
Computational REST Meets Erlang

Alessandro Sivieri, Gianpaolo Cugola, and Carlo Ghezzi

Politecnico di Milano
DeepSE Group, Dipartimento di Elettronica e Informazione

Piazza L. da Vinci, 32 Milano, Italy
[sivieri,cugola,ghezzi]@elet.polimi.it

Abstract. Today’s applications are developed in a world where the exe-
cution context changes continuously. They have to adapt to these changes
at run-time if they want to offer their services without interruption. This
is particularly critical for distributed Web applications, whose compo-
nents run on different machines, often managed by different organiza-
tions. Designing these programs in an easy and effective way requires
choosing the right architectural style and the right run-time platform.
The former has to guarantee isolation among components, supporting
scalability, reliability, and dynamic changes. The latter has to offer mech-
anisms to update the applications’ code at run-time.
This work builds upon previous research about architectures and run-
time platforms. Its contribution is to put together a very promising archi-
tectural style – Computational REST – with a language (and run-time
environment) designed with dynamic, distributed applications in mind –
Erlang. We show how they fit together by developing a new framework,
which eases development of highly distributed Web applications capa-
ble of operating in dynamic environments. We also provide an initial
experimental assessment of the proposed approach.

Keywords: Computational REST, Erlang, OTP, architectural styles,
programming languages, mobile code, Internet

1 Introduction

The technological evolution in networking has changed the way applications
are designed and developed: instead of having monolithic programs created for
desktop computers running in isolation, more and more often we have large-scale,
distributed Web applications, whose components run on many different devices,
from personal computers to smartphones, from mainframes to low-power sensors.
In the most challenging scenarios, these applications put together components
built and administered by different organizations, by invoking the services offered
by such components, managing the data that flow among them and using a
browser as the front-end.

To further complicate things, these Web applications are usually expected
to run for long time without interruption and failures: a challenging goal if
we consider that the devices and components they are built upon may change

over time in a way that is often hard to forecast. Software Engineering is asked
to address this issue by developing ad-hoc programming frameworks to ease
the implementation of largely distributed Web applications capable of handling
changes (and failures) in the external services they invoke and in the devices
they access and run on, in a smooth and effective way.

Such programming frameworks should integrate an architectural style that
guarantees isolation among components, supporting scalability, reliability, and
dynamic changes, with a programming language (and run-time support environ-
ment) that offers mechanisms for dynamic update of functionalities.

Current research has proposed Computational REST (CREST) [14], as an
effective architectural style to build dynamic, Internet-wide distributed applica-
tions. CREST extends the REpresentational State Transfer (REST) style [16],
changing the focus from data to computations, while maintaining the REST
principles, which guarantee Internet-wide scalability. In a CREST application,
each component (called peer) is able to exchange computations, in the form of
continuations or closures, with other components, to dynamically install new
services on remote components and demand their execution to others. This idea
of managing computations as first-class elements comes from the research on
mobile code [17], and has proved to be an effective mechanism to easily support
dynamic changes for long-running applications.

While CREST is just an architectural style, their authors proposed a proto-
type programming framework that embeds the CREST principles in Scheme [12],
a well-known functional programming language. This choice was motivated by
the Scheme capabilities in dealing with continuations, which allow Scheme pro-
cesses to be easily suspended to be resumed later. On the other hand, Scheme
does not offer any native support to building distributed applications, a critical
aspect for a framework that has distributed applications as its main target.

Starting from this consideration we decided to see if other languages could
better fit the CREST principles. In this we were also motivated by the fact that
the original Scheme-based prototype was never made officially public, at least
not in a form that allow it to be used in practice for experiments.

In particular, we chose Erlang [5], a functional language that was designed
upfront to build long-running distributed applications. Indeed, Erlang and its
OTP [5] library natively support distributed programming, offering advanced
and easy-to-use mechanisms to remotely spawning components, letting them
communicate, and automatically managing failures. In addition, it offers mecha-
nisms to dynamically change the components’ code at run-time. These features
are embedded in a functional core that supports closures, a fundamental aspect
to satisfy the CREST requirements.

