Designand Implementation of PROSYT: a Distrib uted ProcessSupport System

GianpaoloCugolaandCarloGhezzi
{cugol a, ghezzi }@let.polim.it
Dipartimentodi Elettronicae Informazione
Politecnicodi Milano
P.zaLeonardodaVinci 32
20133Milano (Italy).

Abstract

The paper describesthe designand implementatiorof
a processsupportsystem(PROSYT),which is intendedto
provide guidancein performingbusinesgprocesseand co-
operationamongpeopleoveralocal or geographicallydis-
tributednetwork.In particular, it canbeusedasa Process-
centeedSoftwae Engineeringenvironmen{PSEE)to sup-
port distributedsoftwae development.

Our main purposeis to describehow comple applica-
tions of this kind can be developedsystematically In par-
ticular, how the requirementsof high flexibility, reconfig-
urability, scalability, and efficiencydemandedy theseap-
plications can be metthrough appropriate designchoices.

1 Intr oduction

During the last decade, software development has
quickly becomeone of the mostcomplex engineeringac-
tivities carriedout by humans. Process-centerefloftware
Engineeringenvironments(PSEEs) 2, 20] aim at support-
ing suchactivities by providing alanguageo formalizethe
processhathaveto becarriedout (usuallycalled“PDL”", an
acrorym for “ProcessDescriptionLanguage”),andan en-
vironmentcapableof interpretinga processmodelto guide
peopleduring the processandto automatethe morerepet-
itive actvities. In this paperwe describethe designand
implementatiorof PROSYT, a PSEEespeciallyconceved
to supportdistributedprocesses.

Sincesoftwaredevelopmentprocessesdo not differ rad-
ically from genericbusinesgrocesses?ROSYT hasbeen
concevedto supportary kind of businesgprocesghatre-
quirespeopleto cooperateaccordingto a well known pro-
cesshy taking advantageof the servicesprovided by a net-
work of computers.As a consequenceaye usuallyreferto

PROSYT asa ProcessSupportSystem(PSS)to underline
its generalitywith respectto the kind of businessprocess
carriedout.

A secondconsequencef this choice was the needof
providing mechanisnto increasdPROSY T flexibility in ex-
ecutingtheprocessnodel.Businesgprocessegndparticu-
larly softwareprocessesjanbehardlymodeledn advance
with the requiredprecision. It is often the casethat some
situationariseduring the procesghat had not beenantici-
patedinto the model. As a consequencea PSShasto be
flexible enoughto supporttheir usersevenin presenceof
suchunexpectedsituations.

Last consequencef the previously mentionedchoice
was the needof supportingdistributed processeshat in-
volve several kind of peoplerangingfrom software engi-
neersthatspendmostof their time satin front of the same
computerto nomadicusess who connectto the network
from arbitrarylocationsusing notebookor PDAs andwho
arenot permanentlyconnectedln this paperwe focusour
attentionto this lastaspectandin particularto the conse-
guencesof this choice on the designand architectureof
PROSYT:.

Traditionally, distributed applications like PSSsare
basedn the client-sener approach Clientsusesomeform
of remoteprocedurecall (RPC)to requesta serviceto a
sener which is known to provide that service. Examples
of middlewarethatadoptthis approactare CORBA [3] and
RMI [18]. Theresultingsoftwarearchitecturds character
ized by a tight coupling betweenthe object that requests
a service(i.e., the client) andthe objectthat satisfiessuch
requesf(i.e., the sener). This approactreduceshe possi-
bility of reconfiguringthe architectureof the applicationat
run-time,andresultsin alimited scalability

In developingPROSYT we adopteda completelydiffer-
ent architecturebasedon two emeging technologieghat

1Thereadersnterestedn the PROSYT aspectselatedto its ability of
supportingpeoplein presenceof unexpectedsituationsmay consult[12
and[13].

offer thechanceo overcomethelimitation of client-sener:
mobile codeandevents.

In thelastyearsa numberof mobilecodelanguagesand
librariesarebecomingavailableto supporthedevelopment
of anew classof distributedapplicationscomposeaf sev-
eral componentgoften called agentg that are capableof
moving from hostto hostin alocal or wide areanetwork.
Theseapplicationsaarecommonlycalledmobilecodeappli-
cations(MCASs) [27]. They provide an excellent support
to nomadicusers: asthe usersmove andreconnecto the
system,appropriatepiecesof code can be moved to fol-
low them.Moreover, they maybe usefulto reducenetwork
traffic by moving communicatingagentscloseto one an-
other[10, 4].

