined by the middleware implementation. Simply counting the
number of messages generated is misleading, since the difference in size among these
messages is significant. For instance, a flush message is likely to be very small
since it only carries an identifier, while a rec message contains a set of patterns
and therefore its cost is roughly equivalent to the sum of the sizes of the messages
issued to subscribe to those patterns.

In our evaluation we assigned different weights to the various messages, to ac-
count for their different sizes. We assume that a subscription, unsubscription, or
event message have the same size c, analogously to other researchers in the field
(e.g., [Triantafillou and Economides 2004]). This value, which we leave undefined as
it depends on the implementation, is used as the base to derive the cost of control
messages as w × c, where w is a weight associated to the message type, according
to Table II. We used w = 1 for the aforementioned standard publish-subscribe
messages, w = 0.1 for control messages that do not carry patterns, and a value of w

equal to the number of patterns contained in the message for the remaining ones.
The normalized cost generated by each message is then computed by multiplying
its weight by the number of hops it travels, and dividing it by c. Note that each out-
of-band message is considered to travel for one hop, since we assume that TCP or
some other point-to-point communication protocol is available between dispatchers.

The bias introduced by this modeling of overhead can be appreciated by looking
at Figure 13, which reports simulation results obtained in the reference scenario
defined by Table I. The figure shows, for each protocol containing control messages,
the absolute number of overhead messages exchanged on the left-hand side and the
normalized cost on the right-hand side. It is worth noting how our modeling choice
is a conservative one, in that it actually lowers the performance figures of our
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Fig. 14. Cost of reconfiguration vs. system scale.

protocols. In fact, while the impact of flush and recAck messages is in any
case negligible when compared to that of (un)subscriptions, the absolute number
of rec and activate messages is instead much lower than their normalized cost
(e.g., going from 3.44 to 90.9 for rec messages).

All the simulation plots we illustrate in the remainder of this section show the
normalized cost, unless otherwise stated.

6.3.2 Evaluating the Cost of Reconfiguring Subscription Tables. Our evaluation
begins by investigating the cost of restoring the consistency of subscription tables
after topological reconfigurations. We analyze this major component of overhead in
isolation, i.e., when no events are being published in the system (ε = 0). Therefore,
overhead is solely determined by (un)subscriptions and control messages. The im-
pact of misrouted events, which is nonetheless negligible in the reference scenario,
is analyzed in Section 6.3.3 and following.

6.3.2.1 System Scale. We begin by analyzing the performance of our protocols
against the system scale, by ranging the network size N from 50 to 500 dispatch-
ers and keeping the other parameters of Table I unaltered. Note how this really
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Fig. 15. Cost of reconfiguration vs. system scale, with unbalanced initial tree configurations.

represents an increase in system scale and not just in the network size. Indeed, an
increase of N causes a corresponding increase in the number of subscribers, which
is defined in terms of the density σs. Moreover, we also increase the number of
available patterns to Π = 200 to account for the increased scale. The impact of
this latter parameter is analyzed in more detail in Section 6.3.2.2.

Figure 14 shows our simulation results. Figure 14(a) shows the average cost of
a reconfiguration for each protocol, including Strawman. The plot evidences how
this cost increases along with the size of the network, as the distance between the
subscribers on the pattern tree becomes longer. Nevertheless, as can be appreciated
from the percentage improvement over Strawman plotted in Figure 14(b), all of
our protocols consistently and remarkably outperform the Strawman protocol,
reducing overhead by up to 75%. Also, it can be noted how the solutions based on
deferred unsubscriptions are less effective than the others, with a gap in performance
of about 20%.

The plots in Figure 14 also evidence how the performance of the two variants of
Deferred Unsubscription is virtually indistinguishable. This is not surprising,
as they have the same fundamental behavior, and differ only in the mechanism
used to trigger the unsubscriptions previously deferred. Moreover, since the flush

messages used by Notified Deferred Unsubscription are small in size and
few in number, as discussed in Section 6.3.1, their impact on overhead is negligible.
Analogously, the similarity between Informed Link Activation and Reconfig-

uration Path can be explained by observing that both limit the scope of the
reconfiguration to the reconfiguration path. The similarity between the protocols
is also a result of the specific scenario we considered, one without event load and
with non-overlapping reconfigurations. Later on in our analysis, we show that when
these dimensions are considered the various protocols exhibit different performance
and tradeoffs.

The results in Figure 14 were obtained by starting each simulation with a bal-
anced tree topology. This choice allows us to remove an additional source of ran-
domness from our results, and for this reason we retain it throughout this section.
Nevertheless, here we evaluate the impact of the initial tree configuration. In gen-
eral, a tree with a random topology has a larger diameter (depth) than the corre-
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Fig. 16. Impact of the number Π of available patterns on the reconfiguration overhead.

sponding balanced tree. As a result, we expect a random initial configuration6 to
amplify the differences among the various protocols because the overhead messages,
on average, travel longer than in the balanced case.

This is confirmed by comparing Figure 15(a) against Figure 14(a). Also, com-
parison of Figure 15(b) and 14(b) shows that Reconfiguration Path and In-

formed Link Activation improve an additional 10% against Strawman with
respect to the balanced case, while the relative performance of the Deferred Un-

subscription protocols drops by about the same quantity. The explanation is
straightforward: the Strawman and the Deferred Unsubscription protocols
are affected by the increase in the distance between dispatchers on the pattern tree
causing overhead messages to travel longer. Instead, Informed Link Activa-

tion and Reconfiguration Path are less affected by the increased diameter of
the network. The reason is that in the absence of concurrent subscriptions and
unsubscriptions both protocols manage to confine overhead messages to the re-
configuration path. Informed Link Activation exploits the information in the
activate messages to avoid the propagation of unnecessary (un)subscriptions out-
side the reconfiguration path, while Reconfiguration Path achieves even better
performance by virtue of the sequential process established by the rec along the
reconfiguration path.

Finally, it is worth noting that since the overhead in this unbalanced scenario
is higher for all the protocols, the absolute savings provided by our protocols over
Strawman are larger.

