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Abstract

One of the main obstacles to the adoption of Wire-
less Sensor Networks (WSNs) outside the research
community is the lack of high level mechanisms to
easily program them. This problem affects dis-
tributed applications in general, and it has been
replied by the Software Engineering community,
which recently embraced Service Oriented Pro-
gramming (SOP) as a powerful abstraction to ease
development of distributed applications in tradi-
tional networking scenarios. In this paper we move
from these two observations to propose SLIM: a
middleware to support service oriented program-
ming in mobile Wireless Sensor and Actuator Net-
works (WSANs). The presence of actuators into
the network and the capability of SLIM to sup-
port efficient multicast invocation within an ad-
vanced protocol explicitly tailored to mobile sce-
narios, makes it a good candidate to ease develop-
ment of complex monitoring and controlling appli-
cations. In the paper we describe SLIM in details
and show how its performance easily exceeds those
obtainable by using traditional approaches to ser-
vice invocation in mobile ad-hoc networks.

INTRODUCTION

After an initial period of research and experimenta-
tion, Wireless Sensor Networks (WSNs) (Sohraby,
Minoli, & Znati, 2007) and their siblings: Wireless
Sensor and Actuator Networks (WSANs) (Akyildiz
& Kasimoglu, 2004) are entering a more mature
phase, with several commercial companies offering

products to support a wide range of application do-
mains concerned with monitoring and control. On
the other hand, to hold the promise of bridging
the gap between the physical and the virtual world,
WSANs have still to overcome a major limitation:
the difficulty of developing applications on top of a
given WSAN platform.
Indeed, usually WSAN programming has to be

carried out in a very low-level, system-dependent
way. This requires programmers to have a strong
technical background in several domains, from sys-
tem to network, while also resulting in very long
development and testing phases: something that is
currently limiting the adoption of WSAN technol-
ogy.
To overcome this limitation, the research commu-

nity proposed various approaches to raise the level
of abstraction for WSAN programming (Picco &
Mottola, to appear) but none of them has been
widely adopted. Meanwhile, the Software Engi-
neering community is proposing Service Oriented
Programming (SOP) as a powerful approach to ease
development of complex distributed applications.
While others have already proposed using SOP in
WSANs (see our section on related works), to the
best of our knowledge none has offered a complete
and integrated solution to bring the SOP world
into the tiny scale of WSANs. In this paper we fill
this gap by presenting SLIM: a middleware infras-
tructure to support service-oriented programming
in mobile WSANs.

Issues in Mobile WSANs. Several applications
of WSANs involve monitoring and controlling mo-
bile entities like people, animals, or goods, through
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access and control points that can be also mobile,
like PDAs in the hands of operators. This brings
the need of considering mobility as a key aspect
of a sensor network: an aspect such important be-
cause it has a great impact on the communication
and coordination layers. Indeed, as the research on
Mobile Ad-Hoc Networks (MANETs) shows, the
communication layer of a mobile application has to
include effective mechanisms to cope with unreli-
able links and routes. Similarly, ad-hoc coordina-
tion mechanisms are required to cope with nodes
that may quickly become unreachable due to net-
work partitions, while other nodes may appear as
they approach the coordination area. Even the ap-
plication layer is impacted by mobility, as the lo-
cation, and more in general the context of nodes,
becomes an important issue to consider in choosing
which nodes to contact.

SLIM addresses these issues by adopting an ad-
vanced routing protocol explicitly designed to man-
age unreliable links and dynamic group member-
ship, while it decouples the service matching pol-
icy from the communication layer, allowing appli-
cations to choose and install into the middleware
the matching component that better fits their needs
(e.g., one including contextual information as part
of service descriptions).

SLIM also provides an efficient, peer-to-peer ser-
vice discovery protocol fitting the needs of a mobile
network in which nodes (including a registry) may
easily become unreachable. It also covers the typi-
cal needs of a network designed for sensing, by pro-
viding two forms of invocation: unicast and multi-
cast. The former allows service consumers to get
data from a single sensor or to send a command
to an actuator, while the latter allows to invoke all
the services that satisfy a given query at once, e.g.,
to gather the data produced by a set of sensors in
a single step.