As for architecturalktyles,an emeging style thatis re-
ceving increasingttentionis basecnthenotionof events
The componentof an event-basedarchitecture cooperate
by sendingandreceving events,a particularform of mes-
sages.The sendemeliversaneventto an eventdispatder,
whichis in chageof distributing theeventto all thecompo-
nentsthathave declaredheir interestin receving it. Thus,
theeventdispatchearllowsthesourcesandtherecipientsof
aneventto befully decoupled.

PROSYT takes benefitof a combinationof thesetwo
technologiesto supporthighly dynamic, distributed pro-
cessesln particular it is basedon JEDI, aninfrastructure,
which integratesan event-basedayer with supportto code
mobility. In this papemwe describeour experiencan devel-
opingPROSYT anddraw aninitial assessmermtf the bene-
fits anddrawbacksof the combineduseof mobile codeand
event-basedoordinatiorframevorksto developdistributed
PSSs.

Thepaperis organizedasfollow: Section2 describeshe
requirementof PROSYT. Section3 givesa brief descrip-
tion of JEDI. Section4 describeshow JEDI was usedto
implementPROSYT andshows the benefitsanddrawbacks
of mobile codeand event-basedsystemsin implementing
a PSS.Finally, Section5 describegelatedwork and Sec-
tion 6 draws someconclusionsand shavs somedirections
for futureresearch.

2 An overview of PROSYT

To satisfytherequirement®f a modernPSS,PROSYT
adoptsinnovative approache the areasof processmod-
eling, processnactmentandsystemarchitecture.

e As for processmodeling,the PROSYT PDL (called
PLAN: theProsytL ANguage)adoptsanartifact-based
approachEachartifactproducediuringthe processs
aninstanceof someartifact type which describests
internal structureand behavior. Eachartifact type is
characterizedy a setof attributeswhosevaluesde-
fine theinternalstateof its instancesa setof exported

opefmtionsthatmay be invoked by the usersuponthe
artifact type’s instances,and a set of automaticop-
erationsthat are automaticallyexecutedwhen certain
eventshappen(like invoking anexportedoperationon
anotherartifact) andare usedto automatethe process
andto reactto changesn the stateof the tools con-
trolled by the environment.

Booleanexpressiongsireusedio expresgheconstraints
underwhich exportedoperationsare allowed to start.
Constraintsaareorganizedn differentclassesdepend-
ing on the type of conditionthey express. It is also
possibleto specifya setof artifactinvariants to char

acterizeacceptabl@rocesstates.

To describeactiities andinvariantsthatreferto a col-
lection of artifacts, PLAN provides the conceptsof
repositoryandfolder. Eachrepositoryis aninstanceof
somerepositorytypeandcontainsasetof foldersorga-
nizedin atreestructure Eachfolder (instanceof some
foldertyp#) is acontainerof artifactsandotherfolders.
Attributes, states,exported operations automaticop-
erations,andinvariantsmay be associateaitherwith
repositorytypesor with folder types. Exportedoper
ationsandinvariantsfor foldersandrepositorieamay
be usedto describebusinessactivities and constraints
thatreferto structureccollectionsof artifacts.

Finally, PLAN providesthe conceptof project type
Each PLAN businessprocessis describedas an in-
stanceof someprojecttype. It is characterizedy a
staticallydefinedsetof repositoriesby a setof groups
(eachuserbelongsto one or more groups),andby a
setof exportedoperationsautomaticoperationsand
invariantswhich referto theentireprocess.

As for processenactment,to improve flexibility
PROSYT usersarenotforcedto satisfytheconstraints
statedin the processmodel. They caninvoke opera-
tionsevenif theassociatedonstraintarenotsatisfied.
PROSYT keepdrackof theresultsof thesedeviations
and controlsthat the invariantsare not violated as a
resultof suchdeviations.

PROSYT allows processnanagerso specifya devia-
tion handlinganda consistencgheding policy. Such
policiesstatethelevel of enforcemenadoptedi.e., the
classe®f constraintdhatcanbeviolatedduringenact-
ment)andthe actionsthathave to be performedwhen
invariantsareviolatedasaresultof adeviation,respec-
tively. Both thesepolicies may changeat enactment-
time, andmay vary from userto user As anexample,
somedeviationsmay be allowed during somephases
of the processwhile they may be disalloved during
other morecritical, phases.Similarly, an expertuser
may be allowed to performdeviationsthat areforbid-
dento beginners.

Communication
Infrastructure

Repository 1 -
Repository 2 LEiE

Figure 1. The logical architecture of PROSYT.

e As for systemarchitecturePROSYT adoptsan event-
basedcommunicationparadigmand takes benefit of
codemobility to reducenetwork traffic andto support
nomadicusers.