The rest of the paper describes the result of our experience. In particular,
Section 2 introduces Computational REST and Erlang. Section 3 describes the
new Erlang-based CREST framework and the facilities it provides to develop-
ers, while Section 4 compares it against the original CREST framework and a
pure REST (i.e., Web-based) implementation of the same application, in terms
of performance, functionalities offered, and cost to implement them. Finally Sec-

tion 5 discusses related work and Section 6 draws some conclusions and suggests
possible future work in the area.

2 Background

In this section we briefly introduce the main topic areas upon which our work is
based, i.e., the REST and CREST architectural styles and the Erlang language.

2.1 The REST and CREST styles

Defined by R.T. Fielding (one of the main authors of the HTTP protocol), the
REpresentational State Transfer (REST) style provides an a posteriori model of
the Web, the way Web application operates, and the technical reasons behind
the Web success.

Fielding’s Ph.D. thesis [16] defines the set of constraints that every REST
application should satisfy: the structure of the application has to be client-server,
communication has to be stateless, caching has to be possible, the interface of
servers has to be standard and generic, layering is encouraged, and each single
layer has to be independent from the others. An optional constraint suggests
using code-on-demand [17] approaches to dynamically extend the client’s capa-
bilities.

These constrains are coupled with a set of foundation principles:

– the key abstraction of information is a resource, named by a uniform resource
identification scheme (e.g., URLs);

– the representation of a resource is a sequence of bytes, plus representation
metadata to describe those bytes;

– all interactions are context-free;
– only a few primitive operations are available;
– idempotent operations and representation metadata are encouraged in sup-

port of caching;
– the presence of intermediaries is promoted.

While these principles allowed REST to be scalable and supported the current
Web dimensions, at the same time not all the Web applications followed these
design guidelines; for example, they might require stateful communications or
they might create problems to caching devices components.

The main limitation of REST is the generic interface constraint: it improves
independence of applications on specific services, because all the components
are able to handle any data, but at the same time it hampers the efficiency of
communication, since all data must be coded in a standard way to pass through
standard, application independent interfaces; something not easy to do especially
when there is more than pure “content” to be sent between peers.

The CREST authors identified this and other REST weaknesses in [13] and
decided to address them by moving the focus of the communication from data
to computations. If the former is the only subject of an interaction, then a client

receiving a message through a generic interface could not be able to interpret it
correctly. The REST optional constraint of code-on-demand is too weak to solve
the issue, since the same client could not be able to use that code.

The result of this paradigm shift was the Computational REST (CREST) [14]
style, which let peers exchange computations as their primary message, usually
implementing them through continuations. These are instances of computations
suspended at a certain point and encapsulated in a single entity to be resumed
later. They are offered as a basic construct by some languages, usually functional
ones like Scheme, which also allow continuations to be serialized and transmitted
along a network connection to allow the computation to be resumed on a different
node.

Whenever a language does not offer the continuation mechanism, a closure
can be used instead: it is a function with free variables declared within its scope,
and since the extent of these variables is at least as long as the lifetime of the
closure, they can be used for saving a state between different calls of the function.
Later, in Section 3 we will explain why using this less powerful mechanism instead
of continuations does not influence the expressiveness of our framework.

Also notice that in the definitions above we used the term “peer” instead of
“client” or “server”. This is not by accident, since CREST does not distinguish
between clients and servers but rather between weak peers that support a min-
imal subset of the CREST operations and usually operate as initiators of the
interaction, and strong peers that support the whole set of CREST operations
and characteristics and may fully interact with other peers, be they strong or
weak.

CREST draws on the REST principles to define a new set of architectural
guidelines:

– a resource is a locus of computations, named by a URL;
– the representation of a computation is an expression plus metadata to de-

scribe the expression;
– all computations are context-free;
– the presence of intermediaries is promoted;
– only a few primitive operations are always available, but additional per-

resource and per-computation operations are also encouraged.

As for the last point, CREST defines two primitive operations: the spawn op-
eration requires the creation of a process executing the computation; this process
is associated to a unique URL and when this URL is invoked the computation
itself is resumed and the results it produces are returned to the caller; thus, new
services can be installed in a (strong) peer and then accessed by any client. The
remote operation installs a computation and resumes it immediately, returning
any result to the caller and destroying it when it ends, so that it cannot be
accessed again.