6.3.2.2 Number of Available Event Patterns. In our simulations, each subscriber
holds π subscriptions, each for a pattern randomly drawn from the Π patterns
available in the system. In this section, we analyze how changes in Π affect the
performance of the various protocols. In real systems, as the scale of the system
increases Π increases as well (albeit not necessarily at the same rate) since there
are new subscribers with unique subscriptions. The charts in Figure 16, derived
for N = 100, show that our protocols improve w.r.t. Strawman as the number

6The unbalanced configuration is random, but the maximum number of neighbors is still fixed,
δ = 4 in our simulations.
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Fig. 17. Impact of subscriber density σs on reconfiguration overhead.

of available patterns increases, therefore confirming that our choice of a default
Π = 96 patterns is actually conservative.

Indeed, the Strawman protocol is negatively affected by a larger number of avail-
able patterns. An increase in the number of patterns results in a lower density of
subscribers per pattern, therefore increasing the distance travelled by subscriptions
and unsubscriptions to join the pattern tree. Different from Strawman, our pro-
tocols manage to limit this distance by either deferring unsubscriptions (therefore
preserving the initial density of subscribers) or forcing reconfiguration messages to
remain on the reconfiguration path. Figure 16(b) confirms this intuition by showing
that the improvement of all our optimized protocols increases with the number of
available patterns.

The arguments we put forth in this section justify our choice of Π = 200 in
Section 6.3.2.1, to accommodate for the increased scale. Moreover, they also explain
why the improvement curve in Figure 14(b) exhibits a small decrease when the size
of the dispatching network increases. This trend is a consequence of our choice
of a fixed number of available patterns. When the number of nodes, and thus
the density of subscribers, increases the tree becomes dense of subscriptions, since
the π subscriptions for each subscriber are drawn from the same, fixed set of Π
patterns. This reduces the total number of hops traveled by subscription and
unsubscription messages, and correspondingly reduces the gap between Strawman

and the optimized protocols. In a true content-based system this “saturation”
phenomenon is unlikely to occur, since an increase in scale is usually mirrored by
some increase in the number of available patterns.

In the rest of this section we focus on a network of N = 100 dispatchers and
retain the default value Π = 96, unless otherwise stated.

6.3.2.3 Density of Subscribers. The average cost of a reconfiguration clearly de-
pends on the density of subscribers in the dispatching network, as we discussed in
Section 4.3. The higher the density of subscribers the shorter the distance trav-
elled by (un)subscription messages caused by reconfiguration, and consequently
the smaller the improvement achieved by our protocols. Figure 17 confirms this
intuition by showing the results of simulations in the reference scenario of Ta-
ble I, changing the density of subscribers in the range 3% ≤ σs ≤ 100%, which
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Fig. 18. Impact of reconfiguration rate on reconfiguration overhead.

according to Equation (2) yields a number of receivers per event in the range
1.48% ≤ σr ≤ 49.40%.

It is worth making two additional observations about Figure 17. First, even with
a tree where all dispatchers are also subscribers, our protocols are still able to sig-
nificantly improve over Strawman, from the 20% improvement achieved by the
Deferred Unsubscription protocols to the 40% achieved by Informed Link

Activation. Second, the higher the density of subscribers the less the scenario
faithfully represents a content-based system. In content-based systems, patterns are
usually highly selective, and the number of receivers per event is usually assumed
to be reasonably low (about 10% for σs = 0.2, as discussed in Section 6.1), as this
is one of the aspects differentiating content-based communication from multicast
and broadcast communication. Instead, here σr is well beyond these commonly as-
sumed values. Additionally, while a high subscriber density conflicts with the sheer
notion of content-based publish-subscribe, very small values of σs (and therefore
σr) are meaningful in some application scenarios where a small number of devices
is responsible for collecting data published by a large number of data sources. For
instance, this situation is typical of monitoring and sensing applications, such as
those recently made popular by wireless sensor networks [Akyildiz et al. 2002]. In-
terestingly, in these applications reducing the communication overhead induced by
the monitoring infrastructure is of paramount importance.

6.3.2.4 Frequency of Reconfiguration. Thus far, we have considered a reconfig-
uration rate ρ = 3 rec/s. In our reference scenario with N = 100 dispatchers and a
time to reconnect the tree trep = 0.1 s, this leads to reconfigurations that complete
before a new one starts, and therefore can be considered as occurring in isolation.
Higher reconfiguration rates, instead, are likely to generate reconfigurations that
overlap not only in time (i.e., occurring in parallel) but also in space (i.e., involving
a common portion of the dispatching tree). Our choice for the default value of ρ

was motivated by the desire to reduce interference from different phenomena and
to enable the evaluation of the Reconfiguration Path protocol, which does not
tolerate overlapping reconfigurations. Here, we analyze the impact of a change in
this parameter, and we do so without considering the Reconfiguration Path

protocol, due to its limitations.
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Figure 18 reports the simulation results obtained by changing the reconfiguration
rate in the range 1 ≤ ρ ≤ 400 rec/s. With N = 100, the upper bound leads to
each link experiencing about 4 breakages per second. Once more, this value is
not necessarily meant to mirror a realistic reconfiguration rate, rather to elicit the
behavior of our protocols in extreme conditions7.

The most prominent phenomenon evidenced by the charts is the fact that the
average cost of a reconfiguration does not remain constant with the reconfigura-
tion rate. Therefore, reconfigurations cannot be considered independent: multiple
reconfigurations occurring in parallel do interfere with each other. At reasonable
reconfiguration rates an increase of ρ corresponds to an increase in the average cost
of a reconfiguration. This is caused by reconfigurations occurring in parallel and
“partially undoing” each other, e.g., removing subscriptions that are immediately
restored by a new reconfiguration, or vice versa. The more a protocol relies on stan-
dard propagation of (un)subscriptions the more evident is the phenomenon. Indeed,
Strawman experiences the biggest increase, while Informed Link Activation

experiences only a limited, albeit steady, increase. On the other hand, after a given
point—different for all protocols—an increase of the reconfiguration rate causes a
decrease in the average cost of a reconfiguration. The reason is that the dispatching
tree becomes so disrupted that the reconfiguration cost becomes more and more
dominated by the exchange of subscriptions (or unsubscriptions) occurring when a
link appears (or vanishes). Indeed, as the reconfiguration rate increases the differ-
ences between the various protocols become less and less significant, although our
solutions always improve over Strawman. Also, note how the performance of the
Notified Deferred Unsubscription protocol becomes worse than Timed De-

ferred Unsubscription as the reconfiguration rate increases. This is caused by
the fact that former triggers unsubscriptions earlier than the latter. Leaving stale
subscriptions in place for longer enables Timed Deferred Unsubscription to
benefit from the case where the subscription is going to be re-established by another,
concurrent reconfiguration, altogether removing the need for the unsubscription.