2.1 The logical architecture of PROSYT

A typical PSSconsistsof a processengine,which in-
terpretshe processnodelandcontrolsthe executionof the
toolsusedduringtheprocessandagraphicainterfaceused
by the usersto interactwith the environment. Components
interactin aclient-senerarchitecturavherethe procesen-
gine actasthe sener andthe graphicalfront-endtools are
theclients.

The structureof PROSYT is considerablymore com-
plex, sinceconcurreng and distribution was exploited to
achieve improved performanceand flexibility . In particu-
lar, it exists a processenginefor eachrepository which
is in chaige of managingthe entities(i.e., foldersand ar-
tifacts)includedin the repositoryand anotherenginethat
takescareof managingheinstanceof the projecttypethat
representhe currently executingbusinessprocess. Using
the PROSYT GUI, userscanbrawsethroughthe reposito-
riesandcanaccesgheir contentsby invoking the exported
operationgprovided by the differententities. The process
enginecan also control the executionof the tools usedto
performprocessspecifictasks(lik e editors,office automa-
tion tools,andothers) launchingthemandinteractingwith
them.

In more details, the componentsthat constitute the
PROSYT environmentare:

e A processnginefor eachrepositoryanda processen-
gine enactingthe projecttype instancethat represents
thecurrentbusinesgprocess.

e A projectbrowserfor eachuser usecdto browsetheen-
tities (i.e., artifacts folders,andrepositoriesjhatcom-
posetheenactingorocessinvokingtheoperationghey
exports.

¢ A login manager in chage of controllingusers’login
andlogout. It managesll the informationaboutthe
humanagentghatareinvolvedin the process.

e The administative tool usedby the processmanager
to changehe executionpolicies,andto addor remove
users.

e The tools invoked by the systemto perform process
specifictaskslik e editorsandcompilers.

e A componentin chage of monitoring execution by
identifying theinvocationof deviatingactions(i.e., the
monitoringtool) togethemwith atool thatanalyzeshe
resultof this monitoringto supportthereconcilingac-
tivity (i.e., thereconcilingtool).

Figure 1l shavs the componeninvolvedin enactinga pro-
cessmodelthat includestwo repositories. The figure de-
scribesa situationin which a singleuseris interactingwith
the PSSby usingthe projectbrowserand an editor, while
theprocessnanageis usingthereconcilingtool to monitor
occurreddeviations,if ary.

All the entitiesthatcomposehe PROSYT ervironment
mustbe ableto communicatevith oneanother Moreover,
the numberof theseentitiesandtheir location canchange
at enactmentime. As an example,new artifactsmay be
created existing artifactsmay be moved from a repository
to another(i.e., from a hostto another)andnew instances
of tools may be launched. Thesecharacteristicstogether
with thefactthatPLAN is intrinsically basedbn anotionof
“event”, motivatethe choiceof anevent-basedoordination
paradigmamongthe entitiesthat belongto the PROSYT
ervironment.Toimplementmobility of artifactsandfolders
amongdifferent repositoriesmobile codetechnologywas
adopted.

3 The PROSYT run-time support

A numberof framewvorks have been(andarebeing)de-
velopedto provide an event-basedniddlevare supporting
distributedapplicationsWhenthePROSYT projectstarted,
however, theseframavorkswerenotavailable. Thuswe de-
cidedto develop our own framework, both to simplify the
implementatiorof PROSYT andto starta researchactiity
in the areaof event-basedrchitectures.The resultof this
researcteffort is JEDI, an event-basedramework imple-
mentedin Java. A first versionof the framewvork hasbeen
describedn [14]. It differsfrom the versionusedto imple-
mentPROSYT, becausét doesnot supportmobility.

3.1 The JEDI event-basedinfrastructur e

Figure 2 shaws the logical architectureof JEDI. The
infrastructureis basedon the notion of an active object
(AO). An AO is an autonomousentity that performsan
application-specifidask. Eachactive object hasits own

(Ao]
\
Event Dispatcher
t 1
[[a0] [Aa0] AO
§ = event

Figure 2. A logical view of the JEDI architec-
ture.

threadof control and interactswith other AOs by expli
itly producingandreceving eventg. Eventscanbe viewt
asa particulartype of messagewhich do not carry infc
mationabouttheir recipients. An eventis generatedy an
AO by explicitly invokingthesendEvent primitive. Asa
resultof the eventgenerationa specificcomponenof the
infrastructure calledthe eventdispatter (ED), notifiesall
the AOs that declaredan interestin the event. An AO de-
claresthe classesf eventsit is interestedn by invoking
asubscri be operation. A subscriptioncan be dropped
by invokingtheunsubscr i be operation Eventsubscrip-
tion andunsubscriptiorcanbe invoked at any time during
the AO lifetime. Thenotificationof eventsis accomplished
asynchronouslyith respecto their generation.