In [13,19] the authors further detail the CREST principles:

– any computation has to be included into HTTP operations, so that the new
paradigm could be made compatible with the current Internet infrastructure.

To keep up with such compatibility, the authors also distinguish between
machine URLs and human-readable URLs, where the former may contain
the computation itself, while the latter can be used by users;

– computations may produce different results, based on any received parame-
ter, server load or any other factor that changes during time; they can also
maintain a state between calls, for example for accumulating intermediate
results;

– computations have to support independency between different calls, and
avoid data corruption between parallel invocations using synchronization
mechanisms offered by the languages of choice;

– computations can be composed, creating mashups: a computation may re-
fer to other computations on the same peer or on different peers, and an
execution snapshot should include the whole state of the computation;

– intermediaries must be transparent to the users;

– peers should be able to distribute computations, to support scaling and low-
ering latency, also checking temporal intervals between executions of the
same computation and specifying some sort of expiration date when neces-
sary.

Finally, in [19] a new feature has been introduced: spawned processes should
act as so-called subpeers, with their own spawn and remote capabilities, inherit-
ing security policies by their ancestors in the process tree, where the root node
is the peer itself. This way a hierarchy of processes is created in a CREST peer,
where each node is limited by its ancestors and limits its successors.

Security concerns. An important issue with architectural styles for distributed
applications is security. Besides traditional security concerns, the CREST adop-
tion of mobile code technologies opens new problems; namely how to secure
the peer against the code it receives and how to secure the code against the
peer in which it is executed [29,30]. The CREST definition recognizes the issue
but provides few details on how to address it. In practice, the current CREST
framework, implemented using a Scheme interpreter running into a Java Vir-
tual Machine, leverages the sandbox mechanism of Java, using an ad-hoc Secu-
rity Manager that limits the resources accessible to the incoming computations.
Moreover, the authors suggest that the bytecode received by a peer should be
inspected and checked for instruction sets executing commands that are not al-
lowed by the (sub)peer security policy, while self-certifying URLs [23] could be
used for mutual authentication between peers.

2.2 Erlang

Erlang [3,4,5,6] is a programming language originally defined to implement par-
allel, distributed applications meant to run continuously for long periods1. It

1 The definition of Erlang has been primarily motivated by the requirements of
telecommunications applications within Ericsson.

provides a set of features that make it a perfect choice for a framework to build
CREST-compliant applications.

In particular, its functional language core natively supports closures, which
– while not offering the full expressive power of continuations – are a step in
the right direction to implement the CREST idea of exchanging computations
among peers. Moreover, Erlang combines dynamic typing and the use of pattern-
matching as the main mechanism to access data and guide the computation,
supporting a form of declarative programming that allows programmers to focus
on what a computation is supposed to do instead of how to achieve it. This
results in extremely compact code that is easy to develop and maintain. We
found these features fundamental to develop a programming framework that
has to be open to extensions by application programmers who wish to build
their own, CREST-compliant software.

In addition, Erlang enriches its functional core with ad-hoc language con-
structs to build parallel and distributed applications. In particular, Erlang uses
an actor-like concurrency model [22], which allows for easily and naturally or-
ganizing every Erlang computation as a (large) set of light processes, automat-
ically mapped by the Erlang runtime into system threads and hardware cores.
Since such processes cannot share memory and have to rely on message passing
(which is embedded into the language) to communicate, this approach also natu-
rally supports developing distributed applications, another fundamental feature
to ease the implementation of our CREST framework.

A further peculiarity of Erlang is the fact that its runtime support system al-
lows application code to be hot-swapped. This mechanism was introduced to sup-
port long running applications, like those implemented into telephonic switches,
and can be used as a way to change the code of an application at runtime with-
out interrupting it. In particular, if a module function is executed by calling
its qualified name, then the runtime guarantees the execution of the last ver-
sion available of that function; that is, if the module bytecode is updated while
the application is running, then each new function invocation will use the last
version of the code, while any running instance will continue its execution with
the previous one. Notice however that only two versions of a module may live
together at the same time: if a third one is added, then the second one becomes
the “old” one and the first one is dropped, and each computation using it is
automatically killed.