As we mentioned, however, these behaviors are found only in extreme reconfig-
uration scenarios that are unlikely to occur in practice. In real world settings, the
reconfiguration rate is likely to fall to the very left of the charts in Figure 18, where
the benefits of our protocols are larger.

6.3.2.5 Timers. Some of our protocols make use of the timers Tu and Ts to
synchronize the propagation of subscriptions with the removal of stale ones. In this
section, we analyze their effect on the reconfiguration of routes in the subscription
tables, therefore still assuming ε = 0. In Section 6.3.3.2 we instead evaluate their
impact on misrouted events when the publish rate is ε 6= 0.

Unsubscription Timer. Figure 19 illustrates the effects of variations to Tu. To
amplify these effects, which would otherwise be negligible in our reference scenario,
we increased the reconfiguration rate by an order of magnitude, bringing it to
ρ = 30 rec/s.

Figure 19(a) evidences the presence of a marked discontinuity around Tu = trep,

7We actually experimented with even higher rates, without finding significant differences beyond
400 rec/s.
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Fig. 19. Impact of the unsubscription timer on reconfiguration overhead, at ρ = 30 rec/s. The
Strawman protocol is shown as a term of comparison.

as expected8. This discontinuity is always present regardless of the value of ρ.
If the timer value is too small, our protocols tend to behave in the same way as
Strawman because unsubscriptions are triggered too early. Therefore, the timer
should be set large enough to allow the propagation of subscriptions to complete
before the propagation of unsubscriptions starts.

Interestingly, the Timed Deferred Unsubscription protocol is positively af-
fected by large timer values as they allow the protocol to reduce the number of
unnecessary (un)subscriptions and hence to reduce the overhead. The phenomenon
is due to the same effect observed in Section 6.3.2.4: the removal of a stale route
may become unnecessary if another reconfiguration requires establishing the same
subscription, and increasing the timer value increases the chance that this situa-
tion occurs. Notified Deferred Unsubscription experiences a similar, albeit
smaller, improvement, since the influence of Tu is diminished by the presence of the
notification mechanism, which is usually triggered before Tu expires.

As for Informed Link Activation, a discontinuity around Tu = trep is present
as in the other two protocols, along with a second one around Tu < Ts + trep.
The second discontinuity is due to the interaction between the two timers Tu and
Ts, according to Equation (1). If the constraint Tu < Ts + trep we introduced in
Section 5.2 does not hold (i.e., for Tu > 0.25 s in our charts) the overhead of In-

formed Link Activation increases, since the unnecessary subscriptions that have
been “held” at the end-points of the new link are released before unsubscriptions
have finished propagating, causing unnecessary overhead.

Therefore, we can conclude that for what concerns the cost of reconfiguring sub-
scription tables, as long as Tu > trep (or trep < Tu < Ts + trep for Informed

Link Activation) our protocols always improve over Strawman, and do not
show significant dependency on the value of the unsubscription timer. Neverthe-
less, the tradeoffs may be different in the presence of event traffic, as we discuss in
Section 6.3.3.2.

8More precisely, the discontinuity occurs around Tu = trep + tprop. However, since the unsub-
scription propagation time tprop is negligible in our simulations, we do not consider it.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 37

 0

 100

 200

 300

 400

 500

 600

 0  0.05  0.1  0.15  0.2  0.25  0.3

co
st

 p
er

 r
ec

on
fig

ur
at

io
n

subscription timer

Strawman
Timed Deferred Unsubscription
Notified Deferred Unsubscription
Reconfiguration Path
Informed Link Activation

(a) Unit cost per reconfiguration.

 0

 20

 40

 60

 80

 100

 0  0.05  0.1  0.15  0.2  0.25  0.3

pe
rc

en
ta

ge
 o

f i
m

pr
ov

em
en

t

subscription timer

Timed Deferred Unsubscription
Notified Deferred Unsubscription
Reconfiguration Path
Informed Link Activation

(b) Percentage improvement over Strawman.

Fig. 20. Impact of the subscription timer on reconfiguration overhead. The Strawman, Deferred

Unsubscription and Reconfiguration Path protocols are shown as terms of comparison.

Subscription Timer. Similar considerations hold for the subscription timer Ts em-
ployed only by the Informed Link Activation protocol. This second timer is
used to delay the propagation of those subscriptions that were used only to route
events across the broken link when the break occurred. The timer should therefore
be set to a large enough value (Ts > Tu − trep, as discussed in Section 5.2) to allow
the unsubscriptions to propagate from the broken link to its replacement. Too small
of a value allows for some unnecessary subscriptions to propagate, therefore mak-
ing the Informed Link Activation protocol behave similarly to the Deferred

Unsubscription protocols. These considerations are mirrored in the charts in
Figure 20, derived with the default reconfiguration rate ρ = 3 rec/s.

Differently from the unsubscription timer Tu, a large value for Ts is always ben-
eficial, or in the worst case irrelevant, to the overhead. Nonetheless, it can cause a
significant decrease in the event delivery, since setting the timer too large delays the
subscriptions issued during a reconfiguration until Ts expires, and therefore affects
the delivery of events towards the corresponding subscribers.

6.3.3 Evaluating the Impact of Misrouted Events. We now investigate the per-
formance of our protocols when event traffic is injected in the system, that is,
ε 6= 0. In this case, inconsistencies in the subscription tables lead to misrouted
events, which increase the overhead.