Organization of the presentation. In the re-
mainder of the paper we describe SLIM in details.
In particular, the SLIM architecture and API is the
topic of the next section, then we describe the rout-
ing protocol behind SLIM, while in section “Evalu-
ation” we discuss SLIM performances and compare
them with those attainable with more classical solu-
tions for SOP. Finally, the “Related Work” section
surveys other research results related with SLIM,
while in the last section we draw some conclusions

Figure 1: Reference scenario

and describe our future research plans.

THE SLIM ARCHITECTURE

The reference scenario for SLIM (see Figure 1) is
that of a Wireless Sensor and Actuator Network
(WSAN), composed of a set of nodes, including
fixed or mobile sensor motes, fixed or mobile actua-
tors, PDAs in the hand of operators, and gateways
toward a traditional network (a LAN or the Inter-
net). In a SOP style, every node may act as a ser-
vice provider, a service consumer, or both. Service
providers offer one or more services to consumers,
each described through a service descriptor. Ser-
vice consumers (or simply clients) locate the ser-
vices they need by passing a query to a lookup ser-
vice, and send messages to invoke them, receiving
other messages back as replies.
As mentioned, SLIM clients may also send mes-

sages in multicast, to reach all those services that
match a given query. This form of communica-
tion, which is not common in the panorama of SOP
middleware, not only has the potential of reducing
the cost of invocation, through an intelligent use of
multicast routing, but it also allows avoiding the
service location phase for all those cases, which are
common in WSANs, in which the service consumer
is interested in invoking all the service providers
that offer the same service, e.g., that of tempera-
ture and humidity reading in a vineyard.
The kind of applications that may benefit of

SLIM include environmental monitoring and actu-
ating, e.g., for precision agriculture (Sikka et al.,
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Figure 2: The SLIM internal architecture

2006); monitoring people at home or in hospitals,
e.g., for elderly care (Proc 3rd Int. Conf. on
Pervasive Computing Technologies for Healthcare,
2009); monitoring animals in farms (Andonovic et
al., 2009); or monitoring goods moving around, e.g.,
for supply chain management (Evers & Havinga,
2007).

SLIM supports these scenarios through a middle-
ware explicitly designed to be embedded in small
scale nodes like sensor motes, which supports both
service location (i.e., discovery) and invocation.
Figure 2 shows the internal architecture of the
SLIM middleware implemented into each node. On
top of the MAC protocol (e.g., IEEE 802.15.4),
SLIM includes an advanced routing protocol ex-
plicitly conceived to support the SLIM functional-
ities in a mobile, multi-hop WSAN. Next section
describes this protocol in detail. Here we focus
on the other layers that compose the SLIM mid-
dleware starting from the Service Matcher, which
implements the logic that allows service descrip-
tors to be matched by service queries. This is a
generic component, which can have multiple im-
plementations for different deployments of SLIM.
This way SLIM is not forced to use a single ser-
vice description and query language, but can adapt
to multiple languages, from the simplest ones, in
which services are described by a small set of at-
tributes as in nanoSLP (Jardak, Meshkova, Riihi-
jrvi, Rerkrai, & Mahonen, 2008), to the most com-
plex ones, like those using XML descriptors and
queries. Since SLIM performs service discovery us-
ing a query message that reaches every node in
the network (more on this later), the matching is
solved at each node separately. This reduces the ef-
fort that each node has to spend (minimizing power
consumption) and simplifies the issue of coding the

registerSvc(SvcDescr s, void (*callback)(void *msg,

int msize, void *reply, int *rsize))

SvcDescr *lookup(SvcQuery q)

void sendMsg(SvcDescr s, void *msg, int msize)

void mcastMsg(SvcQuery q, void *msg, int msize)

Figure 3: The SLIM API

Service Matcher, which has only to check if the in-
coming query matches the services exported by the
local node.
On top of this is the Service Location & Invo-

cation Layer, which offers a simple API to register
a service, discover the services of interest, and in-
voke them. The main operations provided by this
API are shown in Figure 3 using the C syntax, as
most of the WSAN platforms use this language (or
a dialect, like NesC). The first two operations al-
low applications to register a service into the SLIM
runtime and to locate the services they need. The
sendMsg operation is used to send messages to sin-
gle services, chosen among those returned by the
lookup operation. Finally, the mcastMsg operation
sends the same message, in multicast, to all those
services that satisfy the query q.