Finally, Erlang provides an extensive, standard library, called the Open Tele-
com Platform (OTP), which offers predefined modules for process linking and
monitoring. By using OTP, supervision trees of processes can be easily con-
structed so that each supervisor is able to monitor if a process crashes and
restart it or propagate the error. OTP also offers several modules, called be-
haviors, which implement the non-functional parts of a generic server so that a
developer can focus only on the functional ones. Altogether, these functionalities
greatly simplify the development of fault-tolerant applications, and we leveraged
them to reduce the effort needed in implementing our CREST framework.

3 CREST-Erlang

Fig. 1. Server structure

In this section we illustrate how the CREST style can be implemented in Er-
lang. The resulting framework is called CREST-Erlang, as opposed to CREST-
Scheme, which denotes the original framework presented in [13]. Figure 1 shows
the structure of a CREST peer written in Erlang. At the bottom are the com-
putations running into the peer, which have been installed there by invoking the
spawn or remote CREST primitives. They are managed by an ad-hoc compo-
nent, the CompMgr, which installs new computations, keeps a list of those running
inside the peer, and dispatches incoming invocations.

As we mentioned, one of the main reasons to choose Erlang was the support
offered by the language to let (distributed) processes communicate. On the other
hand, to be CREST compliant, the communication among peers has to use the
HTTP protocol. Accordingly, our peer embeds a Web server, which waits for
incoming HTTP requests, unmarshals them, and uses the standard Erlang com-
munication facilities to dispatch them to the CompMgr. More precisely, Figure 1
shows two Web servers, one answers HTTPS requests and is meant to handle
spawn and remote operations, which we choose to securely transfer on top of SSL
(more on this later). The other serves standard invocations and static pages, a
trivial but required functionality for a Web framework.

As for the adopted protocol we chose, it is worth mentioning here that we de-
cided to send computations using the HTTP POST operation, while the original
CREST approach suggests embedding them into the URL of the spawn request.
This choice seems more in line with the expected usage of HTTP. Indeed, the
POST operation has been designed for those requests that are expected to alter
the internal state of the receiving server, and this is the case for the installa-
tion of a new service. Moreover, the POST payload may include a large body of
data, as it happens in the case of the state of a computation and the associated
bytecode.

As shown in Figure 1, our framework also includes the CRESTLib, which
provides a set of facilities to invoke local and remote services without having to
bother with the underlying communication details. This is used by peer clients,
but it can also be used to implement the services themselves, when they have to
communicate with other peers.

Finally, to improve fault tolerance each peer is organized in a supervision
tree, with a high level supervisor (not shown in figure) in charge of all the
fundamental modules including the two Web servers and the CompMgr, and a
low level one, the CompSup, to which all the spawned computations are attached.
The former is able to monitor and restart each of its children, while the latter,
at the current state, just logs any error or exception happening to computations,
unlinking them from the CompMgr when this happens.

Listing 1.1. Service template

1 my serv ice (State) −>
2 receive
3 {Pid , [{” par1 ” , P1} , {” par2 ” , P2} , . . .]} −>
4 %% Do your job acce s s ing par1 , . . . parN
5 %% ev en t u a l l y c r ea t e a new s t a t e NewState
6
7 %% I f necessary , spawn myse l f on peer Hostname
8 invoke spawn (Hostname , ?MODULE,
9 fun () −> my serv ice (NewState) end) ,

10 %% Finish wi th a t a i l r e cur s ion (or j u s t end t h i s
11 %% computation)
12 my serv ice (NewState)
13 end .

Listing 1.1 shows the template of an Erlang service to be spawned or remotely
executed on a peer. It receives from the CompMgr the invocation parameters
originally coming from the client, uses them to perform its computation, and
finishes by invoking itself with the new state calculated during execution, using
the typical approach of functional programming based on tail recursion. Lines 8-9

show how the service may spawn a copy of itself (i.e., a copy of the computation)
on a different node, if necessary.