6.3.3.1 Publish Frequency. At the publish frequency of ε = 1 pub/s we selected
for our reference scenario, the impact of misrouted events is negligible. Never-
theless, their impact becomes significant at higher publish frequencies. Here, we
analyze the performance of our protocols with a publish frequency varying in the
range 0.1 ≤ ε ≤ 51.2 pub/s, where the distance among data points follows a geo-
metric progression. To put these values in context, the publish rate of applications
dominated by human interaction, such as collaborative work in mobile environ-
ments, is arguably comparable to—and, more likely, much lower than—1 publish/s
per dispatcher, which is in fact the default value we chose in Table I. This is espe-
cially true in applications where the most natural design involves co-locating each
client with a dedicated dispatcher on a network host, as in peer-to-peer or mobile
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Fig. 21. Impact of publish frequency on reconfiguration overhead.
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Fig. 22. Absolute number of misrouted events
per reconfiguration.
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Fig. 23. Misrouted events vs. the other over-
head components in Timed Deferred Unsub-

scription.

ad hoc networks [Huang and Garcia-Molina 2003]. The upper bound of more than
50 pub/s is instead almost equivalent to a streaming application. Therefore, the
high publish frequency in the chart should be regarded mostly as a way to evaluate
our protocols in an extreme, and almost unrealistic situation.

Figure 21 shows the reconfiguration overhead, while Figure 22 reports the abso-
lute number of misrouted events per reconfiguration for each protocol. A different
view is provided in Figure 23, which exemplifies the relative impact of misrouted
events w.r.t. the other components as the publish frequency increases. Interest-
ingly, Strawman generates a negligible number of misrouted events even at a
high publish rate, as it removes immediately stale routes and does not propagate
unnecessary subscriptions. Instead, all of our protocols suffer from the presence
of misrouted events, although the performance drop they induce is somewhat lim-
ited. The Deferred Unsubscription protocols perform the worst since they base
their operation on propagating subscriptions (possibly including some unnecessary
ones) before unsubscriptions. This generates a larger number of misrouted events
with respect to the other protocols because stale routes remain active for longer
periods. However, Notified Deferred Unsubscription performs better than
Timed Deferred Unsubscription, since the notification mechanism enables the
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Fig. 24. “Good” event traffic vs. reconfiguration overhead.

triggering of unsubscriptions without waiting for the expiration of the timer Tu.
The other two protocols perform better as they allow inconsistent routing tables
only on the reconfiguration path; Informed Link Activation performs a little
worse than Reconfiguration Path, as it waits for longer before removing stale
routes.

As we mentioned, however, we push the publish frequency to such an unrealistic
high event load mostly to stress the performance of our protocols and elicit the
various constituents of overhead. Provided that an application with such a high
event load exists, the optimization provided by any protocol is likely to be dwarfed
by the sheer number of published events. Figure 24 plots on the same chart the
“goodput” generated by events delivered to the intended receivers (i.e., the total
number of events minus the misrouted ones) and the traffic generated by reconfig-
uration. Both metrics are plotted against the publish frequency ε, in the reference
scenario defined by Table I. Figure 24(a) shows that at ε = 1 pub/s the overhead
generated by Strawman is in a ratio of about 1:2 with the traffic generated by
events, while Informed Link Activation brings this ratio down to 1:10. Smaller
values of ε show how our protocols yield even more remarkable improvements. In
addition, it is worth observing that the overhead depends not only on ε but also
on ρ: as shown in Figure 24(b), a higher reconfiguration rate shifts the overhead
curves higher, therefore changing significantly the tradeoffs, making our optimiza-
tions more relevant.

6.3.3.2 Timers. The subscription timer Ts may prevent events from reaching
subscribers by delaying the establishment of the corresponding routes, but it bears
no effect on misrouted events, and therefore it is not considered here.

On the other hand, the presence of misrouted events may significantly affect the
considerations we made in Section 6.3.2.5 for the unsubscription timer, as a large
value for Tu may misroute events through stale routes towards areas of the network
with no subscribers. As we showed in Section 6.3.3.1, however, a very small number
of misrouted events is generated at ε = 1 pub/s in our reference scenario. As a
consequence, the differences obtained by changing the value of the unsubscription
timer Tu are minimal. Therefore, once more, for the sake of eliciting the behavior
of our protocols by amplifying the effects of timers, we use a very high publish
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Fig. 25. Impact of the unsubscription timer on reconfiguration overhead. The Strawman, and
Reconfiguration Path protocols are shown as terms of comparison.

frequency ε = 50 pub/s.
Figure 25 confirms the above reasoning. As in Figure 19, there is a discontinuity

around Tu = trep. Differently from Figure 19, however, before and after this value
the performance penalty the protocols incur is determined by misrouted events
flowing along broken (Tu < trep) or stale (Tu > trep) routes. Moreover, at the high
publish rate we chose, the performance drop is evident even with the default recon-
figuration rate of ρ = 3 rec/s. Clearly, the Timed Deferred Unsubscription

protocol is the most negatively affected, as its behavior depends heavily on the
value of Tu. Notified Deferred Unsubscription and Informed Link Acti-

vation are less affected, since they resort to Tu only when their main mechanism
to trigger unsubscriptions (i.e., flush messages) fails.

6.3.4 A Note About Event Forwarding. One could claim that the overhead
caused by the reconciliation of subscription tables could be eliminated by avoiding
keeping routes altogether, and therefore resorting to the event forwarding strategy
outlined in Section 2. If events are rarely published, or more generally subscrip-
tions are changed much more frequently than events are published, then clearly
event forwarding is preferable. However, this is a well-known tradeoff that exists
regardless of reconfiguration, as discussed in Section 2. The question we investi-
gate here, instead, is whether reconfiguration narrows the gap between the event
forwarding and subscription forwarding strategies, and therefore makes the former
preferable.