THE SLIM PROTOCOL

Previous experience with routing protocols (Cugola
& Migliavacca, 2009; Baldoni, Beraldi, Cugola,
Migliavacca, & Querzoni, 2005; Cugola, Murphy,
& Picco, 2006) convinced us that using traditional
routing tables, holding the next hop for each des-
tination, together with unicast link-layer trans-
mission to forward packets, hop-by-hop, from the
source to the destination, is a bad idea in mo-
bile, pervasive scenarios, like those we target. Ac-
cordingly, SLIM uses a radically different approach
based on link-layer broadcast transmission, oppor-
tunistic forwarding, and soft state.

Brief summary of the protocol. More specifi-
cally, each SLIM node keeps a distance table stor-
ing the distance from those nodes it heard about
recently (information in this table expires after a
short period of time). During the service loca-
tion phase the distance table of each node is filled
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Figure 4: SLIM distance table and packets

with the distance (in hops) from the service con-
sumer who originate the query. This information is
subsequently used to bring service advertisements
back. At the same time, during this “return” phase,
the distance table of the nodes along the route to-
ward the service consumer is filled with information
about the service providers who replied. Finally,
both information (i.e., the distance from service
consumers and service providers) are used to route
request and reply messages back and forth. Dur-
ing this message exchange, tables of nodes along
the route are renewed, while new nodes have the
opportunity of discovering their distance from the
communicating peers.

Service location phase. The traditional ap-
proach to service location, which uses a single node
acting as a registry to store information about all
the services available in a given domain, is hardly
applicable to a dynamic, pervasive scenario like the
one we address in this paper. Starting from this
consideration, the SLIM location protocol adopts
a different, peer-to-peer approach, which does not
rest upon the existence of a specific registry node.

In particular, when a service consumer C invokes
the lookup primitive, its MAC address and the
query describing the services it is interested in are
encapsulated into a SVCREQ packet (see Figure 4),
which is sent out in broadcast (link-layer), while a
timeout is started to determine the maximum time
to wait for collecting results.

Upon receiving a SVCREQ packet, each node:

1. uses the service matcher component to check
if the query matches one of the services it reg-
istered;

2. adds a new record to its distance table (see Fig-
ure 4) with the address of C as the first field,
the number of hops to reach C (i.e., the hops
traveled by the SVCREQ packet so far) as field
DH , and the RSSI (Received Signal Strength
Indication) of the packet as field SS;

3. starts a timer that is inversely proportional to
the RSSI of the packet and the remaining bat-
tery of the node.

If, during this waiting period, the same packet
(each packet is identified through the address of the
source and a progressive number) is heard again,
the node cancels retransmission; otherwise, when
the timer expires, it forwards the packet in broad-
cast. This algorithm is repeated at each hop with
two results:

1. the SVCREQ packet floods the network being re-
transmitted only by those nodes that are far-
ther by the previous forwarder (thus having
the opportunity of covering the largest new
area, minimizing the number of retransmis-
sions) and whose battery is more charged;

2. the distance table of each node in the net-
work is filled with the distance DH (in hops)
from the service requester C, plus the signal
strength SS of the last hop traveled.

When the SVCREQ packet reaches the provider P
of a service that matches the request, a SVCADV

packet is created, which holds P ’s MAC address,
the address of the requester C (i.e., the source of
the SVCREQ packet), the distance of C from P , and
the descriptor of the matching service.

Like SVCREQs, SVCADVs are also sent out in broad-
cast, but routing is different. Indeed, when a node
N hears a SVCADV packet:

1. it updates its distance table from P ;

2. if its distance from the destination C (fieldDH

of the distance table) is greater or equal to
the distance included into the packet itself, N
drops the packet;
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3. otherwise it updates the distance from the des-
tination recorded into the packet and starts a
timer inversely proportional to a combination
of DH , SS, and the remaining battery.

As for SVCREQs, if during this waiting period the
same packet is heard again, the node cancels re-
transmission, otherwise it forwards the packet in
broadcast.
Under ideal conditions, this protocol results in

an efficient, greedy forwarding of SVCADV pack-
ets, which chooses opportunistically, as forwarders,
those nodes that are closer to the destination C

(small DH) and whose link from the probable next
forwarder are stronger (large SS).