Notice that what is transferred to the other peer through the invoke spawn

primitive is the closure of the running service, not the continuation, as required
by CREST. Indeed, as we mentioned in the previous section, this is the only
primitive offered by Erlang. On the other hand, the need to transfer compu-
tation while it is executing statements in the middle of the service’s code is
very uncommon. The typical service pattern is the one shown by our template,
which transfers the computation just before recursing. If this is the case, trans-
ferring the closure obtains the same result as transferring the continuation of
the computation.

Technologies involved and details about security. For the Web server
part, we analyzed several different platforms developed in the last few years for
handling HTTP communications in Erlang. Each has its pros and cons, and in
the end we chose MochiWeb [1], because of its support to JSON (which we used
to effectively serialize parameters and return values passed among peers and
clients) and RESTful services, and for its performance.

The MochiWeb library and the OTP modules together provide the main
skeleton of our peer: the supervising system, the logging system (not shown in
Figure 1), and the two Web servers. This allowed us to focus on developing the
functional parts of the framework.

As for security, Erlang does not offer many facilities. Indeed, it was born as
a language for handling telephony devices, a domain in which security is usually
guaranteed by directly controlling the network itself. Now that Erlang is being
used outside its target domain, this weakness has been identified and the first
security facilities are being added to the language. On the other hand, we are far
from having ad-hoc facilities to manage security in general and the security of
mobile code in particular. To address this issue we decided to adopt a strategy
based on mutual authentication among peers. This way we bypass the specific
problem of protecting the incoming computation from the peer and the peer from
the computation, building a trusted network on top of which computations may
roam freely. This is clearly a sub-optimal solution, which we plan to overcome
in future versions of our prototype.

4 An Assessment of CREST-Erlang vs. CREST-Scheme

In this section we discuss how our CREST framework, based on Erlang, can be
compared with the original CREST-Scheme solution. To perform the assessment,
we chose to focus on three main dimensions: whether the same functionalities
are offered by both, the cost in implementing them, and how they perform.

Functionalities. The original CREST-Scheme framework includes a case study
to show the potential of the new approach, namely a shared RSS reader. It in-
cludes an AJAX Web site as a front-end, with several widgets to show the news
(coming from a given RSS feed URL) using different visualization techniques.

Each widget type interacts with a different service (i.e., computation) on a sin-
gle CREST peer, while different instances of the same widget type (running on
different clients) share the same service. This way every client sees the same in-
formation about the feeds. A user may duplicate the whole application instance,
so that its changes will be separated from the original one.

The drawback of this case study is that every CREST computation resides
on the same peer and when new computations are spawned (i.e., when a client
duplicates the application’s session) they are spawned into the same peer. In
other words there is no transmission of computations among peers.

Accordingly, we implemented an additional case study to evaluate our frame-
work: a distributed text mining application. A network of computers, each run-
ning a CREST-Erlang peer, share a set of documents to be analyzed. A front-end
Web application allows the user to choose the text mining function and the set
of peers to use. The former is sent as a spawned computation on the involved
peers, which perform their part of the job and return the results back.

Differently from the original one, this case study leverages all the CREST
mechanisms: spawn and remote operations, statefull and stateless computations,
and service composition. This allowed us to asses the correctness and ease of use
of the new framework.

The only point not covered by our CREST-Erlang framework is the concept
of subpeer, which has been described by the CREST authors in a subsequent
article [19], so it was not included in the current prototype.

Table 1. Line code comparison

Framework Framework source code Demo source code

CREST-Scheme 5938 817

CREST-Erlang 2957 768

Implementation effort. To compare the effort in implementing the two frame-
work, and so to indirectly compare the choice of the two languages used, i.e.,
Scheme vs. Erlang, we counted the lines of code of the main library and of the
implemented case studies, not counting the external dependencies. The results
are illustrated in Table 1 and show that our code is about a half of the original
one. This fact confirms our initial idea that Erlang more easily and naturally
supports the CREST mechanisms.

Performance measurement. To compare the two frameworks in terms of
performance, we re-built part of the implementation of the original case study,
in particular we used the same Web client application (with its graphical widgets)
and recreated some of the corresponding CREST services. We also implemented
this case study as a standard Web application using MochiWeb alone, to use
as a reference. This was possible since the original case study, unless the client
duplicates its session, does not exploit any advanced CREST functionality; all

(a) Response time (b) Throughput

Fig. 2. CREST-Scheme demo

computations are installed during system startup, and they are only invoked at
the demo.

