
Coding Different Design Paradigms for
Distributed Applications with Aspect-Oriented

Programming

Gianpaolo Cugola, Carlo Ghezzi, and Mattia Monga

Politecnico di Milano – Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32

I 20133 Milano – Italy
{cugola, ghezzi, monga}@elet.polimi.it

Abstract. In this paper we discuss how Aspect-Oriented Programming
(AOP) may be useful in the design of distributed applications. Different
design paradigms might be singled out in separate aspects, thus sepa-
rating the “functional” code of an application from the interchangeable
parts describing the distribution.
After introducing an Aspect-Oriented Language (AspectJ), we illustrate
its use in a simple toy example. This will allow us to identify how re-
search should progress to make AOP a useful approach in the design of
a distributed application

1 Motivations

Since the beginning of software engineering, separation of concerns [1]
was recognized as a fundamental tool to manage the complexity of sys-
tems. A complex system can be partitioned into simpler, tractable sub-
systems. Sub-problems are addressed relatively independently and the
complete solution is built by gluing together the sub-solutions. The parts
that compose the whole system are often modular units of functional-
ity and existing programming languages work well in isolating modules,
thanks to object orientation, functional decomposition, etc.
However, sometimes a concern is not easily factored out in a functional
unit, because it cross-cuts the entire system, or parts of it. Synchroniza-
tion, memory management, network distribution, load balancing, error
checking, profiling, security are all aspects of computer problems that
are unlikely to be separated in functional units.
As an example, suppose that a Java class is used to describe the pure
functionality of certain objects. Separate aspects, not easily encapsulable
in a module, may include:

– the definition of how objects are distributed on the nodes of a net-
work and which pattern they use to communicate;

– the definition of synchronization operations to constrain concurrent
access to the object (e.g., a consumer trying to read a datum from
a queue must be suspended if the queue is empty);

– the definition of security or accounting policies (e.g., to get informa-
tion from an object one must first ask some permission).

A language supporting the separate definition of pure functionality from
the various different aspects is called an Aspect-Oriented Language (AOL).
An AOL should satisfy a number of desirable properties. For example,
each aspect should be clearly identifiable; it should be self-contained and
easily changeable. Moreover, the various aspects should not interfere with
one another. They should not interfere with the features used to define
and evolve functionality, such as inheritance.
This report is organized as follows: Section 2 introduces the current stage
of Aspect-Oriented Programming. Section 3 uses Aspect-Oriented Pro-
gramming to applying different paradigms to a distributed application,
highlighting problems and pitfalls. Section 4 provides some conclusions
and motivates future briefly sets a research agenda.

2 A Brief Introduction to Aspect-Oriented
Programming

The central idea of Aspect-Oriented Programming (AOP) [2] is to sepa-
rate the code that expresses an aspect (i.e., a property of the system not
cleanly separable in a functional unit) from the code that expresses func-
tional units. A weaver braids (not necessarily at compile-time) aspects
with functional units to obtain the final system. Aspects are expressed
by the means of an Aspect-Oriented Language, while functional units
are defined with a Component Language (CL). There can be a different
AOL for each kind of aspect one wants to cope with.
In the study reported here we analyzed AspectJ, which can be considered
as a representative of current AOLs. AspectJ 0.1 [3] is an environment
for aspect programming developed at Xerox PARC. In the environment,
the CL is Java and there is an AOL for synchronization (COOL) and an
AOL for expressing remote invocation (RIDL). In the new version (0.3)
of AspectJ [4], there is a unique general-purpose AOL that captures the
cross-cutting nature of aspects, independent of what those aspects are.

3 Problems and Pitfalls

In this section, we describe an experiment in using AOP to encode dif-
ferent paradigms of distribution. Examples are implemented with As-
pectJ 0.3, Java 1.2 and RMI; we discuss a number of drawbacks and
pitfalls of the solutions. More generally, our remarks enlighten the weak-
nesses of the current state of the art in AOLs and indicate directions of
future investigation.
When implementing a distributed application, the concept of distribu-
tion of modular components among locations needs to be taken explicitly
into account [5]. In conventional Object-Oriented Programming (OOP),
changing the design decision about distribution is never easy, since the
effects of such decision are tangled all around the code. On the other

hand, AOP offers an appealing approach since it allows the design deci-
sions regarding different distributions policies to be specified separately,
making it easy to design them and to switch from one to another.
In our research group, previous work identified and analyzed a number
of design paradigms that can be chosen to develop a distributed appli-
cation [6]. In particular, [6] discusses the design paradigms through the
metaphor of two friends - Luise and Christine - cooperating in the task
of making a cake. In order to make the cake (service), a recipe (know-
how) is needed, as well as the ingredients (light resources) and an oven
(heavy resource) to bake the cake. In a client-server (Figure 3) situation
we may want that Louise asks Christine to bake the cake for her. Sup-
pose we want change the environment towards remote-evaluation (Figure
4); now Louise owns the know-how and communicates it to Christine to
get the cake baked. A third option (Code on Demand, Figure 5) is that
Louise asks Christine for the recipe and bakes the cake herself. By us-
ing an AOL, our goal is to ‘isolate’ the code that implements the above
different situations, in a way that makes further changes easy.
The core code (see Figure 1) knows about the use of RMI, but it is
independent of the design decision regarding distribution. Louise (see
Figure 2) is the initiator of the interaction with Christine and the one
interested in the final result, the cake.