Mobility and local minima. On the other hand,
mobility may break this protocol, by introducing
local minima in the distance field toward the service
requester C. This occurs whenever a node N has a
wrong estimate of its distance from C, e.g., because
it was once closer to C but now moved in a region
where the real distance is higher. Nearby nodes will
not forward packets generated by N because of the
(wrong) smaller distance it puts in those packets.
To solve this issue we complemented the basic

forwarding algorithm above with a retransmission
mechanism. After transmitting a packet (either as
a source or as a forwarder), a node N puts it in
a retransmission queue. If a predefined timeout of
retransmission expires without hearing the same
packet again, this time including a lower distance
from C (this happens when no one re-forwards the
packet toward C), the node N increases the dis-
tance into the packet by one and transmits it again.
The consequence of this mechanism is twofold:

on one hand it increases the protocol’s resistance
to collisions, which is good since link-layer broad-
cast is particularly subject to collisions. On the
other hand, increasing the distance for packets that
where not forwarded by neighbors, it also allows
overcoming local minima, by increasing the set of
potential forwarders for the retransmitted packet.
Unfortunately, asymmetric links may trigger the

retransmission mechanism even when it was not re-
quired, thus increasing the network traffic without
any positive effect on delivery. To limit this prob-
lem we allow each node to retransmit each packet at
most once. Moreover, we also introduce in SLIM
a mechanism of credits, which further reduces re-
transmission. When a SVCADV packet is created, it

is assigned a predefined credit (an integer), which is
decremented each time the retransmission timeout
expires at a node and the packet is retransmitted.
When the credit value goes to zero the retransmis-
sion mechanism is not used anymore, i.e., the ini-
tial credit of a SVCADV packet represents the max-
imum number of times the retransmission mech-
anism may fire along its route from the service
provider to the service requester.

Invocation phase. When a service consumer C

invokes the sendMsg operation, a SVCINV packet is
created holding the address of the recipient P , the
identifier of the service (both are part of the service
description), and the message to be sent.
Once this packet has been created it must be for-

warded. If the distance table of C does not hold any
information about P (because it expired and had
been removed) then the SVCINV packet is routed
using the same approach adopted for SVCREQs, i.e.,
using our “smart” flooding protocol. Otherwise it is
routed using the same approach used for SVDADVs.
In the first case it is very likely that the packet
will reach its destination: flooding is robust and it
rebuilds the distance field toward C that is easily
followed back by replies. As a consequence, in this
case we do not adopt any mechanism to further in-
crease delivery. Conversely, if the packet is sent
using the SVCADV approach, it may happens that it
gets lost. To cope with this risk, C starts a timer
just after sending the packet. If the timer expires
without receiving a reply, the SVCINV packet is sent
again, this time using the flooding approach.
Finally, replies are encoded into REPLY packets,

which are routed using the same approach adopted
for SVCADVs.
The last case we have to consider is that of a node

C invoking the mcastMsg operation. In this case we
build a M-SVCINV packet, similar to SVCREQs, but
including the service query provided by C as an im-
plicit destination address. This packet is routed as
SVCREQs, flooding the network in search of match-
ing services. A timeout is used to set the maximum
time to wait for collecting results.

EVALUATION

To provide an accurate and replicable analysis of
SLIM under different conditions we used the OM-
NeT++ (Varga, 2001) network simulator. To sim-
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ulate a WSAN with mobile nodes we used the
Mobility Framework (Mobility Framework for OM-
NeT++, 2009) in its most recent incarnation,
which includes a fairly accurate model of a CC2420
card and the 802.15.4 MAC. For the channel, we
used a path loss model taking into account inter-
ferences from parallel transmissions to compute (at
runtime) the SNR of each frame.

To put the SLIM results in context we compared
it against a solution based on DYMO (Chakeres
& Perkins, 2008), a well known protocol (the suc-
cessor of AODV) for unicast routing in MANETs.
Since SOP usually adopts unicast invocation (us-
ing a unicast transport on top of an IP network)
and being interested in a solution for mobile sce-
narios, the choice of DYMO was the most natural
one. This also accounts for the fact that the IETF,
while proposing IPv6 for WSAN (Hui & Culler,
2008), has not yet chosen which protocol to use for
routing but is considering unicast protocols only.

