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Abstract

The paper describesthe designand implementationof
a processsupportsystem(PROSYT),which is intendedto
provideguidancein performingbusinessprocessesandco-
operationamongpeopleovera local or geographicallydis-
tributednetwork.In particular, it canbeusedasa Process-
centeredSoftwareEngineeringEnvironment(PSEE)to sup-
port distributedsoftwaredevelopment.

Our main purposeis to describehow complex applica-
tions of this kind can be developedsystematically. In par-
ticular, how the requirementsof high flexibility, reconfig-
urability, scalability, andefficiencydemandedby theseap-
plicationscan be metthroughappropriate designchoices.

1 Intr oduction

During the last decade, software development has
quickly becomeoneof the mostcomplex engineeringac-
tivities carriedout by humans.Process-centeredSoftware
EngineeringEnvironments(PSEEs)[2, 20] aim at support-
ing suchactivitiesby providing a languageto formalizethe
processthathaveto becarriedout(usuallycalled“PDL”, an
acronym for “ProcessDescriptionLanguage”),andan en-
vironmentcapableof interpretinga processmodelto guide
peopleduring theprocessandto automatethemorerepet-
itive activities. In this paperwe describethe designand
implementationof PROSYT, a PSEEespeciallyconceived
to supportdistributedprocesses.

Sincesoftwaredevelopmentprocessesdo not differ rad-
ically from genericbusinessprocesses,PROSYT hasbeen
conceived to supportany kind of businessprocessthat re-
quirespeopleto cooperateaccordingto a well known pro-
cessby takingadvantageof theservicesprovidedby a net-
work of computers.As a consequence,we usuallyrefer to

PROSYT asa ProcessSupportSystem(PSS)to underline
its generalitywith respectto the kind of businessprocess
carriedout.

A secondconsequenceof this choicewas the needof
providing mechanismto increasePROSYTflexibility in ex-
ecutingtheprocessmodel.Businessprocesses(andparticu-
larly softwareprocesses)canbehardlymodeledin advance
with the requiredprecision. It is often the casethat some
situationariseduring the processthat hadnot beenantici-
patedinto the model. As a consequence,a PSShasto be
flexible enoughto supporttheir userseven in presenceof
suchunexpectedsituations.

Last consequenceof the previously mentionedchoice
was the needof supportingdistributed processesthat in-
volve several kind of peoplerangingfrom software engi-
neersthatspendmostof their time satin front of thesame
computerto nomadicusers who connectto the network
from arbitrarylocationsusingnotebookor PDAs andwho
arenot permanentlyconnected.In this paperwe focusour
attentionto this last aspectand in particularto the conse-
quencesof this choiceon the designand architectureof
PROSYT1.

Traditionally, distributed applications like PSSs are
basedon theclient-serverapproach.Clientsusesomeform
of remoteprocedurecall (RPC) to requesta serviceto a
server which is known to provide that service. Examples
of middlewarethatadoptthisapproachareCORBA [3] and
RMI [18]. Theresultingsoftwarearchitectureis character-
ized by a tight coupling betweenthe object that requests
a service(i.e., the client) andthe objectthat satisfiessuch
request(i.e., the server). This approachreducesthe possi-
bility of reconfiguringthearchitectureof theapplicationat
run-time,andresultsin a limited scalability.

In developingPROSYT weadopteda completelydiffer-
ent architecturebasedon two emerging technologiesthat

1Thereadersinterestedin thePROSYT aspectsrelatedto its ability of
supportingpeoplein presenceof unexpectedsituationsmay consult[12]
and[13].



offer thechanceto overcomethelimitation of client-server:
mobilecodeandevents.

In thelastyearsanumberof mobilecodelanguagesand
librariesarebecomingavailableto supportthedevelopment
of a new classof distributedapplicationscomposedof sev-
eral components(often called agents) that are capableof
moving from hostto host in a local or wide areanetwork.
Theseapplicationsarecommonlycalledmobilecodeappli-
cations(MCAs) [27]. They provide an excellent support
to nomadicusers:asthe usersmove andreconnectto the
system,appropriatepiecesof codecan be moved to fol-
low them.Moreover, they maybeusefulto reducenetwork
traffic by moving communicatingagentscloseto onean-
other[10, 4].