Figure 26(a) crisply illustrates the tradeoffs at stake by showing the total traffic
generated by event forwarding and subscription forwarding, the latter extended with
our Informed Link Activation protocol. The chart shows the traffic generated
in a time interval between 2.5 and 8 seconds, with a burst of reconfigurations (ρ =
30 rec/s) that occurs in the interval 5s ≤ t ≤ 5.5s. This yields 15 reconfigurations
occurring in the aforementioned interval, which at N = 100 causes a significant
disruption affecting most of the system. Moreover, to place event forwarding in
a favorable scenario we assumed a high density of subscribers, i.e., σs = 0.8 and
the standard publish frequency of ε = 1 pub/s. All the other parameters are
unchanged from Table I. The horizontal lines represent the average number of
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Fig. 26. A comparison against event forwarding. The charts show the total message traffic
generated, with a density of subscribers σs = 0.8.

messages per second generated by each protocol outside the reconfiguration burst.
As shown in the chart, in a stable system the average traffic is much higher for event
forwarding, about twice as large as the one generated by subscription forwarding.
However, during the reconfiguration burst in the plot, the overhead of the latter
(albeit enhanced with the best of our protocols) becomes higher than for event
forwarding.

The answer to our question above is therefore ultimately determined by the ratio
between the reconfiguration rate ρ and the publish frequency ε. The higher the
publish frequency, the higher the overhead induced by event forwarding. Conse-
quently, if ε is high, ρ must also be very high to justify the use of event forwarding.
The tradeoffs are exemplified by Figure 26(b), which shows the overall message
traffic against ρ for ε = 1 pub/s, i.e., in the same conditions of Figure 26(a). If the
value of ρ is reasonable (unlike those we used in the reconfiguration burst above
or in Section 6.3.2.4) then subscription forwarding is always preferable over event
forwarding, with our protocols providing significant additional improvements.

6.3.5 Computational Overhead: Dispatchers Involved in a Reconfiguration. Thus
far, we considered only the overall communication overhead induced by reconfigura-
tion. Nevertheless, another way to look at the burden reconfiguration places on the
system is to examine the computational overhead induced on the dispatchers. Our
simulations do not capture this directly, and in any case the results would be too
biased by the choice of the format of events and subscriptions. However, an indirect
measure of the stress placed on the system is the (average) number of dispatchers
involved in a single reconfiguration. In this section, we consider a dispatcher as
involved in a reconfiguration if it performs processing related to the reconstruc-
tion of routes disrupted by it. Therefore, involved nodes include the end-points
of the old and new link, as well as any other dispatcher processing subscriptions
and unsubscriptions triggered by the reconfiguration, as well as rec messages. On
the other hand, they do not include dispatchers that process only flush messages,
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Fig. 27. Dispatchers involved in a reconfiguration vs. system scale.

as the amount of processing they incur (rebroadcasting the message) is negligible
if compared with the one for the aforementioned messages (manipulation of sub-
scription tables, generation of new messages). Also, we do not include dispatchers
that process misrouted events, as we want to characterize the overhead determined
solely by the rebuilding of routes.

The value of this metric can be easily derived for each of the simulation traces
presented thus far. In the following, for each chart we show on the left the abso-
lute percentage of dispatchers involved in the reconfiguration, and on the right the
percentage of improvement w.r.t. Strawman. The results support the qualitative
arguments put forth in Section 5, confirming that our protocols are able to signifi-
cantly limit the portion of the system involved in a reconfiguration. For instance,
the fraction of dispatchers involved is shown against system scale in Figure 27 using
the same parameters of Figure 14. All of our protocols use less than half of the dis-
patchers used by Strawman, with Reconfiguration Path and Informed Link

Activation using 90% less than Strawman. Note how the absolute percentage
of dispatchers involved gets smaller as the scale is increased. This is a consequence
of assuming a reconfiguration rate independent of the system scale (ρ = 3 rec/s in
this case): as the scale increases, the disruption caused by each reconfiguration is
amortized over a smaller fraction of the system. Moreover, additional simulations
not shown here show that, similarly to what we discussed in Section 6.3.2.1, an
unbalanced initial configuration amplifies the differences among our approaches.

Another interesting perspective is provided by Figure 28 and 29, which plot the
dispatchers involved against the density of subscribers and number of available pat-
terns, respectively, with the same setting of Figure 16 and 17. These charts not only
provide additional support for the ability of our protocols to limit reconfiguration,
but also show how Informed Link Activation, and even more Reconfigura-

tion Path, are largely independent of these two parameters.

7. DISCUSSION AND LESSONS LEARNED

The previous section characterized the performance of our protocols along several
dimensions, therefore providing a useful and immediate way to compare quanti-
tatively the various solutions. Nevertheless, each protocol bears strengths and
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Fig. 28. Dispatchers involved in a reconfiguration vs. number of available event patterns.
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Fig. 29. Dispatchers involved in a reconfiguration vs. subscriber density.

Arbitrary
Changes?

Knowledge of Topology Additional
Messages

Implementation
Complexity

Strawman Yes A link (dis)appears None Low
Deferred

Unsubscription
Timed Yes A link (dis)appears None Low
Notified Yes A link replaces another flush Low/Medium

Informed Link Activation Yes A link replaces another activate,
flush

Medium

Reconfiguration Path No Reconfiguration path rec,
recAck

High

Fig. 30. Comparing the applicability and complexity of reconfiguration protocols.

weaknesses, determined by the assumptions it relies upon and by the very mechan-
ics of its operations. As a consequence, it would be misleading to elect a single
protocol as the best solution based uniquely on the simulation results of Section 6.
Instead, in this section we complement our quantitative results with qualitative con-
siderations about the applicability and complexity of the solutions we presented.
Together, these findings enable one to choose the most appropriate protocol for a
given deployment scenario.