One of the mostimportantcharacteristicof an event-
basedinfrastructureis the form of the eventsdeliveredby
the eventdispatcher Suchform hasa strongimpacton the
expressvenes®f thecommunicatiorandthe ability to sup-
port complex communicationpatterns. In JEDI, an event
is anorderedsetof strings(si, s2, ..., $n), Wheres; is the
eventnameandss, ..., s,, aretheeventparameters.

AOscansubscribesitherto aspecificeventor to anevent
pattern An eventpatternis anorderedsetof stringseach
onerepresenting simplifiedform of aregularexpressions.

For spacaeasonsit is not possibleto provide a detailed
accountof the featuresthat distinguishJEDI from other
event-basednfrastructures. In the sequelwe concentrate
on the architectureof the ED, which wasrelevant for the
implementatiorof PROSYT, while Section3.2 focuseson
the supportprovidedby JEDIto move active objectsfrom a
hostto anotherduringexecution.

We developedboth a centralizedand a distributed ver-
sionof theED. In the centralizedapproachthe ED is com-
posedof a singleprocess.This simplifiesthe implementa-
tion of the ED andthe deploymentof the applicationbuilt
on top of theinfrastructure At the sametime, this central-
izedapproachntroducesa bottleneckthatcanbeunaccept-
ableasthenumberof AOsthatcomposeheapplicationand

2Although JEDI is implementedn Java, to achieve the goal of open-
ness,AOs arenot necessarilywritten in Java, sincethey interactwith the
ED throughstandardlr CP/IPsoclets. This allows off-the-shelftoolsto be
easilyintegratedin theenvironment.

= o]
[DS \
-~ N
(=) =1 [C=0
t il v Y
} =event1
l:wemz

Figure 3. The JEDI distrib uted architecture .

the numberof eventsto be dispatchedyrows. To optimize
the performanceof the distribution mechanismywe devel-
opeda distributed versionof the ED, which is structured
asa collectionof processegusually onefor eachmachine
running JEDI), interconnectedn a tree structure. Eachof
theseprocessess calledan ED component EachAQO con-
nectsto an ED componen{not necessarilyto a leaf of the
tree). The resulting hierarchicalarchitectureis shavn in
Figure3. Eventsare propagate@longthe treeto theinter-
estedcomponent®n the basisof the subscriptiongosted
by eachAO. Figure 3 shows the pathfollowed by two dif-
ferenteventsgoing from the senderto the recipient. The
figure alsoshaws that eventsare always propagatedo the
top of the hierarchy This behavior resultsfrom the strateyy
adoptedin distributing subscriptions:an intermediateED
componenidoesnot have ary knowledgeof the subscrip-
tionsissuedn sibling sub-trees.

ThedistributedED becomesnoreefficientthanthe cen-
tralized ED whenever a propertyof locality holds, i.e., if
AOs tend to communicatewith other AOs locatedon the
sameor on”nearby”hosts.In termsof cooperatiompatterns,
thismeanghattheglobalprocessanbeviewedasahierar
chicalfederationof cooperatie sub-processedo presere
locality, an AO canbe moved closerto its peerAOs. No-
tice, however, that the decisionwhetherto usethe central-
ized or the hierarchicalversionof the ED only affectsthe
overall performanceof the system not functionality, since
theadoptedversionof the ED is totally transparento AOs.

Anothercritical issuein event-basedrameworksis the
behaior of theeventdispatchewith respecto theordering
of events. The JEDI's ED guaranteeshat eachregistered
AO receiesthe eventssentby a given senderin the same
orderin which they weresent.

In summary the event-basedoordinationstyle usedin
JEDIis characterizedby the following properties:

e it isasynchronous;
e it is basedon multicast;

e the sourceof a communicationdoesnot specify the
destinatiorof thecommunication;

o thedestinatiorof acommunicatiordoesnot know the
identity of thesource;

e the eventsdeliveredby a senderare guaranteedo be
recevved by the recipientsin the samesequencen
whichthey areproduced.

3.2 Mobile agentsin JEDI

In an event-basecdervironment, most AOs behae ac-
cordingto a standardsequencef operations. Upon acti-
vation,the AO subscribedo a setof eventsandthenwaits
for their occurrenceWhenaneventis notified,the AO per
forms someoperation(possiblygeneratinghewn eventsand
subscribingor unsubscribingo events)andthengoesback
to awaiting state.For thisreasonye predefinedaparticular
type of active object,calledreactiveobject which exhibits
this standardbehaior. The programmersimply needsto
provide an abstractmethod(called pr ocessMessage),
which is automaticallyinvoked eachtime the reactve ob-
jectrecevesaneventof interest.