As for architecturalstyles,an emerging style that is re-
ceiving increasingattentionis basedonthenotionof events.
The componentsof an event-basedarchitecture cooperate
by sendingandreceiving events,a particularform of mes-
sages.Thesenderdeliversaneventto aneventdispatcher,
whichis in chargeof distributingtheeventto all thecompo-
nentsthathave declaredtheir interestin receiving it. Thus,
theeventdispatcherallowsthesourcesandtherecipientsof
aneventto befully decoupled.

PROSYT takes benefit of a combinationof thesetwo
technologiesto supporthighly dynamic, distributed pro-
cesses.In particular, it is basedon JEDI, an infrastructure,
which integratesanevent-basedlayerwith supportto code
mobility. In this paperwedescribeourexperiencein devel-
opingPROSYT anddraw aninitial assessmentof thebene-
fits anddrawbacksof thecombineduseof mobilecodeand
event-basedcoordinationframeworksto developdistributed
PSSs.

Thepaperis organizedasfollow: Section2 describesthe
requirementsof PROSYT. Section3 givesa brief descrip-
tion of JEDI. Section4 describeshow JEDI was usedto
implementPROSYTandshowsthebenefitsanddrawbacks
of mobile codeandevent-basedsystemsin implementing
a PSS.Finally, Section5 describesrelatedwork andSec-
tion 6 draws someconclusionsandshows somedirections
for futureresearch.

2 An overview of PROSYT

To satisfythe requirementsof a modernPSS,PROSYT
adoptsinnovative approachesin the areasof processmod-
eling,processenactment,andsystemarchitecture.

� As for processmodeling, the PROSYT PDL (called
PLAN: theProsytLANguage)adoptsanartifact-based
approach.Eachartifactproducedduringtheprocessis
an instanceof someartifact type, which describesits
internalstructureandbehavior. Eachartifact type is
characterizedby a setof attributeswhosevaluesde-
fine theinternalstateof its instances,a setof exported

operationsthatmaybe invokedby theusersuponthe
artifact type’s instances,and a set of automaticop-
erations thatareautomaticallyexecutedwhencertain
eventshappen(like invokinganexportedoperationon
anotherartifact)andareusedto automatethe process
and to reactto changesin the stateof the tools con-
trolledby theenvironment.

Booleanexpressionsareusedtoexpresstheconstraints
underwhich exportedoperationsareallowed to start.
Constraintsareorganizedin differentclasses,depend-
ing on the type of condition they express. It is also
possibleto specifya setof artifact invariants, to char-
acterizeacceptableprocessstates.

To describeactivities andinvariantsthatreferto a col-
lection of artifacts, PLAN provides the conceptsof
repositoryandfolder. Eachrepositoryis aninstanceof
somerepositorytypeandcontainsasetof foldersorga-
nizedin a treestructure.Eachfolder(instanceof some
foldertype) is acontainerof artifactsandotherfolders.
Attributes,states,exportedoperations,automaticop-
erations,andinvariantsmay beassociatedeitherwith
repositorytypesor with folder types. Exportedoper-
ationsandinvariantsfor foldersandrepositoriesmay
beusedto describebusinessactivities andconstraints
thatreferto structuredcollectionsof artifacts.

Finally, PLAN provides the conceptof project type.
Each PLAN businessprocessis describedas an in-
stanceof someproject type. It is characterizedby a
staticallydefinedsetof repositories,by asetof groups
(eachuserbelongsto oneor moregroups),andby a
setof exportedoperations,automaticoperations,and
invariants,which referto theentireprocess.

� As for process enactment, to improve flexibility
PROSYTusersarenot forcedto satisfytheconstraints
statedin the processmodel. They can invoke opera-
tionsevenif theassociatedconstraintsarenotsatisfied.
PROSYT keepstrackof theresultsof thesedeviations
and controlsthat the invariantsare not violated as a
resultof suchdeviations.