DYMO is an on-demand routing protocol. It cre-
ates routes between nodes only when they are re-
quired for communication. Routes are generated
by flooding the network with route request packets
that create entries in the routing tables of receiv-
ing nodes. Entries are temporary: they are trusted
and used for a limited period of time and then ex-
pire; after expiration a new route creation process
is needed for further communication. After routes
are created they are followed by forwarding pack-
ets in unicast, hop-by-hop. Notice that to offer
a fair comparison with SLIM, we adapted DYMO
to WSAN and to the specific application service
we are interested in, by reducing the number and
length of fields in packet headers.

Reference scenario. We considered a reference
scenario in which a single node behaves as a client,
periodically sending service requests and invoca-
tions, while all other nodes act as service providers.
We chose this simplified scenario after observing
how the results in scenarios including several clients
(not included here for space’s sake) did not exhibit
remarkable differences w.r.t. the scenarios involv-
ing a single client issuing a large number of invoca-
tions (which we discuss below).

In particular, our reference scenario includes 75
service providers moving (with the client) in an
area of 0.25 Km2 (500m × 500m) at a maximum
speed of 3 m/s (minimum is 0 m/s). Each service

provider exposes a single service and client queries
are matched by 10% of services on average. The
exact behavior of the client is the following: it pe-
riodically sends a lookup request, chooses one ser-
vice provider among all responding ones and sends
10 invocation messages to it, with an average delay
among an invocation and the following one of 10
seconds.

Starting from this reference scenario, we ana-
lyzes the performance of SLIM under different con-
ditions, changing, one by one, the main parameters
of the scenario: the density of the network (num-
ber of nodes per Km2), the area in which nodes
are located, the maximum speed of nodes, the fre-
quency of service invocation, and the number of
credits used by the SLIM routing protocol.

Service invocation. Our first analysis focuses
on service invocation, forgetting about the perfor-
mance and cost of service location. In particu-
lar, we measured delivery as the percentage of ser-
vice invocations actually receiving a reply from the
service provider, and traffic as the average traffic
(in KB/sec) generated to obtain this result. For
SLIM, the latter includes all the traffic generated
by SVCINV (either when sent in unicast or in flood-
ing) and REPLY packets, while for DYMO it includes
the traffic generated to build routes and to trans-
port messages forth and back.

Actual results are shown in Figure 5: we run
each simulation 20 times, varying the seeds of the
random number generators used in our models and
plotting the sample mean we measured and its 95%
confidence interval. Generally speaking, we observe
that our protocol delivers much more messages that
DYMO, especially when using at least one credit,
while generating significantly less traffic.

In particular, first row of graphs in Figure 5
shows how SLIM and DYMO behave while chang-
ing the density of nodes. We observe how both pro-
tocols present higher delivery at higher densities,
which is reasonable since a lower density increases
the probability of partitioning the network. At our
reference density of 300 nodes per Km2, the deliv-
ery of SLIM with one or two credits is very close
to 100% while DYMO still misses some packets.
As for traffic, we notice how the SLIM forwarding
mechanism, which opportunistically privileges long
links when available, results in using a more or less
constant number of hops to reach the interested ser-
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Figure 5: Performance analysis
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vice provider, and hence generates the same traffic,
independently from the density of the network. On
the contrary, DYMO does not include any mecha-
nism to filter hops based on the distance between
nodes: as a consequence its traffic grows linearly
with the number of nodes.
A similar behavior can be observed when increas-

ing the area of simulation (with a fixed density), as
shown by the second row of graphs. Both proto-
cols decrease their overall delivery while the area
grows, as packets have to travel a higher number
of hops to reach their destination; but SLIM lim-
its this trend due to its robust forwarding mecha-
nism, which does not choose forwarders determin-
istically as in DYMO, while also adopting ad-hoc
mechanisms like packet retransmission and renewal
of routes through overhearing, which reduce packet
loss and help keeping distance tables in sync even in
presence of mobility. As for the traffic, also in this
case SLIM behaves better than DYMO thanks to
its opportunistic selection of retransmitting nodes
during packet forwarding.
If we focus on the impact of credits on perfor-