To actually measure the performance of these three applications, we used a
dual core laptop with 4GB of RAM as a server, and we launched several simulated
users from a different computer, a 6 core desktop with 8GB of RAM. Notice that
we choose the machine running the clients to be more powerful than the server
to be sure the values we measured were not influenced by some limitation on
the client side. The two machines are connected by a 100Mbit LAN. The whole
test is run by using a client application, written in Erlang, which measures the
average response time for each request and the throughput in term of KBytes
per second sent to the clients. We used a navigation sample recorded during a
browser session through the demo site to simulate the behavior of a standard
user. Through our script we simulated the arrival of one of such users every
second, each repeating the same session with a delay of one second at the end,
for 4 minutes in total.

Figure 2 shows the results we measured in terms of response time and
throughput. The CREST-Scheme framework has the worst performances, serv-
ing a very low number of pages per second with a response time peaking at more
than 30 seconds; Mochiweb performs better than CREST-Erlang in terms of
response time, because of the overhead introduced internally by the latter, and
it is also able to answer more requests per second in the last minute of the test,
because its usage of the server resources is lower than the CREST-Erlang one,
especially in terms of CPU usage.

To test the overhead introduced by using the spawn and remote CREST
operations, we compared our prototype against MochiWeb in running a Web
application based on a simple CREST service. Each client starts by asking a
front-end peer to spawn a new instance of this simple service on a different
peer, located on the same machine, and from then on it invokes this new service
repeatedly, with one second delay among each invocation; the MochiWeb version
has the same service pre-installed, which the client invokes repeatedly as before.
As in the previous case, we start one client every second for the 4 minutes of

(a) Response time (b) Throughput

Fig. 3. Test application

the test. Figure 3 illustrates the results we gathered in terms of response time
and throughput. We notice that MochiWeb is able to answer more requests
per second, and this explains the higher throughput, while the response time is
similar and it remains almost constant while the number of clients increases.

5 Related Work

The work we presented here is related with current research on evolvable and
dynamically adaptable software architectures and on programming languages
supporting dynamic adaptation. Seminal work on the identification of the criti-
cal architectural issues concerning run-time evolution is described in [25,28,26].
The CREST approach is largely motivated by this work. Several alternative
architectural styles exist to support dynamically evolvable distributed applica-
tions. Hereafter we briefly review the most relevant ones and we contrast them
with CREST.

Publish-subscribe (P/S) [15,9] is an event-based style where components are
not directly connected, but communicate through a common middleware sys-
tem, which takes any new event notification and dispatches it to any component
subscribed for that specific event. This structure is highly dynamic since nodes
may be added and removed while the system is running; communication is asyn-
chronous and components can operate independently of each other.

Map-reduce (M/R) [10] is a style used to parallelize a computation over a
large data set by distributing work over a collection of worker nodes. In the
map phase each node receives from a master node some amount of data and
elaborates it, returning key-value pairs to the master, while in the reduce phase
the master node takes the answers to all the sub-problems and combines them
to produce the output. Because worker nodes may be masters, a tree structure
can be easily obtained, increasing scalability. As in the P/S case, M/R nodes
are completely autonomous; they may join and leave dynamically as they do
not share any data or state directly, and perform their computation in isolation
w.r.t. the others.

Similarly to CREST, P/S and M/R architectural styles are oriented to dy-
namic adaptation, but differently from CREST they are not specifically oriented
to supporting Web applications, probably the most important domain for dis-
tributed applications today and the one we target.

The two architectural styles that are today competing for becoming a stan-
dard in building Web applications are REST and the Service-Oriented archi-
tecture (SOA) [11]. We already discussed the differences between CREST and
REST in Section 2.1. SOA models a Web application as a composition of dif-
ferent autonomous services, independently developed and existing in different
namespaces and execution contexts. Services may be dynamically discovered
and compositions may bind to them dynamically. Usually these services operate
over HTTP using Web Service protocols supporting standardized discovery and
service invocation. Unfortunately, these protocols violate REST principles, as we
already discussed in Section 2.1, and this can be a major problem, since REST
principles are those that guaranteed the success of the Web.