PROSYT allows processmanagersto specifya devia-
tion handlinganda consistencychecking policy. Such
policiesstatethelevelof enforcementadopted(i.e.,the
classesof constraintsthatcanbeviolatedduringenact-
ment)andtheactionsthathave to beperformedwhen
invariantsareviolatedasaresultof adeviation,respec-
tively. Both thesepoliciesmay changeat enactment-
time,andmayvary from userto user. As anexample,
somedeviationsmay be allowed during somephases
of the processwhile they may be disallowed during
other, morecritical, phases.Similarly, an expert user
maybeallowedto performdeviationsthatareforbid-
dento beginners.



Figure 1. The logical architecture of PROSYT.

� As for systemarchitecture,PROSYT adoptsanevent-
basedcommunicationparadigmand takes benefitof
codemobility to reducenetwork traffic andto support
nomadicusers.

2.1 The logical architectureof PROSYT

A typical PSSconsistsof a processengine,which in-
terpretstheprocessmodelandcontrolstheexecutionof the
toolsusedduringtheprocess,andagraphicalinterfaceused
by theusersto interactwith theenvironment.Components
interactin aclient-serverarchitecturewheretheprocessen-
gineactasthe server andthe graphicalfront-endtools are
theclients.

The structureof PROSYT is considerablymore com-
plex, sinceconcurrency and distribution was exploited to
achieve improved performanceandflexibility . In particu-
lar, it exists a processenginefor eachrepository, which
is in charge of managingthe entities(i.e., foldersandar-
tifacts)includedin the repositoryandanotherenginethat
takescareof managingtheinstanceof theprojecttypethat
representthe currentlyexecutingbusinessprocess.Using
the PROSYT GUI, userscanbrowsethroughthe reposito-
riesandcanaccesstheir contentsby invoking theexported
operationsprovided by the differententities. The process
enginecanalsocontrol the executionof the tools usedto
performprocessspecifictasks(like editors,office automa-
tion tools,andothers),launchingthemandinteractingwith
them.

In more details, the componentsthat constitute the
PROSYTenvironmentare:

� A processenginefor eachrepositoryandaprocessen-
gineenactingtheprojecttype instancethat represents
thecurrentbusinessprocess.

� A projectbrowserfor eachuser, usedto browsetheen-
tities(i.e.,artifacts,folders,andrepositories)thatcom-
posetheenactingprocess,invokingtheoperationsthey
exports.

� A login manager in chargeof controllingusers’login
andlogout. It managesall the informationaboutthe
humanagentsthatareinvolvedin theprocess.

� The administrative tool usedby the processmanager
to changetheexecutionpolicies,andto addor remove
users.

� The tools invoked by the systemto perform process
specifictaskslike editorsandcompilers.

� A componentin charge of monitoring executionby
identifyingtheinvocationof deviatingactions(i.e., the
monitoringtool) togetherwith a tool thatanalyzesthe
resultof this monitoringto supportthereconcilingac-
tivity (i.e., thereconcilingtool).

Figure1 shows the componentinvolved in enactinga pro-
cessmodel that includestwo repositories.The figure de-
scribesa situationin which a singleuseris interactingwith
the PSSby usingthe projectbrowserandan editor, while
theprocessmanageris usingthereconcilingtool to monitor
occurreddeviations,if any.

All theentitiesthatcomposethePROSYT environment
mustbeableto communicatewith oneanother. Moreover,
the numberof theseentitiesandtheir locationcanchange
at enactmenttime. As an example,new artifactsmay be
created,existing artifactsmaybemovedfrom a repository
to another(i.e., from a hostto another),andnew instances
of tools may be launched. Thesecharacteristics,together
with thefactthatPLAN is intrinsicallybasedonanotionof
“event”,motivatethechoiceof anevent-basedcoordination
paradigmamongthe entitiesthat belongto the PROSYT
environment.To implementmobility of artifactsandfolders
amongdifferent repositoriesmobile codetechnologywas
adopted.

3 The PROSYT run-time support

A numberof frameworkshave been(andarebeing)de-
velopedto provide an event-basedmiddlewaresupporting
distributedapplications.WhenthePROSYTprojectstarted,
however, theseframeworkswerenotavailable.Thuswede-
cidedto develop our own framework, both to simplify the
implementationof PROSYT andto starta researchactivity
in the areaof event-basedarchitectures.The resultof this
researcheffort is JEDI, an event-basedframework imple-
mentedin Java. A first versionof the framework hasbeen
describedin [14]. It differsfrom theversionusedto imple-
mentPROSYT, becauseit doesnot supportmobility.