mance, we may observe that credits increase de-
livery with a minimal impact on traffic. Actually,
increasing the number of credits from 0 to 1 reduces
the overall traffic since the presence of credits in-
creases the chance for a packet to reach its destina-
tion, thus reducing the need of reissuing the same
packet again. Further increasing credits (e.g., from
1 to 2) slightly increases traffic as the retransmis-
sion mechanism may wrongly fire due to the pres-
ence of asymmetric links. In conclusion, we may
observe that the ideal number of credits to use de-
pends on the area of the network (see second row
of graphs), the greater the area the more benefi-
cial to delivery is increasing the number of credits,
but in common scenarios like those we considered
(a maximum area of 0.75 Km2 with 225 service
providers), two is the maximum number of credits
worth using.
As our default scenario takes into account node

mobility, we also studied the impact of the maxi-
mum speed of nodes (third row in Figure 5). Both
protocols reduce delivery when maximum speed
grows, as fast mobility contributes to a faster inval-
idation of routing information. On the other hand,
DYMO suffers this problem much more than SLIM,
as it chooses routes deterministically and it does
not include any mechanism for retransmission or

routing information renewal (apart rebuilding the
route entirely). Notice that DYMO cannot reach
a 100% delivery even in a fixed scenario with no
mobile nodes. While this appeared strange to us at
first, a more in-depth study has revealed that the
packet loss is once again due to the route creation
mechanism: in particular, DYMO does not include
any mechanism to filter out long hops while flood-
ing route requests to build the routing tables to be
used for packet forwarding. As a result, especially
in presence of asymmetric links (our channel model
includes them) it may create routes that are hard
to follow back. As for the traffic, SLIM uses more
bandwidth when the speed increases, as packet loss
causes retransmission of packets at each hop (using
credits) or end-to-end (resending SVCINV packets in
flooding if replies do not come back in time). On
the contrary DYMO does not include any mecha-
nism to deal with packet loss: as a consequence,
once a packet is dropped it does not generate fur-
ther traffic. This explains why we measured a mod-
erate decrease in traffic as speed of nodes increases.

Finally, we measured the impact of the applica-
tion behavior by varying the frequency of invoca-
tions from the reference value of 0.1 (1 every 10s).
When the frequency is very low, routing informa-
tion becomes invalid between two consecutive invo-
cations and need to be updated. Both DYMO and
SLIM use flooding in this phase, but our mecha-
nism produces less traffic, minimizing the number
of nodes that have to retransmit the packet, while
keeping a similar delivery. At higher rates both
protocols may use the same routing information
for multiple invocations; however, a failure in the
unicast transmission directly brings to packet loss
when using DYMO while SLIM may opportunis-
tically leverage different routes, while also includ-
ing a retransmission mechanism when credits are
greater than zero.

Service discovery. After measuring the perfor-
mance of service invocation we were interested in
measuring how service location behaves. The tra-
ditional approach to service location uses a single
node acting as a registry, which stores information
about all services exposed by service providers. On
the contrary, SLIM uses a peer-to-peer approach
gathering information by contacting every possible
service provider to obtain service advertisements
back. To compare these two approaches we sup-
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posed the availability of a node acting as the reg-
istry and we compared the cost of our discovery
mechanism with a single request to the registry sent
through a unicast DYMO route. Notice that to fur-
ther favor DYMO we did not consider the cost to
populate the registry, which can be relevant in a
dynamic scenario in which nodes may come and go
while moving around.

SLIM c=0 SLIM c=1 SLIM c=2

33.27% 49.78% 56.16%

Table 1: Traffic for discovery (w.r.t. DYMO)

To concentrate on service discovery, in this case
we built our simulations with the client periodi-
cally sending out service requests without perform-
ing any service invocation; Table 1 shows the over-
all traffic generated by SLIM w.r.t. DYMO. For
space reasons we only provide results for the ref-
erence scenario, as all other ones reflect the trends
already presented in Figure 5. Notice that, even if
DYMO uses a unicast route to invoke the registry,
it still has to undergo the route creation process:
this results in an overall cost that is about twice
SLIM’s one, even when using credits.

SLIM c=0 SLIM c=1 SLIM c=2

78.39% 93.24% 94.19%

Table 2: Discovered services

Besides the costs, we were also interested in the
effectiveness of the discovery phase. Accordingly,
we measured the overall delivery for SLIM, i.e., the
percentage of services the client receive information
about w.r.t. to the total number of services match-
ing the query. Table 2 shows the results obtained in
the standard scenario: with zero credits less than
80% of matching services are discovered; however,
only one credit is enough to bring this percentage
to a very good value of 93.2%.