In JEDI, reactive objects can hop from host to host
keepingtheir internal state (i.e., they behae as mobile
agents[27]). A reactive object can decideto move au-
tonomouslyto a differenthostby invokingthenove opera-
tion andspecifyingthetargetsite. Suchanoperationcauses
thefollowing actionsto occur:

1. The stateof the reactive object(i.e., the value of its
attributes)is serializedandstoredusingstandardlava
facilities(i.e., objectserialization);

2. Thereactie objectis temporarilydisconnectedrom
the ED andthethreadof controlexecutingthereactive
objectloopis stopped.

3. The stateof the reactive objectis moved to the new
locationthrougha network connection At the destina-
tion sitethereacte objectis restartecandreconnected
totheED.

Migration doesnot causeary lossof event,sincethe ED
keepsthe eventsthat shouldbe receved by the migrating
reactve objectuntil it reachests new destination.

The JEDI ability of migrate reactve objectshasbeen
usedin PROSYT to supportnomadicusersandto dynam-
ically changethe way distributed executionof a process
modelis carriedout. In particular it hasbeenusedto im-
plementhePLAN nove operatiorthatallows artifactsand
foldersto be moved from a repositoryto another Since
artifactsand folders are active elements by moving them
PROSYT movesthesitein which processenactmenis car
ried out. As an example, as part of a software develop-
mentprocessit is possibleto specifyadel i ver opera-
tion, which movesa softwarecomponenfrom thedevelop-
mentrepositoryto the productionrepository

Project

Artifact

C

Fald © brow ser
older
:] Other tool
Repository - JEDIED | —|
JVM] Event

connection

Figure 4. The physical architecture of the first
PROSYT prototype .

4 The experience

This sectiondescribeshow the JEDI framework was
usedto implementthe PROSYT prototype. We arguethat
thelessondearnedhave moregeneralvalidity. They illus-
trate the benefitsof event-basedoordinationmechanisms
and codemobility to supportdistributed cooperatie ervi-
ronments.

4.1 The first PROSYT prototype

The componentf a PLAN model (i.e., repositories,
folders,andartifacts)areimplementedasJEDI reactve ob-
jects,which communicateamongthemselesandwith ex-
ternaltools via JEDI events. We also choseto run each
repository andthefoldersandartifactsit includes within a
differentJava Virtual Machine(JVM). Thatis, eachrepos-
itory runsasa differentprocesswhile foldersandartifacts
arethreadsof the enclosingrepositoryprocess.Theresult-
ing physicalarchitectureof PROSYT is showvn in Figure4.
It shavsthe useof JEDI asa middlewvareproviding the co-
ordinationinfrastructure;eachcomponentof the erviron-
ment(tools,projectsrepositoriesfolders,andartifacts)can
sendandreceve JEDI events.

To enacta PLAN model, PROSYT adoptsa transla-
tion basedapproach. Each elementof a PLAN model
(i.e., projecttypes, repositorytypes, folder types, an arti-
facttypes)is translatednto a differentJava class. At run-
time, instancesf suchclassesare createdas needed. To
simplify the translationstep,the JEDI framework was en-
richedby introducingsereralclassesvhichimplementspe-
cific PROSYT functionalities,asshavn in Figure5. In par
ticular, classl t emincludesthemethodgo decideif anex-
portedoperationinvoked by a userhasto be executed(as
definedby the adopteddeviation handlingpolicy) andthe
methodgo reactto aviolation of someinvariant(asdefined
by the adoptedconsisteng checkingpolicy). Similarly,

<<Interface>>
EventDispatcher
(from polimi jedi.dispatc her)

.

ReactiveObject connects

(from polimi.je di)

—

<<Interface>>
LoginManager

[em]

| v
" R
|

}

[Project Repository | [Folder |
[1 [1 1
I i]]

[Artifact
[1
I]

Figure 5. The design of the process engine of
the first PROSYT prototype .

classesPr oj ect, Reposi tory, Fol der, andArti -
fact include methodsthatimplementthe operationshat
arecommonto all projects,repositoriesfolders, and arti-
facts,respectiely.

The specifictools that composethe PROSYT environ-
ment (i.e., the browser the administratve tool, the login
managerthe monitoringtool, andthe reconcilingtool) are
alsodevelopedin Java andrun asdifferentprocessesThey
interactwith the procesenginethroughJEDI events.