3.1 The JEDI event-basedinfrastructur e

Figure 2 shows the logical architectureof JEDI. The
infrastructureis basedon the notion of an active object
(AO). An AO is an autonomousentity that performsan
application-specifictask. Eachactive object has its own
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Figure 2. A logical view of the JEDI architec-
ture .

threadof control and interactswith other AOs by explic-
itly producingandreceiving events2. Eventscanbeviewed
asa particulartype of message,which do not carry infor-
mationabouttheir recipients.An event is generatedby an
AO by explicitly invokingthesendEvent primitive. As a
resultof the eventgeneration,a specificcomponentof the
infrastructure,calledtheeventdispatcher (ED), notifiesall
the AOs that declaredan interestin the event. An AO de-
claresthe classesof eventsit is interestedin by invoking
a subscribe operation. A subscriptioncanbe dropped
by invokingtheunsubscribe operation.Eventsubscrip-
tion andunsubscriptioncanbe invokedat any time during
theAO lifetime. Thenotificationof eventsis accomplished
asynchronouslywith respectto their generation.

One of the most importantcharacteristicsof an event-
basedinfrastructureis the form of the eventsdeliveredby
theeventdispatcher. Suchform hasa strongimpacton the
expressivenessof thecommunicationandtheability to sup-
port complex communicationpatterns. In JEDI, an event
is an orderedsetof strings �����	�
���
���������
����� , where ��� is the
eventnameand ���
������������� aretheeventparameters.

AOscansubscribeeitherto aspecificeventor to anevent
pattern. An eventpatternis an orderedsetof stringseach
onerepresentingasimplifiedform of a regularexpressions.

For spacereasons,it is not possibleto providea detailed
accountof the featuresthat distinguishJEDI from other
event-basedinfrastructures.In the sequelwe concentrate
on the architectureof the ED, which was relevant for the
implementationof PROSYT, while Section3.2 focuseson
thesupportprovidedby JEDI to moveactiveobjectsfrom a
hostto anotherduringexecution.

We developedboth a centralizedanda distributedver-
sionof theED. In thecentralizedapproach,theED is com-
posedof a singleprocess.This simplifiesthe implementa-
tion of the ED andthe deploymentof the applicationbuilt
on top of the infrastructure.At thesametime, this central-
izedapproachintroducesabottleneckthatcanbeunaccept-
ableasthenumberof AOsthatcomposetheapplicationand

2Although JEDI is implementedin Java, to achieve the goal of open-
ness,AOsarenot necessarilywritten in Java, sincethey interactwith the
ED throughstandardTCP/IPsockets.This allows off-the-shelftoolsto be
easilyintegratedin theenvironment.
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Figure 3. The JEDI distrib uted architecture .
thenumberof eventsto be dispatchedgrows. To optimize
the performanceof the distribution mechanism,we devel-
opeda distributedversionof the ED, which is structured
asa collectionof processes(usually, onefor eachmachine
runningJEDI), interconnectedin a treestructure.Eachof
theseprocessesis calledanED component. EachAO con-
nectsto an ED component(not necessarilyto a leaf of the
tree). The resultinghierarchicalarchitectureis shown in
Figure3. Eventsarepropagatedalongthetreeto theinter-
estedcomponentson the basisof the subscriptionsposted
by eachAO. Figure3 shows thepathfollowedby two dif-
ferenteventsgoing from the senderto the recipient. The
figure alsoshows that eventsarealwayspropagatedto the
topof thehierarchy. Thisbehavior resultsfrom thestrategy
adoptedin distributing subscriptions:an intermediateED
componentdoesnot have any knowledgeof the subscrip-
tionsissuedin sibling sub-trees.

ThedistributedED becomesmoreefficient thanthecen-
tralizedED whenever a propertyof locality holds, i.e., if
AOs tend to communicatewith other AOs locatedon the
sameor on”nearby”hosts.In termsof cooperationpatterns,
thismeansthattheglobalprocesscanbeviewedasahierar-
chicalfederationof cooperativesub-processes.To preserve
locality, an AO canbe moved closerto its peerAOs. No-
tice, however, that the decisionwhetherto usethe central-
ized or the hierarchicalversionof the ED only affectsthe
overall performanceof the system,not functionality, since
theadoptedversionof theED is totally transparentto AOs.