Figure 30 shows the main differences among the protocols we proposed in this
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paper. The first column refers to the ability of the protocol to tolerate multiple, con-
current reconfigurations, whose reconfiguration paths may or may not overlap. All
protocols but Reconfiguration Path have this capability. The second column
characterizes the amount of knowledge each protocol assumes about the operation
of the underlying tree maintenance module. The Timed Deferred Unsubscrip-

tion protocol, like Strawman, only assumes that this sub-system is able to notify
a dispatcher when one of its links disappears or when a new neighbor appears—a
minimal assumption that can be satisfied straightforwardly. The Notified De-

ferred Unsubscription and Informed Link Activation assume that the tree
maintenance module is also able to determine and properly report whether the
appearance of a new link is effectively a replacement of a given previously van-
ished link. This can be accomplished by specific overlay network protocols, such as
those we developed recently [Mottola et al. 2005; Frey and Murphy 2005]. Finally,
the Reconfiguration Path protocol requires knowledge of the whole sequence
of dispatchers belonging to the reconfiguration path, which again requires either
dedicated protocols (e.g., straightforward adaptation of the aforementioned ones
we developed) or more stringent assumptions on the deployment scenario (e.g.,
manual reconfiguration performed by a system administrator). Together, these two
columns are a qualitative indicator of the applicability of the protocols to different
scenarios.

The third column shows which control messages are necessary in each protocol,
in addition to the messages normally used to deal with publish and (un)subscribe
operations. As such it can be regarded as an indicator of the ease of implementa-
tion. The Timed Deferred Unsubscription protocol affects only the order of
the operations performed by Strawman, and as such it does not introduce any
new control messages, while all the other protocols introduce at least one. Finally,
the fourth column summarizes the findings, by informally and qualitatively clas-
sifying the protocols according to their overall implementation complexity. The
Timed Deferred Unsubscription protocol is by far the simplest, in that it
makes simple (and yet effective) variations to Strawman. At the other extreme,
Reconfiguration Path is by far the most complex, as evidenced by comparing
its code and description to the other protocols in Section 5.

These qualitative considerations, together with the quantitative evaluation we
presented in Section 6, enable us to distill some conclusions. To begin with, Timed

Deferred Unsubscription is the least efficient of our protocols. Nevertheless, it
still improves considerably over Strawman and, like this protocol, it is applicable
in virtually any environment. Moreover, its implementation is extremely simple.
Therefore, Timed Deferred Unsubscription is a viable solution when it is not
necessary to fully optimize the reconfiguration traffic, but instead code footprint
and applicability are more of a concern. The middle ground in terms of perfor-
mance is occupied by the Notified Deferred Unsubscription alternative. This
comes at the expense of a small increase in complexity and slightly more stringent
assumptions about the overlay network, namely the ability to associate each new
link with one that disappeared previously. The protocol generally provides a small
and yet significant improvement over Timed Deferred Unsubscription. The
best performance among the four alternatives to Strawman is provided by Re-
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configuration Path and Informed Link Activation. The performance of the
former, however, comes at a significant cost, which makes its value more theoretical
than practical. The protocol is, in fact, characterized by a very high implementa-
tion complexity, is unable to withstand multiple overlapping reconfigurations, and
poses significant requirements on the underlying tree maintenance protocols. The
latter protocol, on the other hand, is able to achieve a comparable performance in
arbitrary reconfiguration scenarios, and with lower requirements on the tree main-
tenance module. These requirements are the same as those posed by the Notified

Deferred Unsubscription protocol; as a result Informed Link Activation

strikes the best tradeoff between performance and applicability.

8. RELATED WORK

In this section we discuss related work in the field of content-based publish-subscribe
and other paradigms for multi-point communication and coordination.

8.1 Distributed Content-based Publish-subscribe

Initial experiences with publish-subscribe focused on local area networks and relied
on a centralized dispatcher, while recent years have seen the development of a num-
ber of content-based publish-subscribe systems based on a distributed dispatcher.
Among the most widely known are Siena [Carzaniga et al. 2001], Gryphon [Ba-
navar et al. 1999], Hermes [Pietzuch and Bacon 2002; 2003], Xnet [Chand and
Felber 2004], REBECA [Fiege et al. 2002], Jedi [Cugola et al. 2001], Joram [Bal-
ter 2004], NaradaBrokering [Pallickara and Fox 2003], Le Subscribe [Fabret et al.
2001], READY [Gruber et al. 1999], Elvin [Segall et al. 2000], and TIBCO Ren-
dezvous [TIBCO Inc. ].

Most of these systems do not provide any explicit mechanism to reconfigure
the dispatching infrastructure in reaction to changes in the underlying network.
Some, including Jedi [Cugola et al. 2001], the extended version of Siena presented
in [Caporuscio et al. 2003], Elvin [Sutton et al. 2001], REBECA [Mühl et al. 2004;
Fiege et al. 2003], and the work described in [Podnar and Lovrek 2004] support a
different reconfiguration scenario where clients are enabled to roam by detaching
from one dispatcher and attaching to another. However, none of these works address
the reconfiguration of the dispatching network itself.

One type of exception is provided by Siena [Carzaniga et al. 2001] and the sys-
tem described in [Yu et al. 1999], which briefly mention the use of the Strawman

protocol to allow sub-trees of dispatchers to be merged or trees to be split. Nei-
ther of these papers provide details about the design of this facility, nor assess its
effectiveness through simulation.

A different solution to the problem of rearranging the dispatching network is
provided by Hermes [Pietzuch and Bacon 2002; 2003], which offers a slightly limited
form of content-based routing, termed “type and attribute based” routing [Eugster
et al. 2001]. Hermes borrows techniques from the area of peer-to-peer systems to
organize its dispatchers as a distributed hash table, where keys represent event types
and key-based routing techniques are used to build the dispatching tree associated
to each event type. This way, the issues stemming from the dynamic addition,
removal, and failure of dispatchers are automatically handled by the peer-to-peer
overlay underlying Hermes. However, the overhead generated by this approach has
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not been analyzed to date.

In our research we adopted a reactive approach, based on the idea of rearrang-
ing the routing table upon a change in the overlay network. Instead, some recent
approaches are based on a proactive and periodic (re)propagation of subscriptions.
In [Mühl et al. 2005], subscriptions are associated to a lease and must be refreshed
directly by the clients; subscriptions whose lease expires are automatically discarded
by dispatchers. Instead, in [Carzaniga et al. 2004] a dedicated protocol is run peri-
odically to remove stale subscriptions generated by reconfigurations. Both protocols
deal with dynamic topologies at the cost of requiring a continuous re-propagation
of subscriptions. In these proposals, however, the frequency of refresh is a critical
parameter difficult to tune. If it is too low the system is not responsive to changes
and the stale routes may contribute to a large number of misrouted events. If it is
too high, the overhead becomes unbearable. A reactive approach such as the one
we adopted is not affected by these problems, as it shows only a limited dependence
on the reconfiguration rate.