public class Person
extends UnicastRemoteObject
implements PersonI {

protected Ing r ed i ent s ing ;
protected Oven ov ;
protected CookBook book ;

public Person ()
throws RemoteException {}

public CookBook getBook ()
throws RemoteException {
return book ;

}

public void setBook (CookBook cb)
throws RemoteException {
book = cb ;

}

public Cake getCake ()
throws RemoteException {
return makeCake () ;

}

private Cake makeCake (){
return (Cake)

book . prepare (" Cake " , ing , ov) ;
}

}

interface PersonI
extends Remote{
CookBook getBook ()

throws RemoteException ;
void setBook (CookBook cb)

throws RemoteException ;
Cake getCake () throws

RemoteException ;
}

class Food { /∗ . . . ∗/ }

class Ing r ed i ent s { /∗ . . . ∗/ }

class Cake extends Food { /∗ . . . ∗/ }

class Oven{
public Food bake (Food ww){

/∗ . . . ∗/
}

}

interface CookBook{
public Food prepare (Str ing foodName ,

Ingred i ent s i i ,
Oven oo) ;

}

Fig. 1. Core classes without any distribution issues

class Louise extends Person {
private PersonI p ;
public Louise ()

throws RemoteException {
try {

p = (PersonI)
Naming . lookup (" Christine ") ;

}
catch (Exception e) {}

}

public static void main (Str ing [] arg){
try {

Louise l = new Louise () ;
l . act () ;

}catch (Exception e) {}
}

private void act () {}
}

class Chr i s t ine extends Person {
public Chr i s t ine ()

throws RemoteException {}

public static
void main (Str ing [] arg){
try {

Chr i s t ine me =
new Chr i s t ine () ;

Naming . bind (" Christine " , me) ;
}
catch (Exception e) {}

}
}

Fig. 2. Louise and Christine

aspect Cl i entServer {
advise void Louise . act (){

static before {
try {

Cake c = p . getCake () ;
}
catch (Exception e) {}

}
}

advise Chr i s t ine (){
static after {

ing = new Ing r ed i ent s () ;
ov = new Oven () ;

class Artusi implements CookBook{
public Food prepare (Str ing foodName ,

Ingred i ent s i i ,
Oven o){

/∗ . . .∗/
}

}
book = new Artusi () ;

}
}

}

Fig. 3. Client-Server

In our analysis of current AOLs, we found three main drawbacks:

aspect RemoteEvaluation {
advise Louise (){

static after {
class Artusi implements CookBook{

public Food prepare (Str ing foodName ,
Ingred i ent s i i ,
Oven o){

/∗ . . .∗/
}

}
book = new Artusi () ;

}
}

advise void Louise . act (){
static before {

try {
p . setBook (book) ;
Cake c = p . getCake () ;

}
catch (Exception e) {}

}
}

advise Chr i s t ine (){
static after {

ing = new Ing r ed i ent s () ;
ov = new Oven () ;

}
}

}

Fig. 4. Remote Evaluation

1. Possible clashes between functional code (expressed using a CL)
and other aspects (expressed using one or more AOLs). Usually
such clashes result from the need of breaking encapsulation of func-
tional units to implement a different aspect. As an example, the
RemoteEvaluation aspect (see Figure 4), modifies the value of the
protected variables ing, ov and book of Person. This results in a
potentially dangerous violation of class encapsulation. As a conse-
quence, in general, it is not possible to change the internals of a
functional unit without affecting aspects.

2. Possible clashes between different aspects. Suppose we developed an
aspect TraceBefore to trace the start of execution of methods of
class Person and an aspect TraceAfter to trace the end of execu-
tion of the same methods. The two aspects work perfectly when
applied individually (for example, to trace the start of execution or
to trace the end of it). Unfortunately, if each aspect introduces the
same method (e.g., method print) with different definitions, they
fail when applied together.

3. Possible clashes between aspect code and specific language mecha-
nisms. One of the best known examples of problems that falls into
this category is inheritance anomaly [7]. This term was first used

aspect CodeOnDemand{
advise Louise (){

static after {
ing = new Ing r ed i ent s () ;
ov = new Oven () ;

}

}

advise void Louise . act (){
static before {

try{
book = p . getBook () ;
Cake c = getCake () ;

}
catch (Exception e) {}

}
}

advise Chr i s t ine (){
static after {

class Artusi implements CookBook{
public Food prepare (Str ing foodName ,

Ingred i ent s i i ,
Oven o){

/∗ . . .∗/
}

}
book = new Artusi () ;

}
}

}

Fig. 5. Code on Demand

in the area of concurrent object-oriented languages [8–10] to indi-
cate the difficulty of inheriting the code used to implement the syn-
chronization constraints of an application written using one of such
languages. In the area of AOP languages, the term can be used to
indicate the difficulty of inheriting the aspect code in the presence
of inheritance. As an example, it could be useful to define the as-
pect RemoteEvaluation as a “sub-aspect” of ClientServer. This
is reasonable if you consider that remote evaluation involves passing
Christine the recipe, then asking her to prepare the cake (this second
part being exactly the same operation done when the client-server
approach is taken). Unfortunately, this is not possible and it was
necessary to rewrite the aspect code entirely.