Anothercritical issuein event-basedframeworks is the
behavior of theeventdispatcherwith respectto theordering
of events. The JEDI’s ED guaranteesthat eachregistered
AO receivesthe eventssentby a givensenderin the same
orderin which they weresent.

In summary, the event-basedcoordinationstyle usedin
JEDI is characterizedby thefollowing properties:

� it is asynchronous;

� it is basedon multicast;

� the sourceof a communicationdoesnot specify the
destinationof thecommunication;



� thedestinationof a communicationdoesnot know the
identityof thesource;

� the eventsdeliveredby a senderareguaranteedto be
received by the recipientsin the samesequencein
which they areproduced.

3.2 Mobile agentsin JEDI

In an event-basedenvironment, most AOs behave ac-
cording to a standardsequenceof operations.Upon acti-
vation,theAO subscribesto a setof eventsandthenwaits
for theiroccurrence.Whenaneventis notified,theAO per-
formssomeoperation(possiblygeneratingnew eventsand
subscribingor unsubscribingto events)andthengoesback
to awaitingstate.For thisreason,wepredefinedaparticular
typeof active object,calledreactiveobject, which exhibits
this standardbehavior. The programmersimply needsto
provide an abstractmethod(calledprocessMessage),
which is automaticallyinvoked eachtime the reactive ob-
ject receivesaneventof interest.

In JEDI, reactive objects can hop from host to host
keeping their internal state (i.e., they behave as mobile
agents[27]). A reactive object can decideto move au-
tonomouslyto adifferenthostby invokingthemove opera-
tion andspecifyingthetargetsite.Suchanoperationcauses
thefollowing actionsto occur:

1. The stateof the reactive object (i.e., the value of its
attributes)is serializedandstoredusingstandardJava
facilities(i.e.,objectserialization);

2. The reactive object is temporarilydisconnectedfrom
theED andthethreadof controlexecutingthereactive
objectloop is stopped.

3. The stateof the reactive object is moved to the new
locationthroughanetwork connection.At thedestina-
tionsitethereactiveobjectis restartedandreconnected
to theED.

Migrationdoesnotcauseany lossof event,sincetheED
keepsthe eventsthat shouldbe received by the migrating
reactiveobjectuntil it reachesits new destination.

The JEDI ability of migrate reactive objectshasbeen
usedin PROSYT to supportnomadicusersandto dynam-
ically changethe way distributed executionof a process
modelis carriedout. In particular, it hasbeenusedto im-
plementthePLAN move operationthatallowsartifactsand
folders to be moved from a repositoryto another. Since
artifactsand foldersareactive elements,by moving them
PROSYTmovesthesitein which processenactmentis car-
ried out. As an example,as part of a software develop-
mentprocess,it is possibleto specifya deliver opera-
tion, whichmovesasoftwarecomponentfrom thedevelop-
mentrepositoryto theproductionrepository.

Figure 4. The physical architecture of the fir st
PROSYT prototype .

4 The experience

This section describeshow the JEDI framework was
usedto implementthe PROSYT prototype. We arguethat
the lessonslearnedhave moregeneralvalidity. They illus-
trate the benefitsof event-basedcoordinationmechanisms
andcodemobility to supportdistributedcooperative envi-
ronments.

4.1 The first PROSYT prototype

The componentsof a PLAN model (i.e., repositories,
folders,andartifacts)areimplementedasJEDI reactiveob-
jects,which communicateamongthemselvesandwith ex-
ternal tools via JEDI events. We also choseto run each
repository, andthefoldersandartifactsit includes,within a
differentJava Virtual Machine(JVM). That is, eachrepos-
itory runsasa differentprocess,while foldersandartifacts
arethreadsof theenclosingrepositoryprocess.Theresult-
ing physicalarchitectureof PROSYT is shown in Figure4.
It shows theuseof JEDI asa middlewareproviding theco-
ordinationinfrastructure;eachcomponentof the environ-
ment(tools,projects,repositories,folders,andartifacts)can
sendandreceiveJEDIevents.