Multicast invocation. As already mentioned,
the SLIM API includes a mcastMsg operation to
contact all the services that satisfy a given query.
Unfortunately, DYMO does not support multicast
communication so we cannot use it for a direct com-
parison, but we can still make some considerations.
In particular, we notice that multicast service in-

vocation in SLIM behaves exactly as service discov-

ery, the only difference being a slight increase in the
size of used packets (to account for the size of the
message to be sent, as shown in Figure 4). With
the payloads we used in our simulation, this results
in multicast service invocation generating less than
5% greater more traffic than service discovery.

Starting from this number and remembering the
results reported in Table 1, we can say that the cost
of multicast invocation is still significantly lower
than that of a single, unicast invocation in DYMO,
as deduced by looking at the cost for DYMO to
interact (in unicast) with the registry.
Along the same line, Table 2 demonstrates that

a flooded request receives the vast majority of ex-
pected replies. The same result still holds when
dealing with multicast invocation (we have done all
the tests in the different scenarios, including sev-
eral repliers for each request). More than 93% of
expected replies are received using a single credit.

RELATED WORK

Different works have proposed the service oriented
approach as a suitable abstraction for application
developers to access the resources of WSANs. Most
of them, however, consider an entire network of sen-
sors as a single service provider and focus on the
interaction between external (possibly remote) ap-
plications and a gateway server, which acts as a
bridge between the sensor network and the outside,
service oriented world. One of the first proposals
in this direction is (Golatowski et al., 2003), which
presents, at a very high level, a simple model in
which an external server is adopted to communi-
cate with the WSAN. A similar approach is de-
scribed in (Avilés-López & Garćıa-Maćıas, 2009),
which focuses on the abstraction layer offered to
programmers. None of these works, however, pro-
vides details on how communication takes place be-
tween nodes.
As opposed to these approaches, SLIM does not

introduce a full-fledged macro-programming style
for a WSAN (Picco & Mottola, to appear); in-
stead, it moves services directly into the WSAN,
thus making the task of programming distributed
applications simpler. Some works take the same
approach.
In (Leguay, Lopez-Ramos, Jean-Marie, & Conan,

2008) authors propose a protocol stack, WSN-SOA
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which reproduces the architectural concepts and in-
formation exchange of a regular SOA implementa-
tion. A topic based publish-subscribe communica-
tion paradigm is used to receive desired information
from the network. Each service is registered as a
topic on a gateway and applications choose which
topics they are interested in. A unicast routing pro-
tocol is used to forward data from sensors to the
gateway. Authors observe its lack of efficiency and
scalability and promise further investigations on
this aspect. The same communication paradigm is
adopted in (Delicato, P. F. Pires, Pirmez, & Carmo,
2003), using Directed Diffusion (Intanagonwiwat,
Govindan, & Estrin, 2000) to exchange data with
the sensor nodes. OASiS (Kushwaha, Amundson,
Koutsoukos, Neema, & Sztipanovits, 2007) pro-
poses a programming paradigm in which develop-
ers define logical objects which are mapped to ob-
served properties in the sensor network. Each sen-
sor cooperates in the management of a logical ob-
ject according to its capabilities, exposed as ser-
vices. Authors propose requests flooding to locate
services but don’t provide implementation details.
SYLPH (Tapia, Fraile, Rodŕıguez, Paz, & Bajo,
2009) proposes a layered architecture which can be
adopted on top of heterogeneous devices. Gateways
are used to connect devices that belong to different
networks and use different communication proto-
cols. None of the works above takes into account
mobility, which instead is typical in various appli-
cation scenarios for WSANs.
A Service Location Protocol for pervasive em-

bedded devices, nanoSLP, has been proposed as
part of the nanoIP protocol stack (Jardak et al.,
2008). As SLIM, nanoSLP uses query flooding to
locate matching services. The same approach is
adopted by the Simple Service Discovery Protocol
(SSDP), used in the UPnP protocol (Jeronimo &
Weast, 2003). DEAPspace (Hermann et al., 2001)
investigates completely decentralized discovery so-
lutions, by continuously pushing information from
node to node, so that all devices hold a list of all
known services; as a consequence, discovery is per-
formed locally. Similarly, Konark (Helal, Desai,
Verma, & Lee, 2003) and PDP (Campo, Munoz,
Perea, Marin, & Garcia-Rubio, 2005) use an hybrid
push/pull communication style to exchange infor-
mation about known services. Such information is
cached in devices, so that a limited number of hops
has to be travelled for discovery. In (Sailhan &