CREST not only follows the REST principles, but also promises to support
dynamic adaptation much better. Indeed, both REST and SOA focus on data
as the primary element exchanged among components and this makes it hard to
adapt the architecture of the application dynamically, since this usually requires
to introduce new components/services. Vice-versa, CREST adopts the compu-
tations themselves as the elements exchanged among nodes (i.e., peers) and this
makes it straightforward to change the architecture of the application at run
time, when required.

Besides architectural styles, another research direction related with the work
presented in this paper concerns programming languages. In particular, the iden-
tification of features or language constructs that may provide better support
to the specific requirement of run-time adaptation. This sometimes leads to
extensions of existing languages to support dynamic adaptation. For example,
context-oriented programming extensions have been proposed and implemented
for various languages [2], starting from initial work on LISP [8], up to the ini-
tial version of ContextErlang [18] developed by our research group. The features
supported by Aspect-Oriented programming languages [24], and in particular
Dynamic Aspect-Oriented languages [21], have also been proved to help in this
context.

Functional programming languages, and in particular the notions of continu-
ation and closure, have also been revamped in the context of Web programming.
A short summary of work upon which CREST-Scheme is rooted can be found
in [7], while examples of use of functional programming concepts in Web appli-
cations are provided in [20,27].

6 Conclusions

This article presented CREST-Erlang, a new implementation of a Web frame-
work supporting the CREST architectural style. CREST is a promising style,

which suggests to move from an Internet of data to an Internet of computations
to cope with the dynamism of distributed applications developed nowadays.

As its name suggests, the new framework adopts Erlang as its reference lan-
guage, while the original CREST framework adopted Scheme. This choice was
motivated by the fact that Erlang provides advanced mechanisms to develop
strongly concurrent, fault-tolerant, distributed applications in an easy and effec-
tive way. This intuition is confirmed by the experience reported in this paper.
Erlang required less effort than Scheme to develop the framework and the result-
ing prototype performs better than the original one. Also, as we found easier to
develop the framework using Erlang than using Scheme, we argue that program-
mers using the framework to build CREST applications would benefit from a
language that eases development of efficient algorithms, by natively supporting
an effective form of concurrency (through the actor paradigm), which very well
fits current multi-core hardware.

The main drawback we found was the limited support offered by the lan-
guage and associated library to security, especially the peculiar form of security
required when computations are expected to move among nodes. We provided
an initial solution to the problem, but more has to be done.

As for our experience in using CREST, we found it an effective architectural
style to build Web applications that could follow the somewhat natural evolution
from an Internet of data to an Internet of computations.

On the other hand, a few remarks emerge from this experience. The first
is about the protocol for CREST specific operations: is HTTP really the best
protocol for transmitting computations? HTTP was developed for accessing doc-
uments. Although it is now often used as a general-purpose protocol, this was
not its original purpose. Even in the case of Web Services, data had to be en-
coded in some document-like intermediate representation, such as XML, before
being moved to clients, with a certain overhead. The same happens when com-
putations, including state, function references, and code have to be transferred.

The second remark is about security. We already see in today’s Internet the
security issues induced by the code-on-demand features of Web 2.0 sites, with
malevolent Javascript code used for stealing users’ data. We can easily imagine
what could happen if computations are allowed to move around on the back-
web. Apart from citing the usual countermeasures, developed for mobile agent
platforms and never assessed in realistic, large scale, open environments, the
CREST definition does not provide any specific solution to this problem. We are
convinced that this could severely limit the adoption of the CREST style until
something new is developed.

As for our future plans, we want to continue developing our prototype, by
introducing a caching mechanism that may further increase performance. We
will also integrate the concept of subpeer, introduced in the latest CREST defi-
nition [19].

Acknowledgment

This work was partially supported by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom; and by the Italian Government under
the projects FIRB INSYEME and PRIN D-ASAP.