To enacta PLAN model, PROSYT adoptsa transla-
tion basedapproach. Each elementof a PLAN model
(i.e., project types,repositorytypes,folder types,an arti-
fact types)is translatedinto a differentJava class.At run-
time, instancesof suchclassesarecreatedasneeded.To
simplify the translationstep,the JEDI framework wasen-
richedby introducingseveralclasseswhich implementspe-
cific PROSYTfunctionalities,asshown in Figure5. In par-
ticular, classItem includesthemethodsto decideif anex-
portedoperationinvoked by a userhasto be executed(as
definedby the adopteddeviation handlingpolicy) andthe
methodsto reactto aviolationof someinvariant(asdefined
by the adoptedconsistency checkingpolicy). Similarly,
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Figure 5. The design of the process engine of
the fir st PROSYT prototype .

classesProject, Repository, Folder, andArti-
fact includemethodsthat implementthe operationsthat
arecommonto all projects,repositories,folders,andarti-
facts,respectively.

The specifictools that composethe PROSYT environ-
ment (i.e., the browser, the administrative tool, the login
manager, themonitoringtool, andthereconcilingtool) are
alsodevelopedin Java andrun asdifferentprocesses.They
interactwith theprocessenginethroughJEDIevents.

Themainadvantagesof thearchitectureof this first pro-
totypecanbesummarizedasfollows:

� There is a strong decouplingbetweenthe different
componentsof the environment. Componentsinter-
actvia eventsandcanignorethephysicallocationsof
othercomponents.

� Theevent-basedcoordinationmakesit easyto modify
the systemarchitectureandaddnew tools. As an ex-
ample,themonitoringcomponentandthereconciling
tool wereaddedwith a minimal effort after an initial
prototypewasfinished.

� It is easyto integrateexisting off-the-shelftools into
theenvironmentbecausethey donotneedto know any
specificfeatureof PROSYT. A wrappinglayermustbe
developedto encapsulatesuchtools,to let themgener-
ateJEDI eventswhentheir statechangesandto react
to JEDI eventssentby the runningprocessengineto
controltheir execution.

As we startedusingthefirst PROSYT prototype,we re-
alizedthat theeventdispatchercouldbecomea bottleneck
for the performanceof the system.Although this problem
wasmitigatedby adoptingthedistributedversionof JEDI,
it continuedto bea problemin presenceof largeprocesses
in whichalargenumberof artifactshasto bemanaged.The
secondPROSYTprototypewasdevelopedto overcomethis
problem.

4.2 The secondPROSYT prototype

By analyzingthe tracesof the eventsdeliveredby the
componentsof thefirst PROSYT prototype,we discovered

Figure 6. The physical architecture of the sec-
ond PROSYT prototype .

that mostof themweresentby instancesof the browsers
to the processenginesand vice-versa. Eachtime a user
browsesthrougha folder F, an event is sentby eachitem
(i.e., artifact and folder) that belongsto F. The event in-
cludesinformationaboutthe stateof the item andthe ex-
portedoperationsthat canbe invoked upon it. If the user
invokestheexportedoperationOp upononeof theseitems,
anotherevent is generated.This event is dispatchedto the
targetitem,to all theitemsthathaveanautomaticoperation
associatedwith theinvocationof Op, andto themonitoring
tool. Moreover, eachtime the stateof an item changes,a
new event is generatedanddispatchedto thebrowsersthat
weredisplayingtheitem.

While the eventsgeneratedby a browser instancemay
berelevantfor differentAOs,someof theeventsgenerated
by processitems (i.e., artifacts, folders, repositories,and
projects)arerelevantonly for thebrowsersthatarecurrently
showing thoseitems. In addition,artifactsandfolderscan
moveduringtheir lifetime, while browsersrun on thesame
hostuntil they areclosed.Thissuggestsastrategy to reduce
thenumberof eventsmanagedby theeventdispatcher, still
retainingtheadvantagesof anevent-basedarchitecture,by
adoptingdirectRMI connectionsto implementthecommu-
nication from processenginesto browsers. In particular,
thebrowsersplay theroleof theserversexportingthefunc-
tionality of showing processitemslikeartifactsandfolders.
Theresultingphysicalarchitectureis shown in Figure6.