Themainadvantage®f thearchitectureof thisfirst pro-
totypecanbe summarizedasfollows:

e Thereis a strong decouplingbetweenthe different
componentof the ervironment. Componentsdnter-
actvia eventsandcanignorethe physicallocationsof
othercomponents.

e Theevent-baseaoordinatiormakesit easyto modify
the systemarchitectureandaddnew tools. As an ex-
ample,the monitoringcomponentndthe reconciling
tool wereaddedwith a minimal effort after an initial
prototypewasfinished.

e It is easyto integrateexisting off-the-shelftools into
theenvironmentbecausehey donotneedto know ary
specificfeatureof PROSYT. A wrappinglayermustbe
developedto encapsulatsuchtools,to let themgener
ate JEDI eventswhentheir statechangesandto react
to JEDI eventssentby the running processengineto
controltheir execution.

As we startedusingthefirst PROSYT prototype,we re-
alizedthatthe eventdispatcheicould becomea bottleneck
for the performanceof the system. Although this problem
wasmitigatedby adoptingthe distributedversionof JEDI,
it continuedto be a problemin presencef large processes
in whichalargenumberof artifactshasto bemanagedThe
secondPROSYT prototypewasdevelopedo overcomethis
problem.

4.2 The secondPROSYT prototype

By analyzingthe tracesof the eventsdeliveredby the
component®f the first PROSYT prototype,we discovered

Event
connection

Artifact O

Folder C]
Repository -
e]

Figure 6. The physical architecture of the sec-
ond PROSYT prototype .

Other tool

Project
browser

JEDIED

Chent/server _ _ |
connection
 —

that most of themwere sentby instancesf the browsers
to the processenginesand vice-versa. Eachtime a user
browsesthrougha folder F, an eventis sentby eachitem

(i.e., artifact and folder) that belongsto F. The eventin-

cludesinformationaboutthe stateof the item andthe ex-

portedoperationghat can be invoked uponit. If the user
invokesthe exportedoperationOp upononeof thesetems,
anothereventis generated.This eventis dispatchedo the
targetitem, to all theitemsthathave anautomaticoperation
associateavith theinvocationof Op, andto the monitoring
tool. Moreover, eachtime the stateof anitem changesa
new eventis generatecinddispatchedo the browsersthat
weredisplayingtheitem.

While the eventsgeneratedy a browserinstancemay
berelevantfor differentAOs, someof the eventsgenerated
by processitems (i.e., artifacts, folders, repositories,and
projects)arerelevantonly for thebrowsershatarecurrently
shaving thoseitems. In addition, artifactsandfolderscan
move duringtheir lifetime, while browsersrun onthe same
hostuntil they areclosed.This suggesta stratey to reduce
thenumberof eventsmanagedy the eventdispatcherstill
retainingthe advantage®of an event-basedrchitecturepy
adoptingdirectRMI connectiongo implementthecommu-
nication from processenginesto browsers. In particular
thebrowsersplay therole of the senersexportingthefunc-
tionality of shawving processtemslik e artifactsandfolders.
Theresultingphysicalarchitecturds shovnin Figure6.

To implementthis new architecturewe addedseveral
Java classes.They implementthe generalcommunication
protocol betweena reactive object which is interestedin
shawing its stateon aviewer tool andtheviewer tool itself.

5 RelatedWork

Process support systems, event-based coordination
framaworks, and mobile agentsare three very active re-
searchareas. Several prototypesand even productsexists

for eachof them. Dueto spacereasonsve cannotdescribe
relatedwork in thesespecificareas.For a survey of mobile
codelanguagesndsystemstheinterestedeadersnayre-

fer to [16], while [22] comparessereral mobile agentsys-
temsbasedon Java. Similarly, [14] comparesIEDI with

otherevent-basedystemswhile [12] and[13] includean
extensve comparisorbetweerPROSYT andotherPSSs.

To the bestof our knowledge,therehave beenno pub-
lished experiencesof the combineduse of mobile agents
and event-basedoordinationframewvorks and of their use
to implement cooperatie and distributed businesspro-
cesses.n this section,we briefly comparePROSYT with
otherPSEEwith respecto systemarchitecture.

Most of the PSEEsdeveloped during the last years
adoptsa standardclient-sener architecture. Processen-
actments centralizedandtools communicatewith the en-
ginethroughpoint-to-pointconnections Examplesof such
PSEEsare Adele [8], Arcadia[26], EPOS[11], JIL [25],
Marvel [21], Merlin [23], Oikos[1], ProcessNeaver [19],
Provence[7], SENTINEL [15], andSFADE [6, 5].