JEcho [Chen and Schwan 2005] takes a different approach in the context of mobile
ad hoc networks (MANETs) by assuming the availability of a multi-hop unicast
protocol. The latter is used to maintain a tree-shaped overlay for routing publish-
subscribe messages, and essentially mask the topology changes induced by mobility.
This approach simplifies the task of the publish-subscribe system, which can be
designed as if it would operate on a fixed network, but may easily result in an overlay
topology that rapidly diverges from the physical one. Therefore, JEcho dispatchers
periodically run a link state protocol to build a global view of the physical network
and rearrange the overlay accordingly. The overhead of this mechanism is analyzed
in the paper. Unfortunately, the authors fail to provide details about how to restore
correct routing tables when a topological reconfiguration is forced to realign the
overlay with the physical network. Therefore, the solution described in [Chen and
Schwan 2005] is essentially concerned only with the optimization of the tree overlay,
and is complementary to the work we described here.

Some approaches have also tried to move away from the presence of a tree-shaped
overlay. For instance, the work in [Costa and Picco 2005] exploits the redundancy of
a graph overlay through a mixture of deterministic (i.e., based on subscriptions) and
probabilistic routing, where the latter component intrinsically provides enhanced
resilience to reconfiguration. Others, and especially those conceived in the field
of MANETs [Zhou and Singh 2000; Meier and Cahill 2002; Yoneki and Bacon
2004; Baldoni et al. 2005], do not maintain an overlay, instead they rely directly
on broadcast communication. In general, all these works are quite far from the one
described here, and cannot be immediately compared to it.

Finally, in addition to the systems mentioned thus far, that consider a reconfigu-
ration problem similar to ours, other systems focus on fault-tolerance and reliability.
In particular, Xnet [Chand and Felber 2004] provides several mechanisms, including
the use of redundant routes, to reduce the impact of dispatcher crashes. Analo-
gously, Joram 4.2 [Balter 2004] and the extension to Gryphon described in [Zhao
et al. 2004] allow a set of dispatchers to operate as a single redundant cluster to
deal with link failures and dispatcher crashes. A similar approach is also discussed
in [Skjelsvik et al. 2004] in the context of MANETs. Multiple dispatchers oper-
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ate as replicated servers, i.e., by sharing the subscriptions issued by all clients on
the system. Published messages are then propagated to all servers using an ap-
proach analogous to the event forwarding strategy we discussed. In [Huang and
Garcia-Molina 2001] several alternatives to adapt publish-subscribe systems to mo-
bile middleware are briefly discussed. None of them is detailed, not to say evaluated.
Replication is also discussed as a way to increase the availability and reliability of
a publish-subscribe service in presence of mobility, e.g., to overcome server failures
or network partitions. However, all these approaches provide a limited form of
reconfigurability with respect to the one offered by the protocols studied here.

8.2 Network-level Multicast and Group Communication

An alternative perspective on publish-subscribe is to view it as a form of multi-point
communication. Therefore, it is natural to investigates the relations of our work
with other forms of multi-point communication, e.g., multicast network protocols
and group communication middleware.

The purpose of network-level multicast (e.g., as implemented over IP) is to pro-
vide efficient datagram communication services for applications that need to send
the same data to a group of recipients. Typical examples are audio and video
streaming. This goal results in routing strategies that largely differ from the ones
adopted in publish-subscribe systems. In particular, applications based on mul-
ticast exploit a finite number of statically known groups, while in content-based
publish-subscribe systems the “groups” (i.e., the event patterns) are potentially
infinite and not statically known. Moreover, IP multicast groups are disjoint and
each packet is explicitly addressed to a single group. Instead, in the systems we
considered, addressing is based on event content, therefore a event can match (and
be routed based on) multiple subscriptions. Finally, publish-subscribe usually as-
sumes the number of sources to be comparable to (if not much greater than) the
number of recipients, while multicast protocols are often devised to satisfy a small
set of sources communicating with a large set of recipients. As a consequence of
these differences, it is not practical to generalize IP multicast routing protocols to
route events in a content-based publish-subscribe system. For similar reasons, it is
hard to implement a content-based publish-subscribe system on top of an existing
IP multicast protocol. This issue is discussed in detail in [Opyrchal et al. 2000],
where several alternatives are compared.

Instead, the term “group communication” identifies a body of research whose
goal is to provide mechanisms for reliable communication among a group of pos-
sibly remote processes, guaranteeing some properties about event ordering and
atomicity [Chockler et al. 2001]. Under this umbrella fall systems providing re-
liable multicast [Levine and Garcia-Luna-Aceves 1998; Obraczka 1998] as well as
systems providing semantically richer functionality to coordinate a set of distributed
components [Birman 1993; van Renesse et al. 1996]. As in network-level multicast,
in these systems it is the sender that determines the set of recipients, in contrast
with content-based publish-subscribe systems where it is the receiver that specifies
the event classes of interest. Moreover, while group communication systems pro-
vide reliability, ordering, and atomicity, content-based publish-subscribe systems
emphasize performance and scalability at the cost of providing less guarantees.
This different focus has a strong impact on the underlying protocols and mecha-
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nisms adopted, therefore the solutions developed for group communication are not
directly reusable in our context.

9. CONCLUSIONS AND FUTURE WORK

Content-based publish-subscribe systems have become increasingly popular in re-
cent years thanks to the high level of flexibility they bring in the development of
distributed applications. Although much effort has been devoted to the design of
scalable solutions supporting publish-subscribe middleware in large-scale scenarios,
existing systems still lack efficient ways to address changes in the topology of their
distributed dispatching infrastructure.