To implement this new architecturewe addedseveral
Java classes.They implementthe generalcommunication
protocol betweena reactive object which is interestedin
showing its stateon aviewer tool andtheviewer tool itself.

5 RelatedWork

Process support systems, event-based coordination
frameworks, and mobile agentsare three very active re-
searchareas.Several prototypesandeven productsexists



for eachof them.Dueto spacereasonswe cannotdescribe
relatedwork in thesespecificareas.For a survey of mobile
codelanguagesandsystems,theinterestedreadersmayre-
fer to [16], while [22] comparesseveral mobile agentsys-
temsbasedon Java. Similarly, [14] comparesJEDI with
otherevent-basedsystems,while [12] and[13] includean
extensivecomparisonbetweenPROSYT andotherPSSs.

To the bestof our knowledge,therehave beenno pub-
lished experiencesof the combineduseof mobile agents
andevent-basedcoordinationframeworks andof their use
to implement cooperative and distributed businesspro-
cesses.In this section,we briefly comparePROSYT with
otherPSEEwith respectto systemarchitecture.

Most of the PSEEsdeveloped during the last years
adoptsa standardclient-server architecture. Processen-
actmentis centralizedandtools communicatewith theen-
ginethroughpoint-to-pointconnections.Examplesof such
PSEEsareAdele [8], Arcadia [26], EPOS[11], JIL [25],
Marvel [21], Merlin [23], Oikos [1], ProcessWeaver [19],
Provence[7], SENTINEL [15], andSPADE [6, 5].

Endeavors[9] adoptsacomplex architectureto distribute
processenactment.Several processenginesmay coexist.
They communicatewith standardpoint-to-point connec-
tions. As mentioned,this approachreducesthe possibility
of changingthesystemarchitectureatrun-timeto copewith
changesin theunderlyingenvironment.

The APEL [17] architecturehas beenexplicitly con-
ceivedto supportlarge,distributedprocesses.It takesbene-
fit of acompositecommunicationparadigmamongcompo-
nents,which includesboth point-to-pointandevent-based
connections.It differs from the PROSYT architecturebe-
causeit doesnot takesbenefitof codemobility to change
thewayprocessenactmentis distributedat run-time.

6 Conclusionsand futur e work

The designof a distributedprocesssupportsystemlike
PROSYT hasbeena challengingtask.Sincethetraditional
client-server designparadigmdid not satisfyPROSYT re-
quirements,we hadto look for lessestablishedapproaches,
likeevent-basedintegrationframeworksandmobileagents.
Theresultinghybrid designparadigm,which integratesthe
two approachesanda limited useof client-server intercon-
nections,provedto bequiteuseful.Wearguethatthisexpe-
riencecanbeusefulfor otherswho areimplementingsimi-
lar kindsof large,distributed,reactive,andcooperativeap-
plications.

Our experiencehasalsoshown thedrawbacksof event-
baseandmobile codeinfrastructures.As for event-based
infrastructures,the maindrawbackwe hadto facewasthe
difficulty in supportingsynchronouscooperationin cases
wherethis form of cooperationis necessary. The second
PROSYT prototypeshows how this problemcan be par-

tially solved by adoptinga mixed architecture,which in-
volvesa limited form of client-server communication. In
the future, we plan to investigatethe possibility of inte-
grating synchronouscommunicationprimitives into JEDI
to eliminatetheneedof usingclient-server technologies.

Anotherdifficulty relatedto event-basedinfrastructures
hasto do with scalability. Although JEDI providesa so-
lution to this problemin termsof distribution of the event
manager, more is neededto achieve full scalabilityat the
Internetlevel [24].

Regardingagentmobility, in oursystemwetookarather
simpleandad-hocapproach,by providing a primitive that
allows a reactive object to move to specific locations. It
would benicein thefutureto beableto uselanguagesthat
provide a richer set of integratedabstractionsto describe
mobile computationsin a structured,natural,and elegant
way. Thisis anactiveresearchfield in whichwemayexpect
progressin thefuture[16].
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