Endeaors[9] adoptsacomplex architectureo distribute
processenactment. Several processenginesmay Coexist.
They communicatewith standardpoint-to-point connec-
tions. As mentionedthis approachreduceghe possibility
of changinghesystemarchitectureatrun-timeto copewith
changesn theunderlyingernvironment.

The APEL [17] architecturehas been explicitly con-
ceivedto supportlarge,distributedprocessedt takesbene-
fit of acompositecommunicatiorparadigmamongcompo-
nents,which includesboth point-to-pointand event-based
connections.It differs from the PROSYT architecturebe-
causeit doesnot takes benefitof codemobility to change
theway procesenactmenis distributedatrun-time.

6 Conclusionsand futur e work

The designof a distributed processsupportsystemlike
PROSYT hasbeena challengingtask. Sincethetraditional
client-serer designparadigmdid not satisfy PROSYT re-
guirementsyve hadto look for lessestablishe@pproaches,
like event-basedhtegrationframevorksandmobileagents.
Theresultinghybrid designparadigmwhich integratesthe
two approacheanda limited useof client-senerintercon-
nectionsprovedto bequite useful. We arguethatthis expe-
riencecanbe usefulfor otherswho areimplementingsimi-
lar kinds of large, distributed,reactve, andcooperatie ap-
plications.

Our experiencehasalsoshavn the drawbacksof event-
baseand mobile codeinfrastructures.As for event-based
infrastructuresthe main drawvbackwe hadto facewasthe
difficulty in supportingsynchronouscooperationin cases
wherethis form of cooperationis necessary The second
PROSYT prototypeshavs how this problemcan be par

tially solved by adoptinga mixed architecture which in-
volvesa limited form of client-sener communication. In
the future, we plan to investigatethe possibility of inte-
grating synchronouscommunicationprimitives into JEDI
to eliminatethe needof usingclient-senertechnologies.

Anotherdifficulty relatedto event-basednfrastructures
hasto do with scalability Although JEDI providesa so-
lution to this problemin termsof distribution of the event
managermoreis neededo achieve full scalability at the
Internetlevel [24].

Regardingagentmobility, in our systemwetook arather
simpleandad-hocapproachpy providing a primitive that
allows a reactive objectto move to specificlocations. It
would be nicein thefutureto be ableto uselanguageshat
provide a richer setof integratedabstractiongo describe
mobile computationsn a structured,natural, and elegant
way. Thisis anactiveresearcliield in whichwe mayexpect
progressn thefuture[16].

Acknowledgements

We are gratefulto Alfonso Fuggettaand ElisabettaDi
Nitto for their contribution to the designof JEDI. We wish
alsoto thankS. Beretta,F. Ferrari,andA. Nava who pro-
vided an essentiasupportin the developmentand imple-
mentationof JEDIandPROSYT.

References

[1] V. Ambriola, P. Ciancarini,and C. Montangero. Enacting
softwareprocessem Oikos. In Proceeding®f the4th ACM
SIGSOFTSymphosiunon Softwae DevelopmentEnviron-
ments volume 15 of Softwae EngineeringNotes Irvine

(CaliforniaUSA), Decembe1990.
[2] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing

process-centereghvironments. ACM Transactionson Soft-

ware Engineeringand Methodolagy, 6(1), July 1997.
[3] S.Baker. CORBA DistributedObjects ACM PressBooks.

AddisonWesley LongmanLtd., 1997.
[4] M. Baldi andG. Picco. Evaluatingthe tradeofs of mobile

codedesignparadigmsn network managemerdpplications.
In R. Kemmerelande. K. Futatsugigditors,Proceeding®f
the 20th International Confeenceon Softwae Engineering
(ICSE’99) Kyoto (Japan)April 1998.

[5] S.Bandinelli, A. Fuggetta,and C. Ghezzi. Processnodel
evolutionin the SFADE ervironment.|IEEE Transactionn

Softwae Engineering 19(12),Decembed 993.
[6] S. Bandinelli, A. Fuggetta,C. Ghezzi, and L. Lavazza.

SPADE: anernvironmentfor SoftwareProces#nalysis,De-
sign, and Enactment. In A. Finkelstein, J. Kramer and
B. Nuseibehgditors,Softwae ProcesdModellingand Tech-

nology. ResearctstudiesPresd.imited (J. Wiley), 1994.
[7]1 N. BaghoutiandB. Krishnamurthy Using event contexts

andmatchingconstraintgdo monitor software processeslin
Proceedingsf 17th International Confeenceon Softwae
Engineering Seattle(Washington USA), April 1995.