References

1. Mochiweb. http://github.com/mochi/mochiweb
2. Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A comparison

of context-oriented programming languages. In: COP ’09: International Workshop
on Context-Oriented Programming. pp. 1–6. ACM, New York, NY, USA (2009)

3. Armstrong, J.: Making reliable distributed systems in the presence of software
errors. Ph.D. thesis, Royal Institute of Technology, Sweden (December 2003)

4. Armstrong, J.: A history of erlang. In: HOPL. pp. 1–26 (2007)
5. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Prag-

matic Bookshelf (July 2007), http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/193435600X

6. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
7. Byrd, W.E.: Web programming with continuations. Tech. rep., Unpublished Tech.

Report, available at http://double.co.nz/pdf/continuations.pdf (2002)
8. Costanza, P.: Language constructs for context-oriented programming. In: In Pro-

ceedings of the Dynamic Languages Symposium. pp. 1–10. ACM Press (2005)
9. Cugola, G., Margara, A.: Processing flows of information: From data stream to

complex event processing. ACM Comput. Surv. – to appear
10. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commun.

ACM 53(1), 72–77 (2010)
11. DiNitto, E., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to

highly dynamic, self-adaptive service-based applications. Autom. Softw. Eng. 15(3-
4), 313–341 (2008)

12. Dybvig, R.K.: The Scheme Programming Language. MIT Press, fourth edn. (2009)
13. Erenkrantz, J.R., Gorlick, M., Suryanarayana, G., Taylor, R.N.: From repre-

sentations to computations: the evolution of web architectures. In: ESEC-FSE
’07: Proceedings of the 6th joint meeting of the european software engineering
conference and the 14th ACM SIGSOFT symposium on Foundations of soft-
ware engineering. pp. 255–264. ACM Press, New York, NY, USA (2007), http:
//dx.doi.org/10.1145/1287624.1287660

14. Erenkrantz, J.R.: Computational REST: a new model for decentralized, internet-
scale applications. Ph.D. thesis, Long Beach, CA, USA (2009), adviser-Taylor,
Richard N.

15. Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

16. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis (2000), http://portal.acm.org/citation.cfm?id=932295

17. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans-
actions on Software Engineering 24, 342–361 (1998)

18. Ghezzi, C., Pradella, M., Salvaneschi, G.: Context oriented programming in highly
concurrent systems. In: COP ’10: International Workshop on Context-Oriented
Programming, co-located with ECOOP 2010. Maribor, Slovenia (2010, (to appear))

19. Gorlick, M., Erenkrantz, J., Taylor, R.: The infrastructure of a computational web.
Tech. rep., University of California, Irvine (May 2010)

20. Graunke, P., Findler, R.B., Krishnamurthi, S., Felleisen, M.: Automatically re-
structuring programs for the web. In: Proceedings of the 16th IEEE international
conference on Automated software engineering. pp. 211–. ASE ’01, IEEE Com-
puter Society, Washington, DC, USA (2001), http://portal.acm.org/citation.
cfm?id=872023.872573

21. Greenwood, P., Blair, L.: L.: Using dynamic aspect-oriented programming to im-
plement an autonomic system. Tech. rep., Proceedings of the 2003 Dynamic Aspect
Workshop (DAW04 2003), RIACS

22. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artifi-
cial intelligence. In: Proceedings of the 3rd international joint conference on Arti-
ficial intelligence. pp. 235–245. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1973), http://portal.acm.org/citation.cfm?id=1624775.1624804

23. Kaminsky, M., Banks, E.: Sfs-http: Securing the web with self-certifying urls
24. Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-oriented mechanisms.

pp. 2–28. Springer-Verlag (2003)
25. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-

lution. In: ICSE. pp. 177–186 (1998)
26. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,

approaches, and styles. In: 30th international conference on Software engineering.
pp. 899–910. ACM, New York, NY, USA (2008)

27. Queinnec, C.: The influence of browsers on evaluators or, continuations to program
web servers. In: Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming. pp. 23–33. ICFP ’00, ACM, New York, NY, USA
(2000), http://doi.acm.org/10.1145/351240.351243

28. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: WICSA/ECSA. pp. 171–180 (2009)

29. Vigna, G. (ed.): Mobile Agents and Security, Lecture Notes in Computer Science,
vol. 1419. Springer (1998)

30. Zachary, J.: Protecting mobile code in the world. Internet Computing, IEEE 7(2),
78 – 82 (mar 2003)