Issarny, 2005), the authors propose a service dis-
covery protocol aimed at large scale mobile ad-hoc
networks, in which multiple directories are used
to store known services. The nodes where direc-
tories have to be located are chosen dynamically
at run-time, according to given parameters, involv-
ing resources of nodes and environmental variables.
In (Bromberg & Issarny, 2005), the authors focused
on the integration of heterogeneous discovery pro-
tocols, to provide interoperabiliy and flexibility.
The main benefit of SLIM w.r.t. these propos-

als is the full integration of service discovery and
invocation with the routing protocol. Discovery, in
fact, has the effect of populating the routing tables
that are exploited to propagate service invocations
and replies.
The SLIM protocol shares many of its core mech-

anisms with CCBR (Cugola & Migliavacca, 2009),
but applies them to a radically different communi-
cation paradigm. Indeed, CCBR is a data-aware
routing protocol that allows sinks to express their
interest in data, which is subsequently pushed
by sensors when they read it. This enables the
traditional “publish-subscribe like” communication
paradigm found in many protocols for WSNs. Con-
versely, SLIM adopts a pull style of interaction to-
ward sensors, while also supporting commands to
be sent to actuators. Moreover, some of the mech-
anisms that were originally developed for CCBR,
have been modified in SLIM (e.g., by making larger
use of RSSI) to benefit from the experience we
gained in testing CCBR both in simulation and in
real scenarios.
Finally, several protocols have been proposed so

far to opportunistically find the next hop forwarder
in a wireless network (Biswas & Morris, 2005; Zorzi
& Rao, 2003; Jain & Das, 2008; Choudhury &
Vaidya, 2004; Li, Sun, Ma, & Chen, 2008). They
differ in the way this choice is made and how poten-
tial forwarders coordinate to limit multiple routes
forwarding. With respect to these issues, the SLIM
protocol adopts a very simple but efficient mech-
anism based on overhearing to let nodes coordi-
nate, using a combination of hop distance from
the destination (when available), link length and
quality (through the RSSI), and remaining energy
to elect the next forwarder. It also couples these
mechanisms with a unique retransmission protocol
to increase delivery while keeping overhead under
control. Moreover, differently from the protocols

10



above, which use opportunistic forwarding to pro-
vide unicast multi-hop routing, SLIM uses its own
opportunistic mechanism within a complex proto-
col, which jointly supports service location and in-
vocation on a mobile WSAN.

Conclusions

In this paper we presented SLIM, a middleware
to support service oriented programming (SOP)
in mobile Wireless Sensor and Actuator Networks
(WSANs). SLIM brings SOP directly inside the
sensor network, allowing each node to act as a ser-
vice provider, a service consumer, or both. While
this holds the promise of simplifying the issue of
programming large and complex WSANs, the kind
of services each node may offer are those tailored
to a sensing and actuating scenario, like closing
a valve, getting the temperature and humidity
sensed by a specific node, or collecting and aver-
aging the values measured in an area. These ser-
vices will seamlessly integrate with more complex,
application-level services offered by PCs located in
a standard network.

SLIM exposes a simple yet powerful API to ap-
plications, allowing service registration, discovery,
and invocation. To better address the needs of
the typical applications for WSANs, SLIM supports
both unicast and multicast invocations. Moreover,
the layered architecture of SLIM enables the usage
of virtually every language for service descriptions
and queries.

SLIM includes an advanced routing protocol ex-
plicitly designed for a mobile, multi-hop WSAN.
The results we measured comparing this protocol
with a more traditional one, DYMO, which defines
and manages unicast routes between communicat-
ing nodes, shows that SLIM outperforms DYMO,
by providing higher message delivery at a signifi-
cantly lower cost.

Our plan for the future is to implement SLIM in
TinyOS in order to apply it to real scenarios, like
those we are considering in the WASP (http://
www.wasp-project.org/) project.
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