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

N. Belkhatir, J.EstublierandW. L. Melo. Adele2: A support
to large software developmentprocess. In Proceedingsof
the 1st International Confeenceon the Softwae Process
RedonddBeachCA (USA), October1991.

G. A. BolcerandR. N. Taylor. Endeaors: A processystem
integrationinfrastructureln Proceeding®ftheFourthInter-
nationalConfeenceon Softwae ProcesgICSP4) Brighton,
UK, DecembeR-6 1996.

A. CarzanigaG. Picco,andG. Vigna. Designingdistributed
applicationsvith mobile codeparadigmsin Proceeding®f
the 19th InternationalConfeenceon Softwae Engineering
Boston,MA, May 1997.

R. Conradietal. Designof the KernelEPOSSoftware En-
gineeringErnvironment. In Proceeding®f the FirstInterna-
tional Confeenceon SystenbevelopmenErnvironmentand
Factories PitmannPublishing,1990.

G. Cugola. Inconsistenciesind Deviationsin ProcessSup-
port Systems PhD thesis,Politecnicodi Milano - Diparti-

mentodi Elettronicae Informazione Feb1998.

G. Cugola. Toleratingdeviationsin processupportsystems
via flexible enactmenof processnodels.|EEE Transactions
on Softwae Engineering 24(11),Nov 1998.

G. CugolaE. Di Nitto, andA. FuggettaExploitinganevent-
basednfrastructureo developcomple distributedsystems.
In Proceeding®f the 20thInternationalConfeenceon Soft-
ware Engineering(ICSE98) Kyoto (Japan)April 1998.

G. Cugola,E. Di Nitto, C. Ghezzi,andM. Mantione. How
to dealwith deviationsduring processnodelenactment.In
Proceedingf the 17th International Confeenceon Soft-
ware Engineering Seattle(Washington USA), April 1995.
G. Cugola,C. Ghezzi,G. Picco,andG. Vigna. Analyzing
Mobile CodelLanguages.In J. Vitek andC. Tschudin,ed-
itors, Mobile Object Systems:Towards the Programmable

Internet LNCS 1222,pages93—111.Springer April 1997.
J. Estublier P. Y. Cunin,andN. Belkhatir. Architecturesor

processsupportsysteminteroperability In Prooceeding®f

the Fifth International Confeenceon the Softwae Process
Lisle, IL, Jun1998.

J. Farley. Java Distributed Computing The Java Series.
O'Reilly & Associatesinc.,1997.

C. Fernstdbm. PROCESSWEAVER: addingprocessupport
to UNIX. In Proceedingof the 2nd International Confer

enceon the Softwae Process Berlin (Germar), February
1993.

A. Finkelstein,J. Kramer andB. Nuseibeheditors.Softwae

ProcessModellingand Technolayy. ResearcltStudiesPress

Limited (J. Wiley), 1994,
G. Kaiser P. Feiler, andS. Popwich. Intelligent assistance

for softwaredevelopmentandmaintenancelEEE Softwae,

May 1988.
J.Kiniry andD. ZimmermanA hands-orook atjavamobile

agents.|EEE InternetComputing 1(4), July/August1997.
B. Peuscheland W. Schafer Conceptsand Implementa-

tion of a Rule-basedProcessEngine. In Proceedingsof
the 14th InternationalConfeenceon Softwae Engineering

Melbourne(Australia),May 1992. ACM-IEEE.
D. S.RosemblumandA. L. Wolf. A designframewvork for

internet-scaleventobserationandnotification.In M. Jaza-
yeriandH. Schauereditors,Proceedingf the6th European
Softwae EngineeringConfeence(ESEC’'97) LNCS 1301,
Zurich, Switzerland Septembe 997.SpringerVerlag.

[25]

[26]

[27]

M. S. Suttonand J. L. Osterweil. The designof a next-

generationprocesslanguage. In Proceedingsof the Fifth

ACM SIGSOFTSymposiunon the Foundationsof Softwae

Engineering number1301in Lecture Notesin Computer
Science,pages142-158, Zurich, Switzerland, Sep 1997.
SpringefVerlag.

R. Taylor, R. Selby M. Young,F. Belz, L. Clark, J. Wile-

den,andL. O. A. Wolf. Foundationsof the Arcadia en-

vironmentarchitecture. In Proceedingsof the Third ACM

SIGSOFT/SIGPLAMSSYmMphosiunon Softwae Development

EnvironmentsACM, 1988.
J. Vitek and C. Tschudin,editors. Mobile Object Systems:

Towardsthe Programmablenternet LNCS 1222.Springer
April 1997.