Supporting this functionality requires addressing different problems. In this pa-
per, we focused on the issue that is peculiar to content-based systems: how to
efficiently reconcile the information used to route events to subscribers in the pres-
ence of topological reconfigurations. We presented our overall approach to the
reconfiguration problem and described four protocols that extend the common sub-
scription forwarding strategy with the ability to tolerate topology changes in a
number of application scenarios. The protocols were thoroughly compared with ex-
tensive simulation experiments. These results allowed us to assess the advantages
and drawbacks of each solution, providing valuable information to middleware de-
signers. Depending on the specific scenarios, our protocols manage to reduce the
overhead of the reconfiguration process by up to 80% without hampering the ability
to deliver event notifications to interested parties.

The protocols we presented are currently being integrated in our content-based
publish-subscribe middleware REDS (REconfigurable Dispatching System) [Cugola
and Picco 2005], available as open source at zeus.elet.polimi.it/reds. This
will enable a more direct assessment of their performance in real-world applica-
tions. Moreover, we are currently working on evaluating our protocols when used
in conjunction with our solutions for repairing the overlay [Frey and Murphy 2005;
Mottola et al. 2005] and recovering lost events [Costa et al. 2003; 2004]. The com-
bination of these protocols with those specific to routing described in this paper
is expected to evidence additional tradeoffs and possibly further opportunities for
optimization.
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Mühl, G., Ulbrich, A., Herrmann, K., and Weis, T. 2004. Disseminating information to mobile
clients using publish/subscribe. IEEE Internet Computing 8, 3 (May), 46–53.

Obraczka, K. 1998. Multicast transport protocols: a survey and taxonomy. IEEE Communica-
tions Magazine 36, 1 (January), 94–102.

Opyrchal, L. et al. 2000. Exploiting IP Multicast in Content-Based Publish-Subscribe Systems.
In Proc. of Middleware 2000. ACM Press, New York, USA.

Pallickara, S. and Fox, G. 2003. NaradaBrokering: A Distributed Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids. In Proc. of the 4th ACM/IFIP/USENIX
Int. Middleware Conf. ACM Press, Rio de Janeiro, Brazil, 41–61.

Picco, G. P., Cugola, G., and Murphy, A. L. 2003. Efficient Content-Based Event Dispatching
in Presence of Topological Reconfiguration. In Proc. of the 23rd Int. Conf. on Distributed
Computing Systems (ICDCS’03). IEEE Computer Society Press, Providence, Rhode Island,

USA, 234–243.

Pietzuch, P. and Bacon, J. 2002. Hermes: A distributed event-based middleware architecture. In
Proc. of the 1st Int. Workshop on Distributed Event-Based Systems (DEBS). IEEE Computer
Society Press, Vienna, Austria.

Pietzuch, P. and Bacon, J. 2003. Peer-to-peer overlay broker networks in an event-based
middleware. In Proc. of the 2nd Int. Workshop on Distributed Event-Based Systems (DEBS).
ACM Press, San Diego, CA, USA.

Podnar, I. and Lovrek, I. 2004. Supporting mobility with persistent notifications in publish-
subscribe systems. In Proc. of the 3rd Int. Workshop on Distributed Event-Based Systems
(DEBS). ACM Press, Edinburgh, Scotland, UK.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 51

Poutievski, L., Calvert, K. L., and Griffioen, J. 2004. Speccast. In INFOCOM.

Royer, E. and Perkins, C. 1999. Multicast Operation of the Ad-hoc On-Demand Distance
Vector Routing Protocol. In Proc. of the 5th Int. Conf. on Mobile Computing and Networking
(MobiCom’99). ACM Press, Seattle, WA, USA, 207–218.

Segall, B., Arnold, D., Boot, J., Henderson, M., and Phelps, T. 2000. Content Based
Routing with Elvin4. In Proc. of AUUG2K. Canberra, Australia.

Skjelsvik, K. S., Goebel, V., and Plagemann, T. 2004. Distributed event notification for
mobile ad hoc networks. IEEE DSOnline 5, 8.

Snoeren, A. C., Conley, K., and Gifford, D. K. 2001. Mesh-based content routing using xml.
SIGOPS Oper. Syst. Rev. 35, 5, 160–173.

Sutton, P., Arkins, R., and Segall, B. 2001. Supporting Disconnectedness—Transparent
Information Delivery for Mobile and Invisible Computing. In Proc. of the IEEE Int. Symp. on
Cluster Computing and the Grid. IEEE Computer Society Press, Brisbane, Australia.

TIBCO Inc. TIBCO Rendezvous. www.tibco.com.

Triantafillou, P. and Economides, A. 2004. Subscription summarization: A new paradigm for
efficient publish/subscribe systems. In Proc. of the 24th Int. Conf. on Distributed Computing
Systems (ICDCS’04). IEEE Computer Society Press, Tokyo, Japan.

van Renesse, R., Birman, K. P., and Maffeis, S. 1996. Horus, a flexible group communication
system. Communications of the ACM 39, 4 (April), 76–83.

Varga, A. 2003. OMNeT++ Web page. www.omnetpp.org.

Yoneki, E. and Bacon, J. 2004. An adaptive approach to content-based subscription in mobile
ad hoc networks. In Proc. of the 2nd IEEE Annual Conference on Pervasive Computing and
Communications Workshops. IEEE Computer Society Press, Orlando, FL.

Yu, H., Estrin, D., and Govindan, R. 1999. A hierarchical proxy architecture for Internet-scale
event services. In Proc. of the 8th Int. Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises. IEEE Computer Society Press, Stanford, CA, USA.

Zhao, Y., Sturman, D., and Bhola, S. 2004. Subscription propagation in highly-available pub-
lish/subscribe middleware. In Proc. of the 5th ACM/IFIP/USENIX Int. Conf. on Middleware.
Springer, Toronto, Canada, 274–293.

Zhou, H. and Singh, S. 2000. Content-based multicast for mobile ad hoc networks. In Proc.
of the 1st Annual Workshop on Mobile Ad Hoc Networking and Computing (Mobihoc 2000).
ACM Press, Boston, MA.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.