All these problems show that AOP is still in its infancy. The experience
gained in the area of concurrent object-oriented-languages [7] suggests
that these problems might result more from the linguistic choices made in
developing AOLs, rather than from intrinsic limitations of the approach.
The problem of finding adequate linguistic features which do not suffer
from inheritance anomaly is thus an open research topic.

4 Conclusion and Open Issues

AOP tries to provide linguistic mechanisms to factor out different aspects
of a program, which can be defined, understood, and evolved separately.
It pushes the idea of separation of concerns one step forward with re-
spect to existing programming language constructs, which simply provide
ways to encapsulate a single functionality in a unit. Aspects in an AOP
resemble ViewPoints in design and specification, as advocated by [11].
AOP, however, is still in its infancy. It is more an open research area
than an existing technology that one can use. The problems and pitfalls
we outlined in the previous section indicate that it is still unclear which
constructs an AOL should provide and how they should interact with the
functional language and the mechanisms provided to support functional
evolution. As we observed, a fully general-purpose AOL, like AspectJ,
with full visibility of the internal details of its associated functional mod-
ule, violates the principles of protection and encapsulation. On the other
end, one might predefine a set of possible aspects an AOL should deal
with, and then provide ad-hoc AOLs with constructs supporting limited
visibility of certain features of the functional module to which the dif-
ferent aspects apply. The tradeoff is between flexibility and power, on
one side, and understandability and ease of change on the other. (For a
preliminary discussion of these points, see [12]).
In addition, we feel that aspects should be definable in a formal way.
The formal definition will allow the AOL to define an algebra of aspect
composition, clearly specifying when certain combinations of aspects are
applicable (and what the effect is) or, conversely, when their combina-
tion is not possible or not defined, because it generates inconsistencies.
Again, the problems arising here are strictly related to the ones being
investigated in the case of viewpoints and viewpoint composition.
Research work at the programming language level should go hand-in-
hand with experimental work, which should try to assess the usefulness
and usability of the language. This is especially important since our claim
is that AOP can be a vehicle to support tractability of intrinsic dispersed
topics (as distribution of application entities) and this eventually will
require some sort of experimental validation. [13] did an interesting ini-
tial experiment using AspectJ 0.1. Experiments of similar kind will be
needed, as further progress will be made in AOP technology.

References

1. E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.
2. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-

M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in Pro-
ceedings of the European Conference on Object-Oriented Program-
ming (ECOOP), (Finland), Springer-Verlag, June 1997.

3. XEROX Palo Alto Research Center, AspectJ: User’s Guide and
Primer, 1998.

4. XEROX Palo Alto Research Center, AspectJ: User’s Guide and
Primer, 1999.

5. J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on dis-
tributed computing,” in Mobile Object Systems, vol. 1222 of Lecture
Notes in Computer Science, pp. 49–64, Springer-Verlag, Berlin, 1997.

6. A. Fuggetta, G. Picco, and G. Vigna, “Understanding Code Mo-
bility,” IEEE Transactions on Software Engineering, vol. 24, no. 5,
pp. 342–361, 1998.

7. S. Matsuoka and A. Yonezawa, “Analysis of inheritance anomaly
in object-oriented concurrent programming languages,” in Research
Directions in Concurrent Object-Oriented Programming (G. Agha,
P. Wegner, and A. Yonezawa, eds.), pp. 107–150, Cambridge, MA:
MIT Press, 1993.

8. A. Yonezawa and M. Tokoro, eds., Concurrent Object-Oriented Pro-
gramming. Cambridge, Mass.: The MIT Press, 1987.

9. G. Agha, “Concurrent object-oriented programming,” Communica-
tions of the ACM, vol. 33, pp. 125–141, Sept. 1990.

10. O. Nierstrasz, “Composing active objects,” in Research Directions
in Concurrent Object-Oriented Programming (P. W. G. Agha and
A. Yonezawa, eds.), pp. 151–171, MIT Press, 1993.

11. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and
M. Goedicke, “Viewpoints: A framework for integrating multiple per-
spectives in systems development,” International Journal of Software
Engineering and Knowledge Engineering, vol. 1, no. 2, pp. 31–58,
1992.

12. G. Kickzales, J. Lamping, C. V. Lopes, A. Mendhekar, and G. Mur-
phy, “Open implementation design guidelines,” in Proceedings of
the 19th International Conference on Software Engineering, (Boston,
MA), may 1997.

13. G. Kickzales, E. L. Baniassad, and G. C. Murphy, “An initial assess-
ment of aspect-oriented programming,” in Proceedings of the 21st In-
ternational Conference on Software Engineering, (Los Angeles, CA),
may 1999